|
1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
International Early Lung Cancer Action
Program Investigators, . Henschke CI, Yankelevitz DF, Libby DM,
Pasmantier MW, Smith JP and Miettinen OS: Survival of patients with
stage I lung cancer detected on CT screening. N Engl J Med.
355:1763–1771. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Blandin Knight S, Crosbie PA, Balata H,
Chudziak J, Hussell T and Dive C: Progress and prospects of early
detection in lung cancer. Open Biol. 7:1700702017. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Eggert JA, Palavanzadeh M and Blanton A:
Screening and early detection of lung cancer. Semin Oncol Nurs.
33:129–140. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Shlomi D, Abud M, Liran O, Bar J, Gai-Mor
N, Ilouze M, Onn A, Ben-Nun A, Haick H and Peled N: Detection of
lung cancer and EGFR mutation by electronic nose system. J Thorac
Oncol. 12:1544–1551. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Arbour KC and Riely GJ: Systemic therapy
for locally advanced and metastatic non-small cell lung cancer: A
Review. JAMA. 322:764–774. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Hoffman PC, Mauer AM and Vokes EE: Lung
cancer. Lancet. 355:479–485. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
National Lung Screening Trial Research
Team, . Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD,
Fagerstrom RM, Gareen IF, Gatsonis C, Marcus PM and Sicks JD:
Reduced lung-cancer mortality with low-dose computed tomographic
screening. N Engl J Med. 365:395–409. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Pastorino U, Silva M, Sestini S, Sabia F,
Boeri M, Cantarutti A, Sverzellati N, Sozzi G, Corrao G and
Marchiano A: Prolonged lung cancer screening reduced 10-year
mortality in the MILD trial: New confirmation of lung cancer
screening efficacy. Ann Oncol. 30:16722019. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
de Koning HJ, van der Aalst CM, de Jong
PA, Scholten ET, Nackaerts K, Heuvelmans MA, Lammers JJ, Weenink C,
Yousaf-Khan U, Horeweg N, et al: Reduced lung-cancer mortality with
volume CT Screening in a randomized trial. N Engl J Med.
382:503–513. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Chu GCW, Lazare K and Sullivan F: Serum
and blood based biomarkers for lung cancer screening: A systematic
review. BMC Cancer. 18:1812018. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Priola AM, Priola SM, Giaj-Levra M, Basso
E, Veltri A, Fava C and Cardinale L: Clinical implications and
added costs of incidental findings in an early detection study of
lung cancer by using low-dose spiral computed tomography. Clin Lung
Cancer. 14:139–148. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Hassanein M, Rahman JS, Chaurand P and
Massion PP: Advances in proteomic strategies toward the early
detection of lung cancer. Proc Am Thorac Soc. 8:183–188. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Hassanein M, Callison JC, Callaway-Lane C,
Aldrich MC, Grogan EL and Massion PP: The state of molecular
biomarkers for the early detection of lung cancer. Cancer Prev Res
(Phila). 5:992–1006. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Sozzi G and Boeri M: Potential biomarkers
for lung cancer screening. Transl Lung Cancer Res. 3:139–148.
2014.PubMed/NCBI
|
|
16
|
Spratlin JL, Serkova NJ and Eckhardt SG:
Clinical applications of metabolomics in oncology: A review. Clin
Cancer Res. 15:431–440. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Li X, Kulkarni AS, Liu X, Gao WQ, Huang L,
Hu Z and Qian K: Metal-Organic framework hybrids aid metabolic
profiling for colorectal cancer. Small Methods. 5:e20010012021.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Su H, Li X, Huang L, Cao J, Zhang M,
Vedarethinam V, Di W, Hu Z and Qian K: Plasmonic alloys reveal a
distinct metabolic phenotype of early gastric cancer. Adv Mater.
33:e20079782021. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Pei C, Liu C, Wang Y, Cheng D, Li R, Shu
W, Zhang C, Hu W, Jin A, Yang Y and Wan J: simpleFeOOH@Metal-Organic
framework core-satellite nanocomposites for the serum metabolic
fingerprinting of gynecological cancers. Angew Chem Int Ed Engl.
