|
1
|
Ahmed M: Recent advances in the management
of gastrointestinal stromal tumor. World J Clin Cases. 8:3142–3155.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Yamamoto H and Oda Y: Gastrointestinal
stromal tumor: Recent advances in pathology and genetics. Pathol
Int. 65:9–18. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Hirota S: Differential diagnosis of
gastrointestinal stromal tumor by histopathology and
immunohistochemistry. Transl Gastroenterol Hepatol. 3:272018.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Khoshnood A: Gastrointestinal stromal
tumor-A review of clinical studies. J Oncol Pharm Pract.
25:1473–1485. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Kupcinskas J: Small molecules in rare
tumors: Emerging role of MicroRNAs in GIST. Int J Mol Sci.
19:3972018. View Article : Google Scholar
|
|
6
|
Parab TM, DeRogatis MJ, Boaz AM, Grasso
SA, Issack PS, Duarte DA, Urayeneza O, Vahdat S, Qiao JH and Hinika
GS: Gastrointestinal stromal tumors: A comprehensive review. J
Gastrointest Oncol. 10:144–154. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Zhang H and Liu Q: Prognostic indicators
for gastrointestinal stromal tumors: A review. Transl Oncol.
13:1008122020. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
von Mehren M and Joensuu H:
Gastrointestinal stromal tumors. J Clin Oncol. 36:136–143. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Shi YN, Li Y, Wang LP, Wang ZH, Liang XB,
Liang H, Zhang L, Li B, Fan LQ, Zhao Q, et al: Gastrointestinal
stromal tumor (GIST) with liver metastases: An 18-year experience
from the GIST cooperation group in North China. Medicine
(Baltimore). 96:e82402017. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Li HL, Wang LH, Hu YL, Feng Y, Li XH, Liu
YF, Li P, Mao QS and Xue WJ: Clinical and prognostic significance
of CC chemokine receptor type 8 protein expression in
gastrointestinal stromal tumors. World J Gastroenterol.
26:4656–4668. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Nishida T, Blay JY, Hirota S, Kitagawa Y
and Kang YK: The standard diagnosis, treatment, and follow-up of
gastrointestinal stromal tumors based on guidelines. Gastric
Cancer. 19:3–14. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Schaefer IM, Marino-Enriquez A and
Fletcher JA: What is new in gastrointestinal stromal tumor? Adv
Anat Pathol. 24:259–267. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Den Hollander D, Van der Graaf WTA, Desar
IME and Le Cesne A: Predictive factors for toxicity and survival of
second-line sunitinib in advanced gastrointestinal stromal tumours
(GIST). Acta Oncol. 58:1648–1654. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Hsu KH, Tsai HW, Lin PW, Hsu YS, Lu PJ and
Shan YS: Anti-apoptotic effects of osteopontin through the
up-regulation of Mcl-1 in gastrointestinal stromal tumors. World J
Surg Oncol. 12:1892014. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Wei SC, Xu L, Li WH, Li Y, Guo SF, Sun XR
and Li WW: Risk stratification in GIST: Shape quantification with
CT is a predictive factor. Eur Radiol. 30:1856–1865. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Miettinen M and Lasota J: Gastrointestinal
stromal tumors: Review on morphology, molecular pathology,
prognosis, and differential diagnosis. Arch Pathol Lab Med.
130:1466–1478. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Di Vita M, Zanghi A, Cavallaro A, Cardì F,
Uhlig M, Ursi P, Lo Menzo E, Panebianco V and Cappellani A: Gastric
GIST and prognostic models. Which is the best to predict survival
after surgery? Ann Ital Chir. 90:31–40. 2019.PubMed/NCBI
|
|
18
|
Wong NA: Gastrointestinal stromal
tumours--an update for histopathologists. Histopathology.
