Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
May-2021 Volume 21 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2021 Volume 21 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Altered glycolysis results in drug‑resistant in clinical tumor therapy (Review)

  • Authors:
    • Jinghui Peng
    • Yangyang Cui
    • Shipeng Xu
    • Xiaowei Wu
    • Yue Huang
    • Wenbin Zhou
    • Shui Wang
    • Ziyi Fu
    • Hui Xie
  • View Affiliations / Copyright

    Affiliations: Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA, Nanjing Maternal and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, P.R. China
  • Article Number: 369
    |
    Published online on: March 11, 2021
       https://doi.org/10.3892/ol.2021.12630
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cancer cells undergo metabolic reprogramming, including increased glucose metabolism, fatty acid synthesis and glutamine metabolic rates. These enhancements to three major metabolic pathways are closely associated with glycolysis, which is considered the central component of cancer cell metabolism. Increasing evidence suggests that dysfunctional glycolysis is commonly associated with drug resistance in cancer treatment, and aberrant glycolysis plays a significant role in drug‑resistant cancer cells. Studies on the development of drugs targeting these abnormalities have led to improvements in the efficacy of tumor treatment. The present review discusses the changes in glycolysis targets that cause drug resistance in cancer cells, including hexokinase, pyruvate kinase, pyruvate dehydrogenase complex, glucose transporters, and lactate, as well the underlying molecular mechanisms and corresponding novel therapeutic strategies. In addition, the association between increased oxidative phosphorylation and drug resistance is introduced, which is caused by metabolic plasticity. Given that aberrant glycolysis has been identified as a common metabolic feature of drug‑resistant tumor cells, targeting glycolysis may be a novel strategy to develop new drugs to benefit patients with drug‑resistance.
View Figures

Figure 1

Figure 2

View References

1 

Zaal EA and Berkers CR: The influence of metabolism on drug response in cancer. Front Oncol. 8:5002018. View Article : Google Scholar : PubMed/NCBI

2 

Warburg O, Wind F and Negelein E: The metabolism of tumors in the body. J Gen Physiol. 8:519–530. 1927. View Article : Google Scholar : PubMed/NCBI

3 

Bonuccelli G, Whitaker-Menezes D, Castello-Cros R, Pavlides S, Pestell RG, Fatatis A, Witkiewicz AK, Vander Heiden MG, Migneco G, Chiavarina B, et al: The reverse Warburg effect: Glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts. Cell Cycle. 9:1960–1971. 2010. View Article : Google Scholar : PubMed/NCBI

4 

Holohan C, Van Schaeybroeck S, Longley DB and Johnston PG: Cancer drug resistance: An evolving paradigm. Nat Rev Cancer. 13:714–726. 2013. View Article : Google Scholar : PubMed/NCBI

5 

Boumahdi S and de Sauvage FJ: The great escape: Tumour cell plasticity in resistance to targeted therapy. Nat Rev Drug Discov. 19:39–56. 2020. View Article : Google Scholar : PubMed/NCBI

6 

Gershon O, Ezenwa NE and Osabohien R: Implications of oil price shocks on net oil-importing African countries. Heliyon. 5:e022082019. View Article : Google Scholar : PubMed/NCBI

7 

Woo YM, Shin Y, Lee EJ, Lee S, Jeong SH, Kong HK, Park EY, Kim HK, Han J, Chang M and Park JH: Inhibition of aerobic glycolysis represses Akt/mTOR/HIF-1α axis and restores tamoxifen sensitivity in antiestrogen-resistant breast cancer cells. PLoS One. 10:e01322852015. View Article : Google Scholar : PubMed/NCBI

8 

Komurov K, Tseng JT, Muller M, Seviour EG, Moss TJ, Yang L, Nagrath D and Ram PT: The glucose-deprivation network counteracts lapatinib-induced toxicity in resistant ErbB2-positive breast cancer cells. Mol Syst Biol. 8:5962012. View Article : Google Scholar : PubMed/NCBI

9 

Ruprecht B, Zaal EA, Zecha J, Wu W, Berkers CR, Kuster B and Lemeer S: Lapatinib resistance in breast cancer cells is accompanied by phosphorylation-mediated reprogramming of glycolysis. Cancer Res. 77:1842–1853. 2017. View Article : Google Scholar : PubMed/NCBI

10 

He M, Jin Q, Chen C, Liu Y, Ye X, Jiang Y, Ji F, Qian H, Gan D, Yue S, et al: The miR-186-3p/EREG axis orchestrates tamoxifen resistance and aerobic glycolysis in breast cancer cells. Oncogene. 38:5551–5565. 2019. View Article : Google Scholar : PubMed/NCBI

11 

Icard P, Shulman S, Farhat D, Steyaert JM, Alifano M and Lincet H: How the Warburg effect supports aggressiveness and drug resistance of cancer cells? Drug Resist Updat. 38:1–11. 2018. View Article : Google Scholar : PubMed/NCBI

12 

Apicella M, Giannoni E, Fiore S, Ferrari KJ, Fernández-Pérez D, Isella C, Granchi C, Minutolo F, Sottile A, Comoglio PM, et al: Increased lactate secretion by cancer cells sustains non-cell-autonomous adaptive resistance to MET and EGFR targeted therapies. Cell Metab. 28:848–865 e6. 2018. View Article : Google Scholar : PubMed/NCBI

13 

Varghese E, Samuel SM, Liskova A, Samec M, Kubatka P and Busselberg D: Targeting glucose metabolism to overcome resistance to anticancer chemotherapy in breast cancer. Cancers (Basel). 12:22522020. View Article : Google Scholar

14 

Liu X, Miao W, Huang M, Li L, Dai X and Wang Y: Elevated hexokinase II expression confers acquired resistance to 4-hydroxytamoxifen in breast cancer cells. Mol Cell Proteomics. 18:2273–2284. 2019. View Article : Google Scholar : PubMed/NCBI

15 

Krasnov GS, Dmitriev AA, Lakunina VA, Kirpiy AA and Kudryavtseva AV: Targeting VDAC-bound hexokinase II: A promising approach for concomitant anti-cancer therapy. Expert Opin Ther Targets. 17:1221–1233. 2013. View Article : Google Scholar : PubMed/NCBI

16 

Yang T, Ren C, Qiao P, Han X, Wang L, Lv S, Sun Y, Liu Z, Du Y and Yu Z: Correction: PIM2-mediated phosphorylation of hexokinase 2 is critical for tumor growth and paclitaxel resistance in breast cancer. Oncogene. 39:720–721. 2020. View Article : Google Scholar : PubMed/NCBI

17 

Yang T, Ren C, Qiao P, Han X, Wang L, Lv S, Sun Y, Liu Z, Du Y and Yu Z: PIM2-mediated phosphorylation of hexokinase 2 is critical for tumor growth and paclitaxel resistance in breast cancer. Oncogene. 37:5997–6009. 2018. View Article : Google Scholar : PubMed/NCBI

18 

Fan K, Fan Z, Cheng H, Huang Q, Yang C, Jin K, Luo G, Yu X and Liu C: Hexokinase 2 dimerization and interaction with voltage-dependent anion channel promoted resistance to cell apoptosis induced by gemcitabine in pancreatic cancer. Cancer Med. 8:5903–5915. 2019. View Article : Google Scholar : PubMed/NCBI

19 

Rai Y, Yadav P, Kumari N, Kalra N and Bhatt AN: Hexokinase II inhibition by 3-bromopyruvate sensitizes myeloid leukemic cells K-562 to anti-leukemic drug, daunorubicin. Biosci Rep. 39:BSR201908802019. View Article : Google Scholar : PubMed/NCBI

20 

Li Z, Tang X, Luo Y, Chen B, Zhou C, Wu X, Tang Z, Qi X, Cao G, Hao J, et al: NK007 helps in mitigating paclitaxel resistance through p38MAPK activation and HK2 degradation in ovarian cancer. J Cell Physiol. Feb 20–2019.(Epub ahead of print).