59:10831–10835. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Duarte IF, Rocha CM and Gil AM: Metabolic
profiling of biofluids: Potential in lung cancer screening and
diagnosis. Expert Rev Mol Diagn. 13:737–748. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
German JB, Hammock BD and Watkins SM:
Metabolomics: Building on a century of biochemistry to guide human
health. Metabolomics. 1:3–9. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Clish CB: Metabolomics: An emerging but
powerful tool for precision medicine. Cold Spring Harb Mol Case
Stud. 1:a0005882015. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Schmidt DR, Patel R, Kirsch DG, Lewis CA,
Vander Heiden MG and Locasale JW: Metabolomics in cancer research
and emerging applications in clinical oncology. CA Cancer J Clin.
71:333–358. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Liu X and Locasale JW: Metabolomics: A
primer. Trends Biochem Sci. 42:274–284. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Rinschen MM, Ivanisevic J, Giera M and
Siuzdak G: Identification of bioactive metabolites using activity
metabolomics. Nat Rev Mol Cell Biol. 20:353–367. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Tsedilin AM, Fakhrutdinov AN, Eremin DB,
Zalesskiy SS, Chizhov AO, Kolotyrkina NG and Ananikov VP: How
sensitive and accurate are routine NMR and MS measurements?
Mendeleev Commun. 25:454–456. 2015. View Article : Google Scholar
|
|
27
|
Dervilly-Pinel G, Courant F, Chereau S,
Royer AL, Boyard-Kieken F, Antignac JP, Monteau F and Le Bizec B:
Metabolomics in food analysis: Application to the control of
forbidden substances. Drug Test Anal. 4 (Suppl 1):S59–S69. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Li XJ, Hayward C, Fong PY, Dominguez M,
Hunsucker SW, Lee LW, McLean M, Law S, Butler H, Schirm M, et al: A
blood-based proteomic classifier for the molecular characterization
of pulmonary nodules. Sci Transl Med. 5:207ra1422013. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Zhang J, Rector J, Lin JQ, Young JH, Sans
M, Katta N, Giese N, Yu W, Nagi C, Suliburk J, et al:
Nondestructive tissue analysis for ex vivo and in vivo cancer
diagnosis using a handheld mass spectrometry system. Sci Transl
Med. 9:eaan39682017. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Lei Z, Huhman DV and Sumner LW: Mass
spectrometry strategies in metabolomics. J Biol Chem.
286:25435–25442. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Wishart DS: Advances in metabolite
identification. Bioanalysis. 3:1769–1782. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Zhang A, Sun H, Wang P, Han Y and Wang X:
Modern analytical techniques in metabolomics analysis. Analyst.
137:293–300. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Dunn WB, Bailey NJ and Johnson HE:
Measuring the metabolome: Current analytical technologies. Analyst.
130:606–625. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Psychogios N, Hau DD, Peng J, Guo AC,
Mandal R, Bouatra S, Sinelnikov I, Krishnamurthy R, Eisner R,
Gautam B, et al: The human serum metabolome. PLoS One.
6:e169572011. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Bouatra S, Aziat F, Mandal R, Guo AC,
Wilson MR, Knox C, Bjorndahl TC, Krishnamurthy R, Saleem F, Liu P,
et al: The human urine metabolome. PLoS One. 8:e730762013.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Wishart DS: Emerging applications of
metabolomics in drug discovery and precision medicine. Nat Rev Drug
Discov. 15:473–484. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Rocha CM, Carrola J, Barros AS, Gil AM,
Goodfellow BJ, Carreira IM, Bernardo J, Gomes A, Sousa V, Carvalho
L and Duarte IF: Metabolic signatures of lung cancer in biofluids:
NMR-based metabonomics of blood plasma. J Proteome Res.