59:807–821. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Imamura M, Yamamoto H, Nakamura N, Oda Y,
Yao T, Kakeji Y, Baba H, Maehara Y and Tsuneyoshi M: Prognostic
significance of angiogenesis in gastrointestinal stromal tumor. Mod
Pathol. 20:529–537. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Rey S, Schito L, Wouters BG, Eliasof S and
Kerbel RS: Targeting Hypoxia-Inducible factors for antiangiogenic
cancer therapy. Trends Cancer. 3:529–541. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Teleanu RI, Chircov C, Grumezescu AM and
Teleanu DM: Tumor angiogenesis and anti-angiogenic strategies for
cancer treatment. J Clin Med. 9:842019. View Article : Google Scholar
|
|
22
|
Liu N, Huang J, Sun S, Zhou Z, Zhang J,
Gao F and Sun Q: Expression of matrix metalloproteinase-9,
cyclooxygenase-2 and vascular endothelial growth factor are
increased in gastrointestinal stromal tumors. Int J Clin Exp Med.
8:6495–6501. 2015.PubMed/NCBI
|
|
23
|
Tasdemir A, Soyuer I, Unal D and Artis T:
Prognostic value of NF-κB, CD9, and VEGF in gastrointestinal
stromal tumors. Contemp Oncol (Pozn). 17:493–498. 2013.PubMed/NCBI
|
|
24
|
Basilio-de-Oliveira RP and Pannain VL:
Prognostic angiogenic markers (endoglin, VEGF, CD31) and tumor cell
proliferation (Ki67) for gastrointestinal stromal tumors. World J
Gastroenterol. 21:6924–6930. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Kigure W, Fujii T, Sutoh T, Morita H,
Katoh T, Yajima RN, Yamaguchi S, Tsutsumi S, Asao T and Kuwano H:
The association of VEGF-C expression with tumor lymphatic vessel
density and lymph node metastasis in patients with gastric cancer
and gastrointestinal stromal tumor. Hepatogastroenterology.
60:277–280. 2013.PubMed/NCBI
|
|
26
|
Yang Z, Wang F, Liu S and Guan W:
Comparative clinical features and short-term outcomes of gastric
and small intestinal gastrointestinal stromal tumours: A
retrospective study. Sci Rep. 9:100332019. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Gromova P, Rubin BP, Thys A, Cullus P,
Erneux C and Vanderwinden JM: ENDOGLIN/CD105 is expressed in KIT
positive cells in the gut and in gastrointestinal stromal tumours.
J Cell Mol Med. 16:306–317. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
de Oliveira AT, Reis RM, Afonso J,
Martinho O, Matos D, Carvalho AL, Vazquez VL, Silva TB,
Scapulatempo C, Saad SS and Longatto-Filho A: Lymphangiogenic
VEGF-C and VEGFR-3 expression in genetically characterised
gastrointestinal stromal tumours. Histol Histopathol. 26:1499–1507.
2011.PubMed/NCBI
|
|
29
|
Hui Q, Jin Z, Li X, Liu C and Wang X: FGF
family: From drug development to clinical application. Int J Mol
Sci. 19:18752018. View Article : Google Scholar
|
|
30
|
Boichuk S, Galembikova A, Mikheeva E,
Bikinieva F, Aukhadieva A, Dunaev P, Khalikov D, Petrov S,
Kurtasanov R, Valeeva E, et al: Inhibition of FGF2-Mediated
Signaling in GIST-promising approach for overcoming resistance to
imatinib. Cancers (Basel). 12:16742020. View Article : Google Scholar
|
|
31
|
Sergei B, Pavel D, Aigul G, Firyuza B,
Ilmira N, Ilshat M, Aida A, Refat K, Natalia A, Elena S and Vera G:
Inhibition of FGFR2-Signaling Attenuates a Homology-Mediated DNA
Repair in GIST and Sensitizes Them to DNA-Topoisomerase II
Inhibitors. Int J Mol Sci. 21:3522020. View Article : Google Scholar
|
|
32
|
Li F, Huynh H, Li X, Ruddy DA, Wang Y, Ong
R, Chow P, Qiu S, Tam A, Rakiec DP, et al: FGFR-Mediated
Reactivation of MAPK signaling attenuates antitumor effects of
imatinib in gastrointestinal stromal tumors. Cancer Discov.