21 

Geng C, Li J, Ding F, Wu G, Yang Q, Sun Y, Zhang Z, Dong T and Tian X: Curcumin suppresses 4-hydroxytamoxifen resistance in breast cancer cells by targeting SLUG/Hexokinase 2 pathway. Biochem Biophys Res Commun. 473:147–153. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Mahammedi H, Planchat E, Pouget M, Durando X, Curé H, Guy L, Van-Praagh I, Savareux L, Atger M, Bayet-Robert M, et al: The new combination docetaxel, prednisone and curcumin in patients with castration-resistant prostate cancer: A pilot phase II study. Oncology. 90:69–78. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Gadducci A, Brunetti I, Muttini MP, Fanucchi A, Dargenio F, Giannessi PG and Conte PF: Epidoxorubicin and lonidamine in refractory or recurrent epithelial ovarian cancer. Eur J Cancer. 30A:1432–1435. 1994. View Article : Google Scholar : PubMed/NCBI

24 

De Lena M, Lorusso V, Latorre A, Fanizza G, Gargano G, Caporusso L, Guida M, Catino A, Crucitta E, Sambiasi D and Mazzei A: Paclitaxel, cisplatin and lonidamine in advanced ovarian cancer. A phase II study. Eur J Cancer. 37:364–368. 2001. View Article : Google Scholar : PubMed/NCBI

25 

Huang K, Liang Q, Zhou Y, Jiang LL, Gu WM, Luo MY, Tang YB, Wang Y, Lu W, Huang M, et al: A novel allosteric inhibitor of phosphoglycerate mutase 1 suppresses growth and metastasis of non-small-cell lung cancer. Cell Metab. 30:1107–1119.e8. 2019. View Article : Google Scholar : PubMed/NCBI

26 

Ren F, Wu H, Lei Y, Zhang H, Liu R, Zhao Y, Chen X, Zeng D, Tong A, Chen L, et al: Quantitative proteomics identification of phosphoglycerate mutase 1 as a novel therapeutic target in hepatocellular carcinoma. Mol Cancer. 9:812010. View Article : Google Scholar : PubMed/NCBI

27 

Usuba T, Ishibashi Y, Okawa Y, Hirakawa T, Takada K and Ohkawa K: Purification and identification of monoubiquitin-phosphoglycerate mutase B complex from human colorectal cancer tissues. Int J Cancer. 94:662–668. 2001. View Article : Google Scholar : PubMed/NCBI

28 

Liu L, Wang S, Zhang Q and Ding Y: Identification of potential genes/proteins regulated by Tiam1 in colorectal cancer by microarray analysis and proteome analysis. Cell Biol Int. 32:1215–1222. 2008. View Article : Google Scholar : PubMed/NCBI

29 

Chen G, Gharib TG, Wang H, Huang CC, Kuick R, Thomas DG, Shedden KA, Misek DE, Taylor JM, Giordano TJ, et al: Protein profiles associated with survival in lung adenocarcinoma. Proc Natl Acad Sci USA. 100:13537–13542. 2003. View Article : Google Scholar : PubMed/NCBI

30 

Chen SY, Cai JX, Zhang WP, Zhang XW, Hu SS, Lu J, Xing JF and Dong YL: Proteomic identification of differentially expressed proteins associated with the multiple drug resistance in methotrexate-resistant human breast cancer cells. Int J Oncol. 45:448–458. 2014. View Article : Google Scholar : PubMed/NCBI

31 

Wang HJ, Pochampalli M, Wang LY, Zou JX, Li PS, Hsu SC, Wang BJ, Huang SH, Yang P, Yang JC, et al: KDM8/JMJD5 as a dual coactivator of AR and PKM2 integrates AR/EZH2 network and tumor metabolism in CRPC. Oncogene. 38:17–32. 2019. View Article : Google Scholar : PubMed/NCBI

32 

Qian Y, Bi L, Yang Y and Wang D: Effect of pyruvate kinase M2-regulating aerobic glycolysis on chemotherapy resistance of estrogen receptor-positive breast cancer. Anticancer Drugs. 29:616–627. 2018. View Article : Google Scholar : PubMed/NCBI

33 

Tian S, Li P, Sheng S and Jin X: Upregulation of pyruvate kinase M2 expression by fatty acid synthase contributes to gemcitabine resistance in pancreatic cancer. Oncol Lett. 15:2211–2217. 2018.PubMed/NCBI

34 

Wong TL, Ng KY, Tan KV, Chan LH, Zhou L, Che N, Hoo RLC, Lee TK, Richard S, Lo CM, et al: CRAF methylation by PRMT6 regulates aerobic glycolysis driven hepatocarcinogenesis via ERK-dependent PKM2 nuclear relocalization and activation. Hepatology. 71:1279–1296. 2020. View Article : Google Scholar : PubMed/NCBI

35 

Cheng C, Xie Z, Li Y, Wang J, Qin C and Zhang Y: PTBP1 knockdown overcomes the resistance to vincristine and oxaliplatin in drug-resistant colon cancer cells through regulation of glycolysis. Biomed Pharmacother. 108:194–200. 2018. View Article : Google Scholar : PubMed/NCBI

36 

Shang D, Wu J, Guo L, Xu Y, Liu L and Lu J: Metformin increases sensitivity of osteosarcoma stem cells to cisplatin by inhibiting expression of PKM2. Int J Oncol. 50:1848–1856. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Ge X, Zhao Y, Dong L, Seng J, Zhang X and Dou D: NAMPT regulates PKM2 nuclear location through 14-3-3 ζ: Conferring resistance to tamoxifen in breast cancer. J Cell Physiol. 234:23409–23420. 2019. View Article : Google Scholar : PubMed/NCBI

38 

Calabretta S, Bielli P, Passacantilli I, Pilozzi E, Fendrich V, Capurso G, Fave GD and Sette C: Modulation of PKM alternative splicing by PTBP1 promotes gemcitabine resistance in pancreatic cancer cells. Oncogene. 35:2031–2039. 2016. View Article : Google Scholar : PubMed/NCBI

