
Metabolic biomarkers in lung cancer screening and early diagnosis (Review)
- Authors:
- Yongjie Xu
- Xuesi Dong
- Chao Qin
- Fei Wang
- Wei Cao
- Jiang Li
- Yiwen Yu
- Liang Zhao
- Fengwei Tan
- Wanqing Chen
- Ni Li
- Jie He
-
Affiliations: Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China, Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China - Published online on: May 3, 2023 https://doi.org/10.3892/ol.2023.13851
- Article Number: 265
-
Copyright: © Xu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
International Early Lung Cancer Action Program Investigators, . Henschke CI, Yankelevitz DF, Libby DM, Pasmantier MW, Smith JP and Miettinen OS: Survival of patients with stage I lung cancer detected on CT screening. N Engl J Med. 355:1763–1771. 2006. View Article : Google Scholar : PubMed/NCBI | |
Blandin Knight S, Crosbie PA, Balata H, Chudziak J, Hussell T and Dive C: Progress and prospects of early detection in lung cancer. Open Biol. 7:1700702017. View Article : Google Scholar : PubMed/NCBI | |
Eggert JA, Palavanzadeh M and Blanton A: Screening and early detection of lung cancer. Semin Oncol Nurs. 33:129–140. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shlomi D, Abud M, Liran O, Bar J, Gai-Mor N, Ilouze M, Onn A, Ben-Nun A, Haick H and Peled N: Detection of lung cancer and EGFR mutation by electronic nose system. J Thorac Oncol. 12:1544–1551. 2017. View Article : Google Scholar : PubMed/NCBI | |
Arbour KC and Riely GJ: Systemic therapy for locally advanced and metastatic non-small cell lung cancer: A Review. JAMA. 322:764–774. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hoffman PC, Mauer AM and Vokes EE: Lung cancer. Lancet. 355:479–485. 2000. View Article : Google Scholar : PubMed/NCBI | |
National Lung Screening Trial Research Team, . Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, Fagerstrom RM, Gareen IF, Gatsonis C, Marcus PM and Sicks JD: Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 365:395–409. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pastorino U, Silva M, Sestini S, Sabia F, Boeri M, Cantarutti A, Sverzellati N, Sozzi G, Corrao G and Marchiano A: Prolonged lung cancer screening reduced 10-year mortality in the MILD trial: New confirmation of lung cancer screening efficacy. Ann Oncol. 30:16722019. View Article : Google Scholar : PubMed/NCBI | |
de Koning HJ, van der Aalst CM, de Jong PA, Scholten ET, Nackaerts K, Heuvelmans MA, Lammers JJ, Weenink C, Yousaf-Khan U, Horeweg N, et al: Reduced lung-cancer mortality with volume CT Screening in a randomized trial. N Engl J Med. 382:503–513. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chu GCW, Lazare K and Sullivan F: Serum and blood based biomarkers for lung cancer screening: A systematic review. BMC Cancer. 18:1812018. View Article : Google Scholar : PubMed/NCBI | |
Priola AM, Priola SM, Giaj-Levra M, Basso E, Veltri A, Fava C and Cardinale L: Clinical implications and added costs of incidental findings in an early detection study of lung cancer by using low-dose spiral computed tomography. Clin Lung Cancer. 14:139–148. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hassanein M, Rahman JS, Chaurand P and Massion PP: Advances in proteomic strategies toward the early detection of lung cancer. Proc Am Thorac Soc. 8:183–188. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hassanein M, Callison JC, Callaway-Lane C, Aldrich MC, Grogan EL and Massion PP: The state of molecular biomarkers for the early detection of lung cancer. Cancer Prev Res (Phila). 5:992–1006. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sozzi G and Boeri M: Potential biomarkers for lung cancer screening. Transl Lung Cancer Res. 3:139–148. 2014.PubMed/NCBI | |