5:438–451. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Li P, Cong Z, Qiang Y, Xiong L, Tang L,
Zhang Y, Wu H, Yi J, Jing H, Li D and Shen Y: Clinical significance
of CCBE1 expression in lung cancer. Mol Med Rep. 17:2107–2112.
2018.PubMed/NCBI
|
|
34
|
Tian GA, Zhu CC, Zhang XX, Zhu L, Yang XM,
Jiang SH, Li RK, Tu L, Wang Y, Zhuang C, et al: CCBE1 promotes GIST
development through enhancing angiogenesis and mediating resistance
to imatinib. Sci Rep. 6:310712016. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Mesci A, Huang X, Taeb S, Jahangiri S, Kim
Y, Fokas E, Bruce J, Leong HS and Liu SK: Targeting of CCBE1 by
miR-330-3p in human breast cancer promotes metastasis. Br J Cancer.
116:1350–1357. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Hirota S, Isozaki K, Moriyama Y, Hashimoto
K, Nishida T, Ishiguro S, Kawano K, Hanada M, Kurata A, Takeda M,
et al: Gain-of-function mutations of c-kit in human
gastrointestinal stromal tumors. Science. 279:577–580. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wang CJ, Zhang ZZ, Xu J, Wang M, Zhao WY,
Tu L, Zhuang C, Liu Q, Shen YY, Cao H and Zhang ZG: SLITRK3
expression correlation to gastrointestinal stromal tumor risk
rating and prognosis. World J Gastroenterol. 21:8398–8407. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Bumming P, Nilsson O, Ahlman H, Welbencer
A, Andersson MK, Sjölund K and Nilsson B: Gastrointestinal stromal
tumors regularly express synaptic vesicle proteins: Evidence of a
neuroendocrine phenotype. Endocr Relat Cancer. 14:853–863. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Ran L, Chen Y, Sher J, Wong EWP, Murphy D,
Zhang JQ, Li D, Deniz K, Sirota I, Cao Z, et al: FOXF1 defines the
core-regulatory circuitry in gastrointestinal stromal tumor. Cancer
Discov. 8:234–251. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Chi P, Chen Y, Zhang L, Guo X, Wongvipat
J, Shamu T, Fletcher JA, Dewell S, Maki RG and Zheng D: ETV1 is a
lineage survival factor that cooperates with KIT in
gastrointestinal stromal tumours. Nature. 467:849–853. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Ran L, Sirota I, Cao Z, Murphy D, Chen Y,
Shukla S, Xie Y, Kaufmann MC, Gao D, Zhu S, et al: Combined
inhibition of MAP kinase and KIT signaling synergistically
destabilizes ETV1 and suppresses GIST tumor growth. Cancer Discov.
5:304–315. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Hayashi Y, Bardsley MR, Toyomasu Y,
Milosavljevic S, Gajdos GB, Choi KM, Reid-Lombardo KM, Kendrick ML,
Bingener-Casey J, Tang CM, et al: Platelet-Derived Growth Factor
Receptor-α Regulates proliferation of gastrointestinal stromal
tumor cells with mutations in KIT by Stabilizing ETV1.
Gastroenterology. 149:420–432.e16. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Sakamaki K, Funasaka K, Miyahara R,
Furukawa K, Yamamura T, Ohno E, Nakamura M, Kawashima H, Hirooka Y,
Fujishiro M and Goto H: Low ETV1 mRNA expression is associated with
recurrence in gastrointestinal stromal tumors. Sci Rep.
10:147672020. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Li J, Han W, Pelkey KA, Duan J, Mao X,
Wang YX, Craig MT, Dong L, Petralia RS, McBain CJ and Lu W:
Molecular Dissection of Neuroligin 2 and Slitrk3 reveals an
essential framework for GABAergic Synapse Development. Neuron.
96:808–826.e8. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Agaimy A: Gastrointestinal stromal tumors
(GIST) from risk stratification systems to the new TNM proposal:
More questions than answers? A review emphasizing the need for a
standardized GIST reporting. Int J Clin Exp Pathol. 3:461–471.