39 

Wang X, Zhang F and Wu XR: Inhibition of pyruvate kinase M2 markedly reduces chemoresistance of advanced bladder cancer to cisplatin. Sci Rep. 7:459832017. View Article : Google Scholar : PubMed/NCBI

40 

Gatti M, Solari A, Pattarozzi A, Campanella C, Thellung S, Maniscalco L, De Maria R, Würth R, Corsaro A, Bajetto A, et al: In vitro and in vivo characterization of stem-like cells from canine osteosarcoma and assessment of drug sensitivity. Exp Cell Res. 363:48–64. 2018. View Article : Google Scholar : PubMed/NCBI

41 

Ramos-Penafiel C, Olarte-Carrillo I, Ceron-Maldonado R, Rozen-Fuller E, Kassack-Ipiña JJ, Meléndez-Mier G, Collazo-Jaloma J and Martínez-Tovar A: Effect of metformin on the survival of patients with ALL who express high levels of the ABCB1 drug resistance gene. J Transl Med. 16:2452018. View Article : Google Scholar : PubMed/NCBI

42 

Shanmugasundaram K, Nayak BK, Friedrichs WE, Kaushik D, Rodriguez R and Block K: NOX4 functions as a mitochondrial energetic sensor coupling cancer metabolic reprogramming to drug resistance. Nat Commun. 8:9972017. View Article : Google Scholar : PubMed/NCBI

43 

Lu CW, Lin SC, Chen KF, Lai YY and Tsai SJ: Induction of pyruvate dehydrogenase kinase-3 by hypoxia-inducible factor-1 promotes metabolic switch and drug resistance. J Biol Chem. 283:28106–28114. 2008. View Article : Google Scholar : PubMed/NCBI

44 

Zhang M, Cong Q, Zhang XY, Zhang MX, Lu YY and Xu CJ: Pyruvate dehydrogenase kinase 1 contributes to cisplatin resistance of ovarian cancer through EGFR activation. J Cell Physiol. 234:6361–6370. 2019. View Article : Google Scholar : PubMed/NCBI

45 

Hu T, Yu S, Li Y, Ren H, Ning Q, Wang J, Liang X and Li M: PDK2 induces cisplatin-resistance in lung adenocarcinoma via transcriptional regulation of CNNM3. J Drug Target. 27:460–465. 2019. View Article : Google Scholar : PubMed/NCBI

46 

Lu CW, Lin SC, Chien CW, Lin SC, Lee CT, Lin BW, Lee JC and Tsai SJ: Overexpression of pyruvate dehydrogenase kinase 3 increases drug resistance and early recurrence in colon cancer. Am J Pathol. 179:1405–1414. 2011. View Article : Google Scholar : PubMed/NCBI

47 

Ren YJ, Wang XH, Ji C, Guan YD, Lu XJ, Liu XR, Zhang HH, Guo LC, Xu QH, Zhu WD, et al: Silencing of NAC1 expression induces cancer cells oxidative stress in hypoxia and potentiates the therapeutic activity of elesclomol. Front Pharmacol. 8:8042017. View Article : Google Scholar : PubMed/NCBI

48 

Strowitzki MJ, Radhakrishnan P, Pavicevic S, Scheer J, Kimmer G, Ritter AS, Tuffs C, Volz C, Vondran F, Harnoss JM, et al: High hepatic expression of PDK4 improves survival upon multimodal treatment of colorectal liver metastases. Br J Cancer. 120:675–688. 2019. View Article : Google Scholar : PubMed/NCBI

49 

Walter W, Thomalla J, Bruhn J, Fagan DH, Zehowski C, Yee D and Skildum A: Altered regulation of PDK4 expression promotes antiestrogen resistance in human breast cancer cells. Springerplus. 4:6892015. View Article : Google Scholar : PubMed/NCBI

50 

Michelakis ED, Webster L and Mackey JR: Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br J Cancer. 99:989–994. 2008. View Article : Google Scholar : PubMed/NCBI

51 

Woo SH, Seo SK, Park Y, Kim EK, Seong MK, Kim HA, Song JY, Hwang SG, Lee JK, Noh WC and Park IC: Dichloroacetate potentiates tamoxifen-induced cell death in breast cancer cells via downregulation of the epidermal growth factor receptor. Oncotarget. 7:59809–59819. 2016. View Article : Google Scholar : PubMed/NCBI

52 

Xuan Y, Hur H, Ham IH, Yun J, Lee JY, Shim W, Kim YB, Lee G, Han SU and Cho YK: Dichloroacetate attenuates hypoxia-induced resistance to 5-fluorouracil in gastric cancer through the regulation of glucose metabolism. Exp Cell Res. 321:219–230. 2014. View Article : Google Scholar : PubMed/NCBI

53 

Clayton: Case of ulceration of the larynx. Med Phys J. 32:25–26. 1814.PubMed/NCBI

54 

Lu H, Lu Y, Xie Y, Qiu S, Li X and Fan Z: Rational combination with PDK1 inhibition overcomes cetuximab resistance in head and neck squamous cell carcinoma. JCI Insight. 4:e1311062019. View Article : Google Scholar

55 

Yang Z and Tam KY: Anti-cancer synergy of dichloroacetate and EGFR tyrosine kinase inhibitors in NSCLC cell lines. Eur J Pharmacol. 789:458–467. 2016. View Article : Google Scholar : PubMed/NCBI

56 

Xue X, You S, Zhang Q, Wu Y, Zou GZ, Wang PC, Zhao YL, Xu Y, Jia L, Zhang X and Liang XJ: Mitaplatin increases sensitivity of tumor cells to cisplatin by inducing mitochondrial dysfunction. Mol Pharm. 9:634–644. 2012. View Article : Google Scholar : PubMed/NCBI

57 

Yang Z, Zhang SL, Hu X and Tam KY: Inhibition of pyruvate dehydrogenase kinase 1 enhances the anti-cancer effect of EGFR tyrosine kinase inhibitors in non-small cell lung cancer. Eur J Pharmacol. 838:41–52. 2018. View Article : Google Scholar : PubMed/NCBI

58 

Pardee TS, Luther S, Buyse M, Powell BL and Cortes J: Devimistat in combination with high dose cytarabine and mitoxantrone compared with high dose cytarabine and mitoxantrone in older patients with relapsed/refractory acute myeloid leukemia: ARMADA 2000 Phase III study. Future Oncol. 15:3197–3208. 2019. View Article : Google Scholar : PubMed/NCBI

59 

Ding J, Karp JE and Emadi A: Elevated lactate dehydrogenase (LDH) can be a marker of immune suppression in cancer: Interplay between hematologic and solid neoplastic clones and their microenvironments. Cancer Biomark. 19:353–363. 2017. View Article : Google Scholar : PubMed/NCBI

60 

Zhou M, Zhao Y, Ding Y, Liu H, Liu Z, Fodstad O, Riker AI, Kamarajugadda S, Lu J, Owen LB, et al: Warburg effect in chemosensitivity: Targeting lactate dehydrogenase-A re-sensitizes taxol-resistant cancer cells to taxol. Mol Cancer. 9:332010. View Article : Google Scholar : PubMed/NCBI