Spratlin JL, Serkova NJ and Eckhardt SG: Clinical applications of metabolomics in oncology: A review. Clin Cancer Res. 15:431–440. 2009. View Article : Google Scholar : PubMed/NCBI | |
Li X, Kulkarni AS, Liu X, Gao WQ, Huang L, Hu Z and Qian K: Metal-Organic framework hybrids aid metabolic profiling for colorectal cancer. Small Methods. 5:e20010012021. View Article : Google Scholar : PubMed/NCBI | |
Su H, Li X, Huang L, Cao J, Zhang M, Vedarethinam V, Di W, Hu Z and Qian K: Plasmonic alloys reveal a distinct metabolic phenotype of early gastric cancer. Adv Mater. 33:e20079782021. View Article : Google Scholar : PubMed/NCBI | |
Pei C, Liu C, Wang Y, Cheng D, Li R, Shu W, Zhang C, Hu W, Jin A, Yang Y and Wan J: simpleFeOOH@Metal-Organic framework core-satellite nanocomposites for the serum metabolic fingerprinting of gynecological cancers. Angew Chem Int Ed Engl. 59:10831–10835. 2020. View Article : Google Scholar : PubMed/NCBI | |
Duarte IF, Rocha CM and Gil AM: Metabolic profiling of biofluids: Potential in lung cancer screening and diagnosis. Expert Rev Mol Diagn. 13:737–748. 2013. View Article : Google Scholar : PubMed/NCBI | |
German JB, Hammock BD and Watkins SM: Metabolomics: Building on a century of biochemistry to guide human health. Metabolomics. 1:3–9. 2005. View Article : Google Scholar : PubMed/NCBI | |
Clish CB: Metabolomics: An emerging but powerful tool for precision medicine. Cold Spring Harb Mol Case Stud. 1:a0005882015. View Article : Google Scholar : PubMed/NCBI | |
Schmidt DR, Patel R, Kirsch DG, Lewis CA, Vander Heiden MG and Locasale JW: Metabolomics in cancer research and emerging applications in clinical oncology. CA Cancer J Clin. 71:333–358. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu X and Locasale JW: Metabolomics: A primer. Trends Biochem Sci. 42:274–284. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rinschen MM, Ivanisevic J, Giera M and Siuzdak G: Identification of bioactive metabolites using activity metabolomics. Nat Rev Mol Cell Biol. 20:353–367. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tsedilin AM, Fakhrutdinov AN, Eremin DB, Zalesskiy SS, Chizhov AO, Kolotyrkina NG and Ananikov VP: How sensitive and accurate are routine NMR and MS measurements? Mendeleev Commun. 25:454–456. 2015. View Article : Google Scholar | |
Dervilly-Pinel G, Courant F, Chereau S, Royer AL, Boyard-Kieken F, Antignac JP, Monteau F and Le Bizec B: Metabolomics in food analysis: Application to the control of forbidden substances. Drug Test Anal. 4 (Suppl 1):S59–S69. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li XJ, Hayward C, Fong PY, Dominguez M, Hunsucker SW, Lee LW, McLean M, Law S, Butler H, Schirm M, et al: A blood-based proteomic classifier for the molecular characterization of pulmonary nodules. Sci Transl Med. 5:207ra1422013. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Rector J, Lin JQ, Young JH, Sans M, Katta N, Giese N, Yu W, Nagi C, Suliburk J, et al: Nondestructive tissue analysis for ex vivo and in vivo cancer diagnosis using a handheld mass spectrometry system. Sci Transl Med. 9:eaan39682017. View Article : Google Scholar : PubMed/NCBI | |