2010.PubMed/NCBI
|
|
46
|
Hotzel J, Melling N, Muller J, Polonski A,
Wolters-Eisfeld G, Izbicki JR, Karstens KF and Tachezy M: Protein
expression of close homologue of L1 (CHL1) is a marker for overall
survival in non-small cell lung cancer (NSCLC). J Cancer Res Clin
Oncol. 145:2285–2292. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Karstens KF, Bellon E, Polonski A,
Wolters-Eisfeld G, Melling N, Reeh M, Izbicki JR and Tachezy M:
Expression and serum levels of the neural cell adhesion molecule
L1-like protein (CHL1) in gastrointestinal stroma tumors (GIST) and
its prognostic power. Oncotarget. 11:1131–1140. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Thys A, Vandenberghe P, Hague P, Klein OD,
Erneux C and Vanderwinden JM: Hyperplasia of interstitial cells of
cajal in sprouty homolog 4 deficient mice. PLoS One.
10:e01248612015. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Vandenberghe P, Hague P, Hockman SC,
Manganiello VC, Demetter P, Erneux C and Vanderwinden JM:
Phosphodiesterase 3A: A new player in development of interstitial
cells of Cajal and a prospective target in gastrointestinal stromal
tumors (GIST). Oncotarget. 8:41026–41043. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Lu TX and Rothenberg ME: MicroRNA. J
Allergy Clin Immunol. 141:1202–1207. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Dragomir M, Mafra ACP, Dias SMG, Vasilescu
C and Calin GA: Using microRNA networks to understand cancer. Int J
Mol Sci. 19:18712018. View Article : Google Scholar
|
|
52
|
Isosaka M, Niinuma T, Nojima M, Kai M,
Yamamoto E, Maruyama R, Nobuoka T, Nishida T, Kanda T, Taguchi T,
et al: A screen for epigenetically silenced microRNA genes in
gastrointestinal stromal tumors. PLoS One. 10:e01337542015.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Wang Y, Li J, Kuang D, Wang X, Zhu Y, Xu
S, Chen Y, Cheng H, Zhao Q, Duan Y and Wang G: MiR-148b-3p
functions as a tumor suppressor in GISTs by directly targeting KIT.
Cell Commun Signal. 16:162018. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Fan R, Zhong J, Zheng S, Wang Z, Xu Y, Li
S, Zhou J and Yuan F: MicroRNA-218 inhibits gastrointestinal
stromal tumor cell and invasion by targeting KIT. Tumour Biol.
35:4209–4217. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Yun S, Kim WK, Kwon Y, Jang M, Bauer S and
Kim H: Survivin is a novel transcription regulator of KIT and is
downregulated by miRNA-494 in gastrointestinal stromal tumors. Int
J Cancer. 142:2080–2093. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Fan R, Zhong J, Zheng S, Wang Z, Xu Y, Li
S, Zhou J and Yuan F: MicroRNA-218 increase the sensitivity of
gastrointestinal stromal tumor to imatinib through PI3K/AKT
pathway. Clin Exp Med. 15:137–144. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Niinuma T, Suzuki H, Nojima M, Nosho K,
Yamamoto H, Takamaru H, Yamamoto E, Maruyama R, Nobuoka T, Miyazaki
Y, et al: Upregulation of miR-196a and HOTAIR drive malignant
character in gastrointestinal stromal tumors. Cancer Res.
72:1126–1136. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Niinuma T, Kai M, Kitajima H, Yamamoto E,
Harada T, Maruyama R, Nobuoka T, Nishida T, Kanda T, Hasegawa T, et
al: Downregulation of miR-186 is associated with metastatic
recurrence of gastrointestinal stromal tumors. Oncol Lett.
14:5703–5710. 2017.PubMed/NCBI
|
|
59
|
Anastasiadou E, Jacob LS and Slack FJ:
Non-coding RNA networks in cancer. Nat Rev Cancer. 18:5–18. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Awasthi R, Rathbone MJ, Hansbro PM, Bebawy
M and Dua K: Therapeutic prospects of microRNAs in cancer treatment
through nanotechnology. Drug Deliv Transl Res. 8:97–110. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Mansoori B, Mohammadi A, Shirjang S and
Baradaran B: MicroRNAs in the diagnosis and treatment of cancer.