10:4314–4324. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Deja S, Porebska I, Kowal A, Zabek A, Barg
W, Pawelczyk K, Stanimirova I, Daszykowski M, Korzeniewska A,
Jankowska R and Mlynarz P: Metabolomics provide new insights on
lung cancer staging and discrimination from chronic obstructive
pulmonary disease. J Pharm Biomed Anal. 100:369–380. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Puchades-Carrasco L, Jantus-Lewintre E,
Perez-Rambla C, Garcia-Garcia F, Lucas R, Calabuig S, Blasco A,
Dopazo J, Camps C and Pineda-Lucena A: Serum metabolomic profiling
facilitates the non-invasive identification of metabolic biomarkers
associated with the onset and progression of non-small cell lung
cancer. Oncotarget. 7:12904–12916. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Ros-Mazurczyk M, Wojakowska A, Marczak L,
Polanski K, Pietrowska M, Polanska J, Dziadziuszko R, Jassem J,
Rzyman W and Widlak P: Panel of serum metabolites discriminates
cancer patients and healthy participants of lung cancer screening-a
pilot study. Acta Biochim Pol. 64:513–518. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Klupczynska A, Derezinski P, Garrett TJ,
Rubio VY, Dyszkiewicz W, Kasprzyk M and Kokot ZJ: Study of early
stage non-small-cell lung cancer using Orbitrap-based global serum
metabolomics. J Cancer Res Clin Oncol. 143:649–659. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Chen Y, Ma Z, Min L, Li H, Wang B, Zhong J
and Dai L: Biomarker identification and pathway analysis by serum
metabolomics of lung cancer. Biomed Res Int.
2015:1836242015.PubMed/NCBI
|
|
43
|
Ros-Mazurczyk M, Jelonek K, Marczyk M,
Binczyk F, Pietrowska M, Polanska J, Dziadziuszko R, Jassem J,
Rzyman W and Widlak P: Serum lipid profile discriminates patients
with early lung cancer from healthy controls. Lung Cancer.
112:69–74. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Klupczynska A, Derezinski P, Dyszkiewicz
W, Pawlak K, Kasprzyk M and Kokot ZJ: Evaluation of serum amino
acid profiles' utility in non-small cell lung cancer detection in
Polish population. Lung Cancer. 100:71–76. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Louis E, Adriaensens P, Guedens W,
Bigirumurame T, Baeten K, Vanhove K, Vandeurzen K, Darquennes K,
Vansteenkiste J, Dooms C, et al: Detection of lung cancer through
metabolic changes measured in blood plasma. J Thorac Oncol.
11:516–523. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Mazzone PJ, Wang XF, Beukemann M, Zhang Q,
Seeley M, Mohney R, Holt T and Pappan KL: Metabolite profiles of
the serum of patients with non-small cell carcinoma. J Thorac
Oncol. 11:72–78. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Yu Z, Chen H, Ai J, Zhu Y, Li Y, Borgia
JA, Yang JS, Zhang J, Jiang B, Gu W and Deng Y: Global lipidomics
identified plasma lipids as novel biomarkers for early detection of
lung cancer. Oncotarget. 8:107899–107906. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Xiang C, Jin S, Zhang J, Chen M, Xia Y,
Shu Y and Guo R: Cortisol, cortisone, and 4-methoxyphenylacetic
acid as potential plasma biomarkers for early detection of
non-small cell lung cancer. Int J Biol Markers. 33:314–320. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Klupczynska A, Plewa S, Kasprzyk M,
Dyszkiewicz W, Kokot ZJ and Matysiak J: Serum lipidome screening in
patients with stage I non-small cell lung cancer. Clin Exp Med.
19:505–513. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zhang L, Zheng J, Ahmed R, Huang G, Reid
J, Mandal R, Maksymuik A, Sitar DS, Tappia PS, Ramjiawan B, et al:
A High-Performing plasma metabolite panel for early-stage lung
cancer detection. Cancers (Basel). 12:6222020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Huang L, Wang L, Hu X, Chen S, Tao Y, Su
H, Yang J, Xu W, Vedarethinam V, Wu S, et al: Machine learning of
serum metabolic patterns encodes early-stage lung adenocarcinoma.
Nat Commun. 11:35562020. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Derveaux E, Thomeer M, Mesotten L,
Reekmans G and Adriaensens P: Detection of lung cancer via blood
plasma and 1H-NMR metabolomics: Validation by a
semi-targeted and quantitative approach using a protein-binding
competitor. Metabolites. 11:5372021. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Qi SA, Wu Q, Chen Z, Zhang W, Zhou Y, Mao
K, Li J, Li Y, Chen J and Huang Y and Huang Y: High-resolution
metabolomic biomarkers for lung cancer diagnosis and prognosis. Sci
Rep. 11:118052021. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Wang G, Qiu M, Xing X, Zhou J, Yao H, Li
M, Yin R, Hou Y, Li Y, Pan S, et al: Lung cancer scRNA-seq and
lipidomics reveal aberrant lipid metabolism for early-stage
diagnosis. Sci Transl Med. 14:eabk27562022. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Warburg O: On the origin of cancer cells.