61 

Muramatsu H, Sumitomo M, Morinaga S, Kajikawa K, Kobayashi I, Nishikawa G, Kato Y, Watanabe M, Zennami K, Kanao K, et al: Targeting lactate dehydrogenase-A promotes docetaxel-induced cytotoxicity predominantly in castration-resistant prostate cancer cells. Oncol Rep. 42:224–230. 2019.PubMed/NCBI

62 

Nagamine A, Araki T, Nagano D, Miyazaki M and Yamamoto K: L-Lactate dehydrogenase B may be a predictive marker for sensitivity to anti-EGFR monoclonal antibodies in colorectal cancer cell lines. Oncol Lett. 17:4710–4716. 2019.PubMed/NCBI

63 

Feng L, E LL, Soloveiv MM, Wang DS, Zhang BO, Dong YW and Liu HC: Synergistic cytotoxicity of cisplatin and Taxol in overcoming Taxol resistance through the inhibition of LDHA in oral squamous cell carcinoma. Oncol Lett. 9:1827–1832. 2015. View Article : Google Scholar : PubMed/NCBI

64 

Hua G, Liu Y, Li X, Xu P and Luo Y: Targeting glucose metabolism in chondrosarcoma cells enhances the sensitivity to doxorubicin through the inhibition of lactate dehydrogenase-A. Oncol Rep. 31:2727–2734. 2014. View Article : Google Scholar : PubMed/NCBI

65 

Koukourakis MI, Giatromanolaki A, Sivridis E, Bougioukas G, Didilis V, Gatter KC and Harris AL: Lactate dehydrogenase-5 (LDH-5) overexpression in non-small-cell lung cancer tissues is linked to tumour hypoxia, angiogenic factor production and poor prognosis. Br J Cancer. 89:877–885. 2003. View Article : Google Scholar : PubMed/NCBI

66 

Lu H, Li X, Luo Z, Liu J and Fan Z: Cetuximab reverses the Warburg effect by inhibiting HIF-1-regulated LDH-A. Mol Cancer Ther. 12:2187–2199. 2013. View Article : Google Scholar : PubMed/NCBI

67 

Liu X, Yao D, Liu C, Cao Y, Yang Q, Sun Z and Liu D: Overexpression of ABCC3 promotes cell proliferation, drug resistance, and aerobic glycolysis and is associated with poor prognosis in urinary bladder cancer patients. Tumour Biol. 37:8367–8374. 2016. View Article : Google Scholar : PubMed/NCBI

68 

Aggarwal A and Keluskar V: Epithelioid hemangioma (angiolymphoid hyperplasia with eosinophilia) in the oral mucosa. Indian J Dent Res. 23:271–274. 2012. View Article : Google Scholar : PubMed/NCBI

69 

Hamadneh L, Abuarqoub R, Alhusban A and Bahader M: Upregulation of PI3K/AKT/PTEN pathway is correlated with glucose and glutamine metabolic dysfunction during tamoxifen resistance development in MCF-7 cells. Sci Rep. 10:219332020. View Article : Google Scholar : PubMed/NCBI

70 

Sun H, Wang H and Wang X, Aoki Y and Wang X, Yang Y, Cheng X, Wang Z and Wang X: Aurora-A/SOX8/FOXK1 signaling axis promotes chemoresistance via suppression of cell senescence and induction of glucose metabolism in ovarian cancer organoids and cells. Theranostics. 10:6928–6945. 2020. View Article : Google Scholar : PubMed/NCBI

71 

Dong D, Ko B, Baumeister P, Swenson S, Costa F, Markland F, Stiles C, Patterson JB, Bates SE and Lee AS: Vascular targeting and antiangiogenesis agents induce drug resistance effector GRP78 within the tumor microenvironment. Cancer Res. 65:5785–5791. 2005. View Article : Google Scholar : PubMed/NCBI

72 

Lee E, Nichols P, Spicer D, Groshen S, Yu MC and Lee AS: GRP78 as a novel predictor of responsiveness to chemotherapy in breast cancer. Cancer Res. 66:7849–7853. 2006. View Article : Google Scholar : PubMed/NCBI

73 

Zhou H, Zhang Y, Fu Y, Chan L and Lee AS: Novel mechanism of anti-apoptotic function of 78-kDa glucose-regulated protein (GRP78): Endocrine resistance factor in breast cancer, through release of B-cell lymphoma 2 (BCL-2) from BCL-2-interacting killer (BIK). J Biol Chem. 286:25687–25696. 2011. View Article : Google Scholar : PubMed/NCBI

74 

Cristanziano VD, Bottcher S, Diedrich S, Timmen-Wego M, Knops E, Lübke N, Kaiser R, Pfister H, Kaboré Y and D'Alfonso R: Detection and characterization of enteroviruses and parechoviruses in healthy people living in the South of Cote d'Ivoire. J Clin Virol. 71:40–43. 2015. View Article : Google Scholar : PubMed/NCBI

75 

Cheng Y, Diao D, Zhang H, Guo Q, Wu X, Song Y and Dang C: High glucose-induced resistance to 5-fluorouracil in pancreatic cancer cells alleviated by 2-deoxy-D-glucose. Biomed Rep. 2:188–192. 2014. View Article : Google Scholar : PubMed/NCBI

76 

Panizo C, Perez-Salazar M, Bendandi M, Rodríguez-Calvillo M, Boán JF, García-Velloso MJ, Richter J and Rocha E: Positron emission tomography using 18F-fluorodeoxyglucose for the evaluation of residual Hodgkin's disease mediastinal masses. Leuk Lymphoma. 45:1829–1833. 2004. View Article : Google Scholar : PubMed/NCBI

77 

Weber WA, Ott K, Becker K, Dittler HJ, Helmberger H, Avril NE, Meisetschläger G, Busch R, Siewert JR, Schwaiger M and Fink U: Prediction of response to preoperative chemotherapy in adenocarcinomas of the esophagogastric junction by metabolic imaging. J Clin Oncol. 19:3058–3065. 2001. View Article : Google Scholar : PubMed/NCBI

78 

Gallamini A, Rigacci L, Merli F, Nassi L, Bosi A, Capodanno I, Luminari S, Vitolo U, Sancetta R, Iannitto E, et al: The predictive value of positron emission tomography scanning performed after two courses of standard therapy on treatment outcome in advanced stage Hodgkin's disease. Haematologica. 91:475–481. 2006.PubMed/NCBI

79 

Chen LQ, Cheung LS, Feng L, Tanner W and Frommer WB: Transport of sugars. Annu Rev Biochem. 84:865–894. 2015. View Article : Google Scholar : PubMed/NCBI

80 

Reckzeh ES and Waldmann H: Small-Molecule inhibition of glucose transporters GLUT-1-4. Chembiochem. 21:45–52. 2020. View Article : Google Scholar : PubMed/NCBI