Lei Z, Huhman DV and Sumner LW: Mass spectrometry strategies in metabolomics. J Biol Chem. 286:25435–25442. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wishart DS: Advances in metabolite identification. Bioanalysis. 3:1769–1782. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang A, Sun H, Wang P, Han Y and Wang X: Modern analytical techniques in metabolomics analysis. Analyst. 137:293–300. 2012. View Article : Google Scholar : PubMed/NCBI | |
Dunn WB, Bailey NJ and Johnson HE: Measuring the metabolome: Current analytical technologies. Analyst. 130:606–625. 2005. View Article : Google Scholar : PubMed/NCBI | |
Psychogios N, Hau DD, Peng J, Guo AC, Mandal R, Bouatra S, Sinelnikov I, Krishnamurthy R, Eisner R, Gautam B, et al: The human serum metabolome. PLoS One. 6:e169572011. View Article : Google Scholar : PubMed/NCBI | |
Bouatra S, Aziat F, Mandal R, Guo AC, Wilson MR, Knox C, Bjorndahl TC, Krishnamurthy R, Saleem F, Liu P, et al: The human urine metabolome. PLoS One. 8:e730762013. View Article : Google Scholar : PubMed/NCBI | |
Wishart DS: Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discov. 15:473–484. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rocha CM, Carrola J, Barros AS, Gil AM, Goodfellow BJ, Carreira IM, Bernardo J, Gomes A, Sousa V, Carvalho L and Duarte IF: Metabolic signatures of lung cancer in biofluids: NMR-based metabonomics of blood plasma. J Proteome Res. 10:4314–4324. 2011. View Article : Google Scholar : PubMed/NCBI | |
Deja S, Porebska I, Kowal A, Zabek A, Barg W, Pawelczyk K, Stanimirova I, Daszykowski M, Korzeniewska A, Jankowska R and Mlynarz P: Metabolomics provide new insights on lung cancer staging and discrimination from chronic obstructive pulmonary disease. J Pharm Biomed Anal. 100:369–380. 2014. View Article : Google Scholar : PubMed/NCBI | |
Puchades-Carrasco L, Jantus-Lewintre E, Perez-Rambla C, Garcia-Garcia F, Lucas R, Calabuig S, Blasco A, Dopazo J, Camps C and Pineda-Lucena A: Serum metabolomic profiling facilitates the non-invasive identification of metabolic biomarkers associated with the onset and progression of non-small cell lung cancer. Oncotarget. 7:12904–12916. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ros-Mazurczyk M, Wojakowska A, Marczak L, Polanski K, Pietrowska M, Polanska J, Dziadziuszko R, Jassem J, Rzyman W and Widlak P: Panel of serum metabolites discriminates cancer patients and healthy participants of lung cancer screening-a pilot study. Acta Biochim Pol. 64:513–518. 2017. View Article : Google Scholar : PubMed/NCBI | |
Klupczynska A, Derezinski P, Garrett TJ, Rubio VY, Dyszkiewicz W, Kasprzyk M and Kokot ZJ: Study of early stage non-small-cell lung cancer using Orbitrap-based global serum metabolomics. J Cancer Res Clin Oncol. 143:649–659. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Ma Z, Min L, Li H, Wang B, Zhong J and Dai L: Biomarker identification and pathway analysis by serum metabolomics of lung cancer. Biomed Res Int. 2015:1836242015.PubMed/NCBI | |
Ros-Mazurczyk M, Jelonek K, Marczyk M, Binczyk F, Pietrowska M, Polanska J, Dziadziuszko R, Jassem J, Rzyman W and Widlak P: Serum lipid profile discriminates patients with early lung cancer from healthy controls. Lung Cancer. 112:69–74. 2017. View Article : Google Scholar : PubMed/NCBI | |
Klupczynska A, Derezinski P, Dyszkiewicz W, Pawlak K, Kasprzyk M and Kokot ZJ: Evaluation of serum amino acid profiles' utility in non-small cell lung cancer detection in Polish population. Lung Cancer. 100:71–76. 2016. View Article : Google Scholar : PubMed/NCBI | |