Science. 123:309–314. 1956. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Mathupala SP, Ko YH and Pedersen PL:
Hexokinase-2 bound to mitochondria: Cancer's stygian link to the
‘Warburg Effect’ and a pivotal target for effective therapy. Semin
Cancer Biol. 19:17–24. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Dang CV: Links between metabolism and
cancer. Genes Dev. 26:877–890. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Rocha CM, Barros AS, Gil AM, Goodfellow
BJ, Humpfer E, Spraul M, Carreira IM, Melo JB, Bernardo J, Gomes A,
et al: Metabolic profiling of human lung cancer tissue by 1H high
resolution magic angle spinning (HRMAS) NMR spectroscopy. J
Proteome Res. 9:319–332. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Maksymiuk AW, Tappia PS, Sitar DS, Akhtar
PS, Khatun N, Parveen R, Ahmed R, Ahmed RB, Cheng B, Huang G, et
al: Use of amantadine as substrate for SSAT-1 activity as a
reliable clinical diagnostic assay for breast and lung cancer.
Future Sci OA. 5:FSO3652018. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Cho SH, Jung BH, Lee SH, Lee WY, Kong G
and Chung BC: Direct determination of nucleosides in the urine of
patients with breast cancer using column-switching liquid
chromatography-tandem mass spectrometry. Biomed Chromatogr.
20:1229–1236. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Carrola J, Rocha CM, Barros AS, Gil AM,
Goodfellow BJ, Carreira IM, Bernardo J, Gomes A, Sousa V, Carvalho
L and Duarte IF: Metabolic signatures of lung cancer in biofluids:
NMR-based metabonomics of urine. J Proteome Res. 10:221–230. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Hanai Y, Shimono K, Matsumura K, Vachani
A, Albelda S, Yamazaki K, Beauchamp GK and Oka H: Urinary volatile
compounds as biomarkers for lung cancer. Biosci Biotechnol Biochem.
76:679–684. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Mathe EA, Patterson AD, Haznadar M, Manna
SK, Krausz KW, Bowman ED, Shields PG, Idle JR, Smith PB, Anami K,
et al: Noninvasive urinary metabolomic profiling identifies
diagnostic and prognostic markers in lung cancer. Cancer Res.
74:3259–3270. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Haznadar M, Cai Q, Krausz KW, Bowman ED,
Margono E, Noro R, Thompson MD, Mathe EA, Munro HM, Steinwandel MD,
et al: Urinary metabolite risk biomarkers of lung cancer: A
prospective cohort study. Cancer Epidemiol Biomarkers Prev.
25:978–986. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Funai K, Honzawa K, Suzuki M, Momiki S,
Asai K, Kasamatsu N, Kawase A, Shinke T, Okada H, Nishizawa S and
Takamoto H: Urinary fluorescent metabolite O-aminohippuric acid is
a useful biomarker for lung cancer detection. Metabolomics.
16:1012020. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Jiang X, Chen X, Chen Z, Yu J, Lou H and
Wu J: High-Throughput salivary metabolite profiling on an ultralow
noise tip-enhanced laser desorption ionization mass spectrometry
platform for noninvasive diagnosis of early lung cancer. J Proteome
Res. 20:4346–4356. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Slack A, Yeoman A and Wendon J: Renal
dysfunction in chronic liver disease. Crit Care. 14:2142010.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Farraia MV, Cavaleiro Rufo J, Paciencia I,
Mendes F, Delgado L and Moreira A: The electronic nose technology
in clinical diagnosis: A systematic review. Porto Biomed J.
4:e422019. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Phillips M, Gleeson K, Hughes JM,
Greenberg J, Cataneo RN, Baker L and McVay WP: Volatile organic
compounds in breath as markers of lung cancer: A cross-sectional
study. Lancet. 353:1930–1933. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Phillips M, Cataneo RN, Cummin AR,
Gagliardi AJ, Gleeson K, Greenberg J, Maxfield RA and Rom WN:
Detection of lung cancer with volatile markers in the breath.