81 

Mayer A, Hockel M, Wree A and Vaupel P: Microregional expression of glucose transporter-1 and oxygenation status: Lack of correlation in locally advanced cervical cancers. Clin Cancer Res. 11:2768–2773. 2005. View Article : Google Scholar : PubMed/NCBI

82 

Suzuki S, Okada M, Takeda H, Kuramoto K, Sanomachi T, Togashi K, Seino S, Yamamoto M, Yoshioka T and Kitanaka C: Involvement of GLUT1-mediated glucose transport and metabolism in gefitinib resistance of non-small-cell lung cancer cells. Oncotarget. 9:32667–32679. 2018. View Article : Google Scholar : PubMed/NCBI

83 

Wang T, Ning K, Sun X, Zhang C, Jin LF and Hua D: Glycolysis is essential for chemoresistance induced by transient receptor potential channel C5 in colorectal cancer. BMC Cancer. 18:2072018. View Article : Google Scholar : PubMed/NCBI

84 

Guan DG, Chen HM, Liao SF and Zhao TZ: Combination of temozolomide and Taxol exerts a synergistic inhibitory effect on Taxolresistant glioma cells via inhibition of glucose metabolism. Mol Med Rep. 12:7705–7711. 2015. View Article : Google Scholar : PubMed/NCBI

85 

Liu PJ, Ma F, Lou HP, Zhu YN and Chen Y: Relationship between serum uric acid levels and metabolic syndrome in Chinese postmenopausal women. Climacteric. 17:148–154. 2014. View Article : Google Scholar : PubMed/NCBI

86 

Wang L, Sun J, Gao P, Su K, Wu H, Li J and Lou W: Wnt1-inducible signaling protein 1 regulates laryngeal squamous cell carcinoma glycolysis and chemoresistance via the YAP1/TEAD1/GLUT1 pathway. J Cell Physiol. Feb 25–2019.(Epub ahead of print).

87 

Li S, Li J, Dai W, Zhang Q, Feng J, Wu L, Liu T, Yu Q, Xu S, Wang W, et al: Genistein suppresses aerobic glycolysis and induces hepatocellular carcinoma cell death. Br J Cancer. 117:1518–1528. 2017. View Article : Google Scholar : PubMed/NCBI

88 

Gou Q, Dong C, Jin J, Liu Q, Lu W, Shi J and Hou Y: PPARα agonist alleviates tumor growth and chemo-resistance associated with the inhibition of glucose metabolic pathway. Eur J Pharmacol. 863:1726642019. View Article : Google Scholar : PubMed/NCBI

89 

Zhou Y, Wen H, Gu L, Fu J, Guo J, Du L, Zhou X, Yu X, Huang Y and Wang H: Aminoglucose-functionalized, redox-responsive polymer nanomicelles for overcoming chemoresistance in lung cancer cells. J Nanobiotechnology. 15:872017. View Article : Google Scholar : PubMed/NCBI

90 

Warburg O: On respiratory impairment in cancer cells. Science. 124:269–270. 1956.PubMed/NCBI

91 

Kim JW and Dang CV: Cancer's molecular sweet tooth and the Warburg effect. Cancer Res. 66:8927–8930. 2006. View Article : Google Scholar : PubMed/NCBI

92 

Chen Z, Lu W, Garcia-Prieto C and Huang P: The Warburg effect and its cancer therapeutic implications. J Bioenerg Biomembr. 39:267–274. 2007. View Article : Google Scholar : PubMed/NCBI

93 

Wagner W, Ciszewski WM and Kania KD: L- and D-lactate enhance DNA repair and modulate the resistance of cervical carcinoma cells to anticancer drugs via histone deacetylase inhibition and hydroxycarboxylic acid receptor 1 activation. Cell Commun Signal. 13:362015. View Article : Google Scholar : PubMed/NCBI

94 

Granja S, Tavares-Valente D, Queiros O and Baltazar F: Value of pH regulators in the diagnosis, prognosis and treatment of cancer. Semin Cancer Biol. 43:17–34. 2017. View Article : Google Scholar : PubMed/NCBI

95 

Doyen J, Parks SK, Marcie S, Pouyssegur J and Chiche J: Knock-down of hypoxia-induced carbonic anhydrases IX and XII radiosensitizes tumor cells by increasing intracellular acidosis. Front Oncol. 2:1992013. View Article : Google Scholar : PubMed/NCBI

96 

Dubois L, Peeters S, Lieuwes NG, Geusens N, Thiry A, Wigfield S, Carta F, McIntyre A, Scozzafava A, Dogné JM, et al: Specific inhibition of carbonic anhydrase IX activity enhances the in vivo therapeutic effect of tumor irradiation. Radiother Oncol. 99:424–431. 2011. View Article : Google Scholar : PubMed/NCBI

97 

Betof AS, Rabbani ZN, Hardee ME, Kim SJ, Broadwater G, Bentley RC, Snyder SA, Vujaskovic Z, Oosterwijk E, Harris LN, et al: Carbonic anhydrase IX is a predictive marker of doxorubicin resistance in early-stage breast cancer independent of HER2 and TOP2A amplification. Br J Cancer. 106:916–922. 2012. View Article : Google Scholar : PubMed/NCBI

98 

Aomatsu N, Yashiro M, Kashiwagi S, Kawajiri H, Takashima T, Ohsawa M, Wakasa K and Hirakawa K: Carbonic anhydrase 9 is associated with chemosensitivity and prognosis in breast cancer patients treated with taxane and anthracycline. BMC Cancer. 14:4002014. View Article : Google Scholar : PubMed/NCBI

99 

Rauch C: On the relationship between drug's size, cell membrane mechanical properties and high levels of multi drug resistance: A comparison to published data. Eur Biophys J. 38:537–546. 2009. View Article : Google Scholar : PubMed/NCBI

100 

Perez-Sayans M, Somoza-Martin JM, Barros-Angueira F, Diz PG, Rey JM and Garcia-Garcia A: Multidrug resistance in oral squamous cell carcinoma: The role of vacuolar ATPases. Cancer Lett. 295:135–143. 2010. View Article : Google Scholar : PubMed/NCBI

101 

Larsen AK, Escargueil AE and Skladanowski A: Resistance mechanisms associated with altered intracellular distribution of anticancer agents. Pharmacol Ther. 85:217–229. 2000. View Article : Google Scholar : PubMed/NCBI

102 

Le Floch R, Chiche J, Marchiq I, Naiken T, Ilc K, Murray CM, Critchlow SE, Roux D, Simon MP and Pouysségur J: CD147 subunit of lactate/H+ symporters MCT1 and hypoxia-inducible MCT4 is critical for energetics and growth of glycolytic tumors. Proc Natl Acad Sci USA. 108:16663–16668. 2011. View Article : Google Scholar : PubMed/NCBI

103 

Boidot R, Vegran F, Meulle A, Le Breton A, Dessy C, Sonveaux P, Lizard-Nacol S and Feron O: Regulation of monocarboxylate transporter MCT1 expression by p53 mediates inward and outward lactate fluxes in tumors. Cancer Res. 72:939–948. 2012. View Article : Google Scholar : PubMed/NCBI