Louis E, Adriaensens P, Guedens W, Bigirumurame T, Baeten K, Vanhove K, Vandeurzen K, Darquennes K, Vansteenkiste J, Dooms C, et al: Detection of lung cancer through metabolic changes measured in blood plasma. J Thorac Oncol. 11:516–523. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mazzone PJ, Wang XF, Beukemann M, Zhang Q, Seeley M, Mohney R, Holt T and Pappan KL: Metabolite profiles of the serum of patients with non-small cell carcinoma. J Thorac Oncol. 11:72–78. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yu Z, Chen H, Ai J, Zhu Y, Li Y, Borgia JA, Yang JS, Zhang J, Jiang B, Gu W and Deng Y: Global lipidomics identified plasma lipids as novel biomarkers for early detection of lung cancer. Oncotarget. 8:107899–107906. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xiang C, Jin S, Zhang J, Chen M, Xia Y, Shu Y and Guo R: Cortisol, cortisone, and 4-methoxyphenylacetic acid as potential plasma biomarkers for early detection of non-small cell lung cancer. Int J Biol Markers. 33:314–320. 2018. View Article : Google Scholar : PubMed/NCBI | |
Klupczynska A, Plewa S, Kasprzyk M, Dyszkiewicz W, Kokot ZJ and Matysiak J: Serum lipidome screening in patients with stage I non-small cell lung cancer. Clin Exp Med. 19:505–513. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Zheng J, Ahmed R, Huang G, Reid J, Mandal R, Maksymuik A, Sitar DS, Tappia PS, Ramjiawan B, et al: A High-Performing plasma metabolite panel for early-stage lung cancer detection. Cancers (Basel). 12:6222020. View Article : Google Scholar : PubMed/NCBI | |
Huang L, Wang L, Hu X, Chen S, Tao Y, Su H, Yang J, Xu W, Vedarethinam V, Wu S, et al: Machine learning of serum metabolic patterns encodes early-stage lung adenocarcinoma. Nat Commun. 11:35562020. View Article : Google Scholar : PubMed/NCBI | |
Derveaux E, Thomeer M, Mesotten L, Reekmans G and Adriaensens P: Detection of lung cancer via blood plasma and 1H-NMR metabolomics: Validation by a semi-targeted and quantitative approach using a protein-binding competitor. Metabolites. 11:5372021. View Article : Google Scholar : PubMed/NCBI | |
Qi SA, Wu Q, Chen Z, Zhang W, Zhou Y, Mao K, Li J, Li Y, Chen J and Huang Y and Huang Y: High-resolution metabolomic biomarkers for lung cancer diagnosis and prognosis. Sci Rep. 11:118052021. View Article : Google Scholar : PubMed/NCBI | |
Wang G, Qiu M, Xing X, Zhou J, Yao H, Li M, Yin R, Hou Y, Li Y, Pan S, et al: Lung cancer scRNA-seq and lipidomics reveal aberrant lipid metabolism for early-stage diagnosis. Sci Transl Med. 14:eabk27562022. View Article : Google Scholar : PubMed/NCBI | |
Warburg O: On the origin of cancer cells. Science. 123:309–314. 1956. View Article : Google Scholar : PubMed/NCBI | |
Mathupala SP, Ko YH and Pedersen PL: Hexokinase-2 bound to mitochondria: Cancer's stygian link to the ‘Warburg Effect’ and a pivotal target for effective therapy. Semin Cancer Biol. 19:17–24. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dang CV: Links between metabolism and cancer. Genes Dev. 26:877–890. 2012. View Article : Google Scholar : PubMed/NCBI | |
Rocha CM, Barros AS, Gil AM, Goodfellow BJ, Humpfer E, Spraul M, Carreira IM, Melo JB, Bernardo J, Gomes A, et al: Metabolic profiling of human lung cancer tissue by 1H high resolution magic angle spinning (HRMAS) NMR spectroscopy. J Proteome Res. 9:319–332. 2010. View Article : Google Scholar : PubMed/NCBI | |