Immunol Invest. 46:880–897. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Catela Ivkovic T, Voss G, Cornella H and
Ceder Y: MicroRNAs as cancer therapeutics: A step closer to
clinical application. Cancer Lett. 407:113–122. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Rusakiewicz S, Semeraro M, Sarabi M,
Desbois M, Locher C, Mendez R, Vimond N, Concha A, Garrido F,
Isambert N, et al: Immune infiltrates are prognostic factors in
localized gastrointestinal stromal tumors. Cancer Res.
73:3499–3510. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Tan Y, Garcia-Buitrago MT, Trent JC and
Rosenberg AE: The immune system and gastrointestinal stromal tumor:
A wealth of opportunities. Curr Opin Oncol. 27:338–342. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Tan Y, Trent JC, Wilky BA, Kerr DA and
Rosenberg AE: Current status of immunotherapy for gastrointestinal
stromal tumor. Cancer Gene Ther. 24:130–133. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Balachandran VP, Cavnar MJ, Zeng S,
Bamboat ZM, Ocuin LM, Obaid H, Sorenson EC, Popow R, Ariyan C,
Rossi F, et al: Imatinib potentiates antitumor T cell responses in
gastrointestinal stromal tumor through the inhibition of Ido. Nat
Med. 17:1094–1100. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Seifert AM, Zeng S, Zhang JQ, Kim TS,
Cohen NA, Beckman MJ, Medina BD, Maltbaek JH, Loo JK, Crawley MH,
et al: PD-1/PD-L1 Blockade Enhances T-cell activity and antitumor
efficacy of imatinib in gastrointestinal stromal tumors. Clin
Cancer Res. 23:454–465. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Bertucci F, Finetti P, Mamessier E,
Pantaleo MA, Astolfi A, Ostrowski J and Birnbaum D: PDL1 expression
is an independent prognostic factor in localized GIST.
Oncoimmunology. 4:e10027292015. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Zhao R, Song Y, Wang Y, Huang Y, Li Z, Cui
Y, Yi M, Xia L, Zhuang W, Wu X and Zhou Y: PD-1/PD-L1 blockade
rescue exhausted CD8+ T cells in gastrointestinal stromal tumours
via the PI3K/Akt/mTOR signalling pathway. Cell Prolif.
52:e125712019. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Toulmonde M, Penel N, Adam J, Chevreau C,
Blay JY, Le Cesne A, Bompas E, Piperno-Neumann S, Cousin S,
Grellety T, et al: Use of PD-1 Targeting, Macrophage Infiltration,
and IDO pathway activation in sarcomas: A Phase 2 clinical trial.
JAMA Oncol. 4:93–97. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Wang HC, Li TY, Chao YJ, Hou YC, Hsueh YS,
Hsu KH and Shan YS: KIT Exon 11 Codons 557–558 deletion mutation
promotes liver metastasis through the CXCL12/CXCR4 axis in
gastrointestinal stromal tumors. Clin Cancer Res. 22:3477–3487.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
De Simone M, Arrigoni A, Rossetti G,
Gruarin P, Ranzani V, Politano C, Bonnal RJP, Provasi E, Sarnicola
ML, Panzeri I, et al: Transcriptional landscape of human tissue
lymphocytes unveils uniqueness of Tumor-Infiltrating T regulatory
cells. Immunity. 45:1135–1147. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Tanaka A and Sakaguchi S: Regulatory T
cells in cancer immunotherapy. Cell Res. 27:109–118. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Soler D, Chapman TR, Poisson LR, Wang L,
Cote-Sierra J, Ryan M, McDonald A, Badola S, Fedyk E, Coyle AJ, et
al: CCR8 expression identifies CD4 memory T cells enriched for
FOXP3+ regulatory and Th2 effector lymphocytes. J Immunol.