104 

Saenz-de-Santa-Maria I, Bernardo-Castineira C, Secades P, Bernaldo-de-Quirós S, Rodrigo JP, Astudillo A and Chiara MD: Clinically relevant HIF-1α-dependent metabolic reprogramming in oropharyngeal squamous cell carcinomas includes coordinated activation of CAIX and the miR-210/ISCU signaling axis, but not MCT1 and MCT4 upregulation. Oncotarget. 8:13730–13746. 2017. View Article : Google Scholar : PubMed/NCBI

105 

Draoui N, Schicke O, Seront E, Bouzin C, Sonveaux P, Riant O and Feron O: Antitumor activity of 7-aminocarboxycoumarin derivatives, a new class of potent inhibitors of lactate influx but not efflux. Mol Cancer Ther. 13:1410–1418. 2014. View Article : Google Scholar : PubMed/NCBI

106 

Li QX, Zhang P, Liu F, Wang XZ, Li L, Wang ZK, Jiang CC, Zheng HL and Liu H: Monocarboxylate transporter 1 enhances the sensitivity of breast cancer cells to 3-bromopyruvate in vitro. Nan Fang Yi Ke Da Xue Xue Bao. 37:588–593. 2017.(In Chinese). PubMed/NCBI

107 

Pisarsky L, Bill R, Fagiani E, Dimeloe S, Goosen RW, Hagmann J, Hess C and Christofori G: Targeting metabolic symbiosis to overcome resistance to anti-angiogenic therapy. Cell Rep. 15:1161–1174. 2016. View Article : Google Scholar : PubMed/NCBI

108 

Khammanivong A, Saha J, Spartz AK, Sorenson BS, Bush AG, Korpela DM, Gopalakrishnan R, Jonnalagadda S, Mereddy VR, O'Brien TD, et al: A novel MCT1 and MCT4 dual inhibitor reduces mitochondrial metabolism and inhibits tumour growth of feline oral squamous cell carcinoma. Vet Comp Oncol. 8:324–341. 2020. View Article : Google Scholar

109 

Andreucci E, Ruzzolini J, Peppicelli S, Bianchini F, Laurenzana A, Carta F, Supuran CT and Calorini L: The carbonic anhydrase IX inhibitor SLC-0111 sensitises cancer cells to conventional chemotherapy. J Enzyme Inhib Med Chem. 34:117–123. 2019. View Article : Google Scholar : PubMed/NCBI

110 

Tan EY, Yan M, Campo L, Han C, Takano E, Turley H, Candiloro I, Pezzella F, Gatter KC, Millar EK, et al: The key hypoxia regulated gene CAIX is upregulated in basal-like breast tumours and is associated with resistance to chemotherapy. Br J Cancer. 100:405–411. 2009. View Article : Google Scholar : PubMed/NCBI

111 

Zheng G, Peng C, Jia X, Gu Y, Zhang Z, Deng Y, Wang C, Li N, Yin J, Liu X, et al: ZEB1 transcriptionally regulated carbonic anhydrase 9 mediates the chemoresistance of tongue cancer via maintaining intracellular pH. Mol Cancer. 14:842015. View Article : Google Scholar : PubMed/NCBI

112 

Takahashi E, Abe J and Berk BC: Angiotensin II stimulates p90rsk in vascular smooth muscle cells. A potential Na(+)-H+ exchanger kinase. Circ Res. 81:268–273. 1997. View Article : Google Scholar : PubMed/NCBI

113 

Altaf E, Huang X, Xiong J, Yang X, Deng X, Xiong M, Zhou L, Pan S, Yuan W, Li X, et al: NHE1 has a notable role in metastasis and drug resistance of T-cell acute lymphoblastic leukemia. Oncol Lett. 14:4256–4262. 2017. View Article : Google Scholar : PubMed/NCBI

114 

Chen Q, Liu Y, Zhu XL, Feng F, Yang H and Xu W: Increased NHE1 expression is targeted by specific inhibitor cariporide to sensitize resistant breast cancer cells to doxorubicin in vitro and in vivo. BMC Cancer. 19:2112019. View Article : Google Scholar : PubMed/NCBI

115 

Paskeviciute M and Petrikaite V: Overcoming transporter-mediated multidrug resistance in cancer: Failures and achievements of the last decades. Drug Deliv Transl Res. 9:379–393. 2019. View Article : Google Scholar : PubMed/NCBI

116 

Park S, Chang CY, Safi R, Liu X, Baldi R, Jasper JS, Anderson GR, Liu T, Rathmell JC, Dewhirst MW, et al: ERRα-Regulated lactate metabolism contributes to resistance to targeted therapies in breast cancer. Cell Rep. 15:323–335. 2016. View Article : Google Scholar : PubMed/NCBI

117 

Yu T, Yang G, Hou Y, Tang X, Wu C, Wu XA, Guo L, Zhu Q, Luo H, Du YE, et al: Cytoplasmic GPER translocation in cancer-associated fibroblasts mediates cAMP/PKA/CREB/glycolytic axis to confer tumor cells with multidrug resistance. Oncogene. 36:2131–2145. 2017. View Article : Google Scholar : PubMed/NCBI

118 

Kalbasi A and Ribas A: Tumour-intrinsic resistance to immune checkpoint blockade. Nat Rev Immunol. 20:25–39. 2020. View Article : Google Scholar : PubMed/NCBI

119 

Garcia-Diaz A, Shin DS, Moreno BH, Saco J, Escuin-Ordinas H, Rodriguez GA, Zaretsky JM, Sun L, Hugo W, Wang X, et al: Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 19:1189–1201. 2017. View Article : Google Scholar : PubMed/NCBI

120 

Liang X, Fu C, Cui W, Ober-Blöbaum JL, Zahner SP, Shrikant PA, Clausen BE, Flavell RA, Mellman I and Jiang A: β-catenin mediates tumor-induced immunosuppression by inhibiting cross-priming of CD8+ T cells. J Leukoc Biol. 95:179–190. 2014. View Article : Google Scholar : PubMed/NCBI

121 

Peng W, Chen JQ, Liu C, Malu S, Creasy C, Tetzlaff MT, Xu C, McKenzie JA, Zhang C, Liang X, et al: Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov. 6:202–216. 2016. View Article : Google Scholar : PubMed/NCBI

122 

Gao J, Shi LZ, Zhao H, Chen J, Xiong L, He Q, Chen T, Roszik J, Bernatchez C, Woodman SE, et al: Loss of IFN-ү pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell. 167:397–404.e9. 2016. View Article : Google Scholar : PubMed/NCBI

123 

Pitroda SP, Wakim BT, Sood RF, Beveridge MG, Beckett MA, MacDermed DM, Weichselbaum RR and Khodarev NN: STAT1-dependent expression of energy metabolic pathways links tumour growth and radioresistance to the warburg effect. BMC Med. 7:682009. View Article : Google Scholar : PubMed/NCBI