Maksymiuk AW, Tappia PS, Sitar DS, Akhtar PS, Khatun N, Parveen R, Ahmed R, Ahmed RB, Cheng B, Huang G, et al: Use of amantadine as substrate for SSAT-1 activity as a reliable clinical diagnostic assay for breast and lung cancer. Future Sci OA. 5:FSO3652018. View Article : Google Scholar : PubMed/NCBI | |
Cho SH, Jung BH, Lee SH, Lee WY, Kong G and Chung BC: Direct determination of nucleosides in the urine of patients with breast cancer using column-switching liquid chromatography-tandem mass spectrometry. Biomed Chromatogr. 20:1229–1236. 2006. View Article : Google Scholar : PubMed/NCBI | |
Carrola J, Rocha CM, Barros AS, Gil AM, Goodfellow BJ, Carreira IM, Bernardo J, Gomes A, Sousa V, Carvalho L and Duarte IF: Metabolic signatures of lung cancer in biofluids: NMR-based metabonomics of urine. J Proteome Res. 10:221–230. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hanai Y, Shimono K, Matsumura K, Vachani A, Albelda S, Yamazaki K, Beauchamp GK and Oka H: Urinary volatile compounds as biomarkers for lung cancer. Biosci Biotechnol Biochem. 76:679–684. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mathe EA, Patterson AD, Haznadar M, Manna SK, Krausz KW, Bowman ED, Shields PG, Idle JR, Smith PB, Anami K, et al: Noninvasive urinary metabolomic profiling identifies diagnostic and prognostic markers in lung cancer. Cancer Res. 74:3259–3270. 2014. View Article : Google Scholar : PubMed/NCBI | |
Haznadar M, Cai Q, Krausz KW, Bowman ED, Margono E, Noro R, Thompson MD, Mathe EA, Munro HM, Steinwandel MD, et al: Urinary metabolite risk biomarkers of lung cancer: A prospective cohort study. Cancer Epidemiol Biomarkers Prev. 25:978–986. 2016. View Article : Google Scholar : PubMed/NCBI | |
Funai K, Honzawa K, Suzuki M, Momiki S, Asai K, Kasamatsu N, Kawase A, Shinke T, Okada H, Nishizawa S and Takamoto H: Urinary fluorescent metabolite O-aminohippuric acid is a useful biomarker for lung cancer detection. Metabolomics. 16:1012020. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Chen X, Chen Z, Yu J, Lou H and Wu J: High-Throughput salivary metabolite profiling on an ultralow noise tip-enhanced laser desorption ionization mass spectrometry platform for noninvasive diagnosis of early lung cancer. J Proteome Res. 20:4346–4356. 2021. View Article : Google Scholar : PubMed/NCBI | |
Slack A, Yeoman A and Wendon J: Renal dysfunction in chronic liver disease. Crit Care. 14:2142010. View Article : Google Scholar : PubMed/NCBI | |
Farraia MV, Cavaleiro Rufo J, Paciencia I, Mendes F, Delgado L and Moreira A: The electronic nose technology in clinical diagnosis: A systematic review. Porto Biomed J. 4:e422019. View Article : Google Scholar : PubMed/NCBI | |
Phillips M, Gleeson K, Hughes JM, Greenberg J, Cataneo RN, Baker L and McVay WP: Volatile organic compounds in breath as markers of lung cancer: A cross-sectional study. Lancet. 353:1930–1933. 1999. View Article : Google Scholar : PubMed/NCBI | |
Phillips M, Cataneo RN, Cummin AR, Gagliardi AJ, Gleeson K, Greenberg J, Maxfield RA and Rom WN: Detection of lung cancer with volatile markers in the breath. Chest. 123:2115–2123. 2003. View Article : Google Scholar : PubMed/NCBI | |
Poli D, Carbognani P, Corradi M, Goldoni M, Acampa O, Balbi B, Bianchi L, Rusca M and Mutti A: Exhaled volatile organic compounds in patients with non-small cell lung cancer: Cross sectional and nested short-term follow-up study. Respir Res. 6:712005. View Article : Google Scholar : PubMed/NCBI | |