177:6940–6951. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Sun X, Cheng G, Hao M, Zheng J, Zhou X,
Zhang J, Taichman RS, Pienta KJ and Wang J: CXCL12 / CXCR4 / CXCR7
chemokine axis and cancer progression. Cancer Metastasis Rev.
29:709–722. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Yesilkanal AE and Rosner MR: Targeting Raf
kinase inhibitory protein regulation and function. Cancers (Basel).
10:3062018. View Article : Google Scholar
|
|
77
|
Wang Y, Chen JJ, Wang XF and Wang Q:
Clinical and prognostic significance of Raf kinase inhibitory
protein expression in gastrointestinal stromal tumors. World J
Gastroenterol. 24:2508–2517. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Yesilkanal AE and Rosner MR: Raf kinase
inhibitory protein (RKIP) as a metastasis suppressor: Regulation of
signaling networks in cancer. Crit Rev Oncog. 19:447–454. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Valadao M, Braggio D, Santos AF,
Pimenta-Inada HK, Linhares E, Gonçalves R, Romano S, Vilhena B,
Small I, Cubero D, et al: Involvement of signaling molecules in the
prediction of response to imatinib treatment in metastatic GIST
patients. J Surg Res. 178:288–293. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Zhang Y and Weinberg RA:
Epithelial-to-mesenchymal transition in cancer: Complexity and
opportunities. Front Med. 12:361–373. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Dongre A and Weinberg RA: New insights
into the mechanisms of epithelial-mesenchymal transition and
implications for cancer. Nat Rev Mol Cell Biol. 20:69–84. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Kothari AN, Arffa ML, Chang V, Blackwell
RH, Syn WK, Zhang J, Mi Z and Kuo PC: Osteopontin-A master
regulator of Epithelial-Mesenchymal transition. J Clin Med.
5:392016. View Article : Google Scholar
|
|
83
|
Shevde LA and Samant RS: Role of
osteopontin in the pathophysiology of cancer. Matrix Biol.
37:131–141. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Hsu KH, Tsai HW, Lin PW, Hsu YS, Shan YS
and Lu PJ: Osteopontin expression is an independent adverse
prognostic factor in resectable gastrointestinal stromal tumor and
its interaction with CD44 promotes tumor proliferation. Ann Surg
Oncol. 17:3043–3052. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Senbanjo LT and Chellaiah MA: CD44: A
multifunctional cell surface adhesion receptor is a regulator of
progression and metastasis of cancer cells. Front Cell Dev Biol.
5:182017. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Hu JC, Wang Q, Jiang LX, Cai L, Zhai HY,
Yao ZW, Zhang ML and Feng Y: Effect of long non-coding RNA AOC4P on
gastrointestinal stromal tumor cells. Onco Targets Ther.
11:6259–6269. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Zhang K, Lu C, Huang X, Cui J, Li J, Gao
Y, Liang W, Liu Y, Sun Y, Liu H, et al: Long noncoding RNA AOC4P
regulates tumor cell proliferation and invasion by
epithelial-mesenchymal transition in gastric cancer. Therap Adv
Gastroenterol. 12:17562848198276972019. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Hao Y, Baker D and Ten Dijke P:
TGF-beta-Mediated Epithelial-Mesenchymal transition and cancer
metastasis. Int J Mol Sci. 20:27672019. View Article : Google Scholar
|
|
89
|
Kovecsi A, Gurzu S, Szentirmay Z, Kovacs
Z, Bara TJ and Jung I: Paradoxical expression pattern of the
epithelial mesenchymal transition-related biomarkers CD44, SLUG,
N-cadherin and VSIG1/Glycoprotein A34 in gastrointestinal stromal
tumors. World J Gastrointest Oncol. 9:436–443. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Pulkka OP, Nilsson B, Sarlomo-Rikala M,
Reichardt P, Eriksson M, Hall KS, Wardelmann E, Vehtari A, Joensuu
H and Sihto H: SLUG transcription factor: A pro-survival and
prognostic factor in gastrointestinal stromal tumour. Br J Cancer.
116:1195–1202. 2017. View Article : Google Scholar : PubMed/NCBI
|