124 

Poli V and Camporeale A: STAT3-mediated metabolic reprograming in cellular transformation and implications for drug resistance. Front Oncol. 5:1212015. View Article : Google Scholar : PubMed/NCBI

125 

Cascone T, McKenzie JA, Mbofung RM, Punt S, Wang Z, Xu C, Williams LJ, Wang Z, Bristow CA, Carugo A, et al: Increased tumor glycolysis characterizes immune resistance to adoptive T cell therapy. Cell Metab. 27:977–987.e4. 2018. View Article : Google Scholar : PubMed/NCBI

126 

Sacchi S, Federico M, Vitolo U, Boccomini C, Vallisa D, Baldini L, Petrini M, Rupoli S, Di Raimondo F, Merli F, et al: Clinical activity and safety of combination immunotherapy with IFN-alpha 2a and Rituximab in patients with relapsed low grade non-Hodgkin's lymphoma. Haematologica. 86:951–958. 2001.PubMed/NCBI

127 

Davis TA, Maloney DG, Grillo-Lopez AJ, White CA, Williams ME, Weiner GJ, Dowden S and Levy R: Combination immunotherapy of relapsed or refractory low-grade or follicular non-Hodgkin's lymphoma with rituximab and interferon-alpha-2a. Clin Cancer Res. 6:2644–2652. 2000.PubMed/NCBI

128 

Rosenberg SA, Lotze MT, Yang JC, Linehan WM, Seipp C, Calabro S, Karp SE, Sherry RM, Steinberg S and White DE: Combination therapy with interleukin-2 and alpha-interferon for the treatment of patients with advanced cancer. J Clin Oncol. 7:1863–1874. 1989. View Article : Google Scholar : PubMed/NCBI

129 

Magalhaes I, Yogev O, Mattsson J and Schurich A: The metabolic profile of tumor and virally infected cells shapes their microenvironment counteracting T cell immunity. Front Immunol. 10:23092019. View Article : Google Scholar : PubMed/NCBI

130 

Pate KT, Stringari C, Sprowl-Tanio S, Wang K, TeSlaa T, Hoverter NP, McQuade MM, Garner C, Digman MA, Teitell MA, et al: Wnt signaling directs a metabolic program of glycolysis and angiogenesis in colon cancer. EMBO J. 33:1454–1473. 2014. View Article : Google Scholar : PubMed/NCBI

131 

Yang L, Perez AA, Fujie S, Warden C, Li J, Wang Y, Yung B, Chen YR, Liu X, Zhang H, et al: Wnt modulates MCL1 to control cell survival in triple negative breast cancer. BMC Cancer. 14:1242014. View Article : Google Scholar : PubMed/NCBI

132 

Sprowl-Tanio S, Habowski AN, Pate KT, McQuade MM, Wang K, Edwards RA, Grun F, Lyou Y and Waterman ML: Lactate/pyruvate transporter MCT-1 is a direct Wnt target that confers sensitivity to 3-bromopyruvate in colon cancer. Cancer Metab. 4:202016. View Article : Google Scholar : PubMed/NCBI

133 

Feng M, Jin JQ, Xia L, Xiao T, Mei S, Wang X, Huang X, Chen J, Liu M, Chen C, et al: Pharmacological inhibition of β-catenin/BCL9 interaction overcomes resistance to immune checkpoint blockades by modulating Treg cells. Sci Adv. 5:eaau52402019. View Article : Google Scholar : PubMed/NCBI

134 

George S, Miao D, Demetri GD, Adeegbe D, Rodig SJ, Shukla S, Lipschitz M, Amin-Mansour A, Raut CP, Carter SL, et al: Loss of PTEN is associated with resistance to Anti-PD-1 checkpoint blockade therapy in metastatic uterine leiomyosarcoma. Immunity. 46:197–204. 2017. View Article : Google Scholar : PubMed/NCBI

135 

Ramapriyan R, Caetano MS, Barsoumian HB, Mafra ACP, Zambalde EP, Menon H, Tsouko E, Welsh JW and Cortez MA: Altered cancer metabolism in mechanisms of immunotherapy resistance. Pharmacol Ther. 195:162–171. 2019. View Article : Google Scholar : PubMed/NCBI

136 

Jabbarzadeh Kaboli P, Salimian F, Aghapour S, Xiang S, Zhao Q, Li M, Wu X, Du F, Zhao Y, Shen J, et al: Akt-targeted therapy as a promising strategy to overcome drug resistance in breast cancer-A comprehensive review from chemotherapy to immunotherapy. Pharmacol Res. 156:1048062020. View Article : Google Scholar : PubMed/NCBI

137 

Blagden SP, Hamilton AL, Mileshkin L, Wong S, Michael A, Hall M, Goh JC, Lisyanskaya AS, DeSilvio M, Frangou E, et al: Phase IB dose escalation and expansion study of AKT inhibitor afuresertib with carboplatin and paclitaxel in recurrent platinum-resistant ovarian cancer. Clin Cancer Res. 25:1472–1478. 2019. View Article : Google Scholar : PubMed/NCBI

138 

Tammela T, Sanchez-Rivera FJ, Cetinbas NM, Wu K, Joshi NS, Helenius K, Park Y, Azimi R, Kerper NR, Wesselhoeft RA, et al: A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma. Nature. 545:355–359. 2017. View Article : Google Scholar : PubMed/NCBI

139 

de Bono JS, De Giorgi U, Rodrigues DN, Massard C, Bracarda S, Font A, Arranz Arija JA, Shih KC, Radavoi GD, Xu N, et al: Randomized phase II study evaluating Akt blockade with ipatasertib, in combination with abiraterone, in patients with metastatic prostate cancer with and without PTEN loss. Clin Cancer Res. 25:928–936. 2019. View Article : Google Scholar : PubMed/NCBI

140 

Kunkl M, Sambucci M, Ruggieri S, Amormino C, Tortorella C, Gasperini C, Battistini L and Tuosto L: CD28 autonomous signaling Up-regulates C-Myc expression and promotes glycolysis enabling inflammatory T cell responses in multiple sclerosis. Cells. 8:5752019. View Article : Google Scholar

141 

Chen F, Chen J, Yang L, Liu J, Zhang X, Zhang Y, Tu Q, Yin D, Lin D, Wong PP, et al: Extracellular vesicle-packaged HIF-1α-stabilizing lncRNA from tumour-associated macrophages regulates aerobic glycolysis of breast cancer cells. Nat Cell Biol. 21:498–510. 2019. View Article : Google Scholar : PubMed/NCBI

142 

Xie G, Liu Y, Yao Q, Zheng R, Zhang L, Lin J, Guo Z, Du S, Ren C, Yuan Q and Yuan Y: Hypoxia-induced angiotensin II by the lactate-chymase-dependent mechanism mediates radioresistance of hypoxic tumor cells. Sci Rep. 7:423962017. View Article : Google Scholar : PubMed/NCBI

143 

Xie G, Cheng T, Lin J, Zhang L, Zheng J, Liu Y, Xie G, Wang B and Yuan Y: Local angiotensin II contributes to tumor resistance to checkpoint immunotherapy. J Immunother Cancer. 6:882018. View Article : Google Scholar : PubMed/NCBI