Phillips M, Altorki N, Austin JH, Cameron RB, Cataneo RN, Greenberg J, Kloss R, Maxfield RA, Munawar MI, Pass HI, et al: Prediction of lung cancer using volatile biomarkers in breath. Cancer Biomark. 3:95–109. 2007. View Article : Google Scholar : PubMed/NCBI | |
Fu XA, Li M, Knipp RJ, Nantz MH and Bousamra M: Noninvasive detection of lung cancer using exhaled breath. Cancer Med. 3:174–181. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li M, Yang D, Brock G, Knipp RJ, Bousamra M, Nantz MH and Fu XA: Breath carbonyl compounds as biomarkers of lung cancer. Lung Cancer. 90:92–97. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sakumura Y, Koyama Y, Tokutake H, Hida T, Sato K, Itoh T, Akamatsu T and Shin W: Diagnosis by volatile organic compounds in exhaled breath from lung cancer patients using support vector machine algorithm. Sensors (Basel). 17:2872017. View Article : Google Scholar : PubMed/NCBI | |
Rudnicka J, Kowalkowski T and Buszewski B: Searching for selected VOCs in human breath samples as potential markers of lung cancer. Lung Cancer. 135:123–129. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Muhammad KG, Madeeha C, Fu W, Xu L, Hu Y, Liu J, Ying K, Chen L and Yurievna GO: Calculated indices of volatile organic compounds (VOCs) in exhalation for lung cancer screening and early detection. Lung Cancer. 154:197–205. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tsou PH, Lin ZL, Pan YC, Yang HC, Chang CJ, Liang SK, Wen YF, Chang CH, Chang LY, Yu KL, et al: Exploring volatile organic compounds in breath for high-accuracy prediction of lung cancer. Cancers (Basel). 13:14312021. View Article : Google Scholar : PubMed/NCBI | |
Hakim M, Broza YY, Barash O, Peled N, Phillips M, Amann A and Haick H: Volatile organic compounds of lung cancer and possible biochemical pathways. Chem Rev. 112:5949–5966. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fan TW, Lane AN, Higashi RM, Farag MA, Gao H, Bousamra M and Miller DM: Altered regulation of metabolic pathways in human lung cancer discerned by (13)C stable isotope-resolved metabolomics (SIRM). Mol Cancer. 8:412009. View Article : Google Scholar : PubMed/NCBI | |
Bousamra M II, Schumer E, Li M, Knipp RJ, Nantz MH, van Berkel V and Fu XA: Quantitative analysis of exhaled carbonyl compounds distinguishes benign from malignant pulmonary disease. J Thorac Cardiovasc Surg. 148:1074–1080; discussion 1080-1. 2014. View Article : Google Scholar : PubMed/NCBI | |
Paramanantham A, Asfiya R, Das S, McCully G and Srivastava A: Extracellular Vesicle (EVs) associated non-coding RNAs in lung cancer and therapeutics. Int J Mol Sci. 23:136372022. View Article : Google Scholar : PubMed/NCBI | |
Hua Y, Dai C, He Q, Cai X and Li M: Autoantibody panel on small extracellular vesicles for the early detection of lung cancer. Clin Immunol. 245:1091752022. View Article : Google Scholar : PubMed/NCBI | |
Cammarata G, de Miguel-Perez D, Russo A, Peleg A, Dolo V, Rolfo C and Taverna S: Emerging noncoding RNAs contained in extracellular vesicles: Rising stars as biomarkers in lung cancer liquid biopsy. Ther Adv Med Oncol. 14:175883592211312292022. View Article : Google Scholar : PubMed/NCBI | |
Pedraz-Valdunciel C, Giannoukakos S, Gimenez-Capitan A, Fortunato D, Filipska M, Bertran-Alamillo J, Bracht JWP, Drozdowskyj A, Valarezo J, Zarovni N, et al: Multiplex Analysis of CircRNAs from plasma extracellular vesicle-enriched samples for the detection of early-stage non-small cell lung cancer. Pharmaceutics. 14:20342022. View Article : Google Scholar : PubMed/NCBI |