Chest. 123:2115–2123. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Poli D, Carbognani P, Corradi M, Goldoni
M, Acampa O, Balbi B, Bianchi L, Rusca M and Mutti A: Exhaled
volatile organic compounds in patients with non-small cell lung
cancer: Cross sectional and nested short-term follow-up study.
Respir Res. 6:712005. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Phillips M, Altorki N, Austin JH, Cameron
RB, Cataneo RN, Greenberg J, Kloss R, Maxfield RA, Munawar MI, Pass
HI, et al: Prediction of lung cancer using volatile biomarkers in
breath. Cancer Biomark. 3:95–109. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Fu XA, Li M, Knipp RJ, Nantz MH and
Bousamra M: Noninvasive detection of lung cancer using exhaled
breath. Cancer Med. 3:174–181. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Li M, Yang D, Brock G, Knipp RJ, Bousamra
M, Nantz MH and Fu XA: Breath carbonyl compounds as biomarkers of
lung cancer. Lung Cancer. 90:92–97. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Sakumura Y, Koyama Y, Tokutake H, Hida T,
Sato K, Itoh T, Akamatsu T and Shin W: Diagnosis by volatile
organic compounds in exhaled breath from lung cancer patients using
support vector machine algorithm. Sensors (Basel). 17:2872017.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Rudnicka J, Kowalkowski T and Buszewski B:
Searching for selected VOCs in human breath samples as potential
markers of lung cancer. Lung Cancer. 135:123–129. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Chen X, Muhammad KG, Madeeha C, Fu W, Xu
L, Hu Y, Liu J, Ying K, Chen L and Yurievna GO: Calculated indices
of volatile organic compounds (VOCs) in exhalation for lung cancer
screening and early detection. Lung Cancer. 154:197–205. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Tsou PH, Lin ZL, Pan YC, Yang HC, Chang
CJ, Liang SK, Wen YF, Chang CH, Chang LY, Yu KL, et al: Exploring
volatile organic compounds in breath for high-accuracy prediction
of lung cancer. Cancers (Basel). 13:14312021. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Hakim M, Broza YY, Barash O, Peled N,
Phillips M, Amann A and Haick H: Volatile organic compounds of lung
cancer and possible biochemical pathways. Chem Rev. 112:5949–5966.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Fan TW, Lane AN, Higashi RM, Farag MA, Gao
H, Bousamra M and Miller DM: Altered regulation of metabolic
pathways in human lung cancer discerned by (13)C stable
isotope-resolved metabolomics (SIRM). Mol Cancer. 8:412009.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Bousamra M II, Schumer E, Li M, Knipp RJ,
Nantz MH, van Berkel V and Fu XA: Quantitative analysis of exhaled
carbonyl compounds distinguishes benign from malignant pulmonary
disease. J Thorac Cardiovasc Surg. 148:1074–1080; discussion
1080-1. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Paramanantham A, Asfiya R, Das S, McCully
G and Srivastava A: Extracellular Vesicle (EVs) associated
non-coding RNAs in lung cancer and therapeutics. Int J Mol Sci.
23:136372022. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Hua Y, Dai C, He Q, Cai X and Li M:
Autoantibody panel on small extracellular vesicles for the early
detection of lung cancer. Clin Immunol. 245:1091752022. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Cammarata G, de Miguel-Perez D, Russo A,
Peleg A, Dolo V, Rolfo C and Taverna S: Emerging noncoding RNAs
contained in extracellular vesicles: Rising stars as biomarkers in
lung cancer liquid biopsy. Ther Adv Med Oncol.
14:175883592211312292022. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Pedraz-Valdunciel C, Giannoukakos S,
Gimenez-Capitan A, Fortunato D, Filipska M, Bertran-Alamillo J,
Bracht JWP, Drozdowskyj A, Valarezo J, Zarovni N, et al: Multiplex
Analysis of CircRNAs from plasma extracellular vesicle-enriched
samples for the detection of early-stage non-small cell lung
cancer. Pharmaceutics. 14:20342022. View Article : Google Scholar : PubMed/NCBI
|