144 

Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, Gottfried E, Schwarz S, Rothe G, Hoves S, et al: Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood. 109:3812–3819. 2007. View Article : Google Scholar : PubMed/NCBI

145 

Ohashi T, Akazawa T, Aoki M, Kuze B, Mizuta K, Ito Y and Inoue N: Dichloroacetate improves immune dysfunction caused by tumor-secreted lactic acid and increases antitumor immunoreactivity. Int J Cancer. 133:1107–1118. 2013. View Article : Google Scholar : PubMed/NCBI

146 

Warburg O: On the origin of cancer cells. Science. 123:309–314. 1956. View Article : Google Scholar : PubMed/NCBI

147 

Bosc C, Selak MA and Sarry JE: Resistance is futile: Targeting mitochondrial energetics and metabolism to overcome drug resistance in cancer treatment. Cell Metab. 26:705–707. 2017. View Article : Google Scholar : PubMed/NCBI

148 

Alexa-Stratulat T, Pesic M, Gasparovic AC, Trougakos IP and Riganti C: What sustains the multidrug resistance phenotype beyond ABC efflux transporters? Looking beyond the tip of the iceberg. Drug Resist Updat. 46:1006432019. View Article : Google Scholar : PubMed/NCBI

149 

Roth KG, Mambetsariev I, Kulkarni P and Salgia R: The mitochondrion as an emerging therapeutic target in cancer. Trends Mol Med. 26:119–134. 2020. View Article : Google Scholar : PubMed/NCBI

150 

Farge T, Saland E, de Toni F, Aroua N, Hosseini M, Perry R, Bosc C, Sugita M, Stuani L, Fraisse M, et al: Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism. Cancer Discov. 7:716–735. 2017. View Article : Google Scholar : PubMed/NCBI

151 

Migneco G, Whitaker-Menezes D, Chiavarina B, Castello-Cros R, Pavlides S, Pestell RG, Fatatis A, Flomenberg N, Tsirigos A, Howell A, et al: Glycolytic cancer associated fibroblasts promote breast cancer tumor growth, without a measurable increase in angiogenesis: Evidence for stromal-epithelial metabolic coupling. Cell Cycle. 9:2412–2422. 2010. View Article : Google Scholar : PubMed/NCBI

152 

Ricci F, Brunelli L, Affatato R, Chilà R, Verza M, Indraccolo S, Falcetta F, Fratelli M, Fruscio R, Pastorelli R and Damia G: Overcoming platinum-acquired resistance in ovarian cancer patient-derived xenografts. Ther Adv Med Oncol. 11:17588359198395432019. View Article : Google Scholar : PubMed/NCBI

153 

Wu L, Zhao J, Cao K, Liu X, Cai H, Wang J, Li W and Chen Z: Oxidative phosphorylation activation is an important characteristic of DOX resistance in hepatocellular carcinoma cells. Cell Commun Signal. 16:62018. View Article : Google Scholar : PubMed/NCBI

154 

Lee KM, Giltnane JM, Balko JM, Schwarz LJ, Guerrero-Zotano AL, Hutchinson KE, Nixon MJ, Estrada MV, Sánchez V, Sanders ME, et al: MYC and MCL1 cooperatively promote chemotherapy-resistant breast cancer stem cells via regulation of mitochondrial oxidative phosphorylation. Cell Metab. 26:633–647.e7. 2017. View Article : Google Scholar : PubMed/NCBI

155 

Chen CL, Uthaya Kumar DB, Punj V, Xu J, Sher L, Tahara SM, Hess S and Machida K: NANOG metabolically reprograms tumor-initiating stem-like cells through tumorigenic changes in oxidative phosphorylation and fatty acid metabolism. Cell Metab. 23:206–219. 2016. View Article : Google Scholar : PubMed/NCBI

156 

Andreucci E, Pietrobono S, Peppicelli S, Ruzzolini J, Bianchini F, Biagioni A, Stecca B and Calorini L: SOX2 as a novel contributor of oxidative metabolism in melanoma cells. Cell Commun Signal. 16:872018. View Article : Google Scholar : PubMed/NCBI

157 

Zhao Y, Butler EB and Tan M: Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis. 4:e5322013. View Article : Google Scholar : PubMed/NCBI

158 

Choi HJ, Jhe YL, Kim J, Lim JY, Lee JE, Shin MK and Cheong JH: FoxM1-dependent and fatty acid oxidation-mediated ROS modulation is a cell-intrinsic drug resistance mechanism in cancer stem-like cells. Redox Biol. 36:1015892020. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Peng J, Cui Y, Xu S, Wu X, Huang Y, Zhou W, Wang S, Fu Z and Xie H: Altered glycolysis results in drug‑resistant in clinical tumor therapy (Review). Oncol Lett 21: 369, 2021.
APA
Peng, J., Cui, Y., Xu, S., Wu, X., Huang, Y., Zhou, W. ... Xie, H. (2021). Altered glycolysis results in drug‑resistant in clinical tumor therapy (Review). Oncology Letters, 21, 369. https://doi.org/10.3892/ol.2021.12630
MLA
Peng, J., Cui, Y., Xu, S., Wu, X., Huang, Y., Zhou, W., Wang, S., Fu, Z., Xie, H."Altered glycolysis results in drug‑resistant in clinical tumor therapy (Review)". Oncology Letters 21.5 (2021): 369.
Chicago
Peng, J., Cui, Y., Xu, S., Wu, X., Huang, Y., Zhou, W., Wang, S., Fu, Z., Xie, H."Altered glycolysis results in drug‑resistant in clinical tumor therapy (Review)". Oncology Letters 21, no. 5 (2021): 369. https://doi.org/10.3892/ol.2021.12630
Copy and paste a formatted citation
x
Spandidos Publications style
Peng J, Cui Y, Xu S, Wu X, Huang Y, Zhou W, Wang S, Fu Z and Xie H: Altered glycolysis results in drug‑resistant in clinical tumor therapy (Review). Oncol Lett 21: 369, 2021.
APA
Peng, J., Cui, Y., Xu, S., Wu, X., Huang, Y., Zhou, W. ... Xie, H. (2021). Altered glycolysis results in drug‑resistant in clinical tumor therapy (Review). Oncology Letters, 21, 369. https://doi.org/10.3892/ol.2021.12630
MLA
Peng, J., Cui, Y., Xu, S., Wu, X., Huang, Y., Zhou, W., Wang, S., Fu, Z., Xie, H."Altered glycolysis results in drug‑resistant in clinical tumor therapy (Review)". Oncology Letters 21.5 (2021): 369.
Chicago
Peng, J., Cui, Y., Xu, S., Wu, X., Huang, Y., Zhou, W., Wang, S., Fu, Z., Xie, H."Altered glycolysis results in drug‑resistant in clinical tumor therapy (Review)". Oncology Letters 21, no. 5 (2021): 369. https://doi.org/10.3892/ol.2021.12630
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team