Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
September-2021 Volume 46 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2021 Volume 46 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of reactive oxygen species in tumors based on the ‘seed and soil’ theory: A complex interaction (Review)

  • Authors:
    • Wei Liang
    • Xinying He
    • Jianqiang Bi
    • Tingting Hu
    • Yunchuan Sun
  • View Affiliations / Copyright

    Affiliations: Department of Radiation Oncology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Affiliated Hospital of Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
    Copyright: © Liang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 208
    |
    Published online on: July 29, 2021
       https://doi.org/10.3892/or.2021.8159
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Tumor microenvironment (TME) can serve as the ‘soil’ for the growth and survival of tumor cells and function synergically with tumor cells to mediate tumor progression and therapeutic resistance. Reactive oxygen species (ROS) is somewhat of a double‑edged sword for tumors. Accumulating evidence has reported that regulating ROS levels can serve an anti‑tumor role in the TME, including the promotion of cancer cell apoptosis, inhibition of angiogenesis, preventing immune escape, manipulating tumor metabolic reorganization and improving drug resistance. In the present review, the potential role of ROS in anti‑tumor therapy was summarized, including the possibility of directly or indirectly targeting the TME.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Nosaka Y and Nosaka AY: Generation and detection of reactive oxygen species in photocatalysis. Chem Rev. 117:11302–11336. 2017. View Article : Google Scholar : PubMed/NCBI

2 

Kumari S, Badana AK, G MM GS and Malla RR: Reactive oxygen species: A key constituent in cancer survival. Biomark Insights. 13:11772719187553912018. View Article : Google Scholar : PubMed/NCBI

3 

Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M and Telser J: Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 39:44–84. 2007. View Article : Google Scholar : PubMed/NCBI

4 

Yang B, Chen Y and Shi J: Reactive oxygen species (ROS)-based nanomedicine. Chem Rev. 119:4881–4985. 2019. View Article : Google Scholar : PubMed/NCBI

5 

Cruces-Sande A, Rodríguez-Pérez AI, Herbello-Hermelo P, Bermejo-Barrera P, Méndez-Álvarez E, Labandeira-García JL and Soto-Otero R: Copper increases brain oxidative stress and enhances the ability of 6-hydroxydopamine to cause dopaminergic degeneration in a rat model of parkinsons disease. Mol Neurobiol. 56:2845–2854. 2019. View Article : Google Scholar : PubMed/NCBI

6 

Gorrini C, Harris IS and Mak TW: Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov. 12:931–947. 2013. View Article : Google Scholar : PubMed/NCBI

7 

Chatterjee R and Chatterjee J: ROS and oncogenesis with special reference to EMT and stemness. Eur J Cell Biol. 99:1510732020. View Article : Google Scholar : PubMed/NCBI

8 

Okon IS and Zou MH: Mitochondrial ROS and cancer drug resistance: Implications for therapy. Pharmacol Res. 100:170–174. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Birben E, Sahiner UM, Sackesen C, Erzurum S and Kalayci O: Oxidative stress and antioxidant defense. World Allergy Organ J. 5:9–19. 2012. View Article : Google Scholar : PubMed/NCBI

10 

Parekh A, Das S, Parida S, Das CK, Dutta D, Mallick SK, Wu PH, Kumar BNP, Bharti R, Dey G, et al: Multi-nucleated cells use ROS to induce breast cancer chemo-resistance in vitro and in vivo. Oncogene. 37:4546–4561. 2018. View Article : Google Scholar : PubMed/NCBI

11 

Li Z, Guo D, Yin X, Ding S, Shen M, Zhang R, Wang Y and Xu R: Zinc oxide nanoparticles induce human multiple myeloma cell death via reactive oxygen species and Cyt-C/Apaf-1/Caspase-9/Caspase-3 signaling pathway in vitro. Biomed Pharmacother. 122:1097122020. View Article : Google Scholar : PubMed/NCBI

12 

Xia B and Wang J: Effects of adenosine on apoptosis of ovarian cancer a2780 cells via ROS and caspase pathways. Onco Targets Ther. 12:9473–9480. 2019. View Article : Google Scholar : PubMed/NCBI

13 

Hanahan D and Coussens LM: Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell. 21:309–322. 2012. View Article : Google Scholar : PubMed/NCBI

14 

Guo X, Cheng Y, Zhao X, Luo Y, Chen J and Yuan WE: Advances in redox-responsive drug delivery systems of tumor microenvironment. J Nanobiotechnology. 16:742018. View Article : Google Scholar : PubMed/NCBI

15 

Zheng J and Gao P: Toward normalization of the tumor microenvironment for cancer therapy. Integr Cancer Ther. 18:15347354198623522019. View Article : Google Scholar : PubMed/NCBI

16 

Paget S: The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 8:98–101. 1989.PubMed/NCBI

17 

Langley RR and Fidler IJ: The seed and soil hypothesis revisited-the role of tumor-stroma interactions in metastasis to different organs. Int J Cancer. 128:2527–2535. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Akhtar M, Haider A, Rashid S and Al-Nabet ADMH: Pagets ‘seed and soil’ theory of cancer metastasis: An idea whose time has come. Adv Anat Patho. 26:69–74. 2019. View Article : Google Scholar : PubMed/NCBI

19 

Zhao Y, Li J, Li D, Wang Z, Zhao J, Wu X, Sun Q, Lin PP, Plum P, Damanakis A, et al: Tumor biology and multidisciplinary strategies of oligometastasis in gastrointestinal cancers. Semin Cancer Biol. 60:334–343. 2020. View Article : Google Scholar : PubMed/NCBI

20 

Malla R, Surepalli N, Farran B, Malhotra SV and Nagaraju GP: Reactive oxygen species (ROS): Critical roles in breast tumor microenvironment. Crit Rev Oncol Hematol. 160:1032852021. View Article : Google Scholar : PubMed/NCBI

21 

Kuo CL, Chou HY, Chiu YC, Cheng AN, Fan CC, Chang YN, Chen CH, Jiang SS, Chen NJ and Lee AY: Mitochondrial oxidative stress by Lon-PYCR1 maintains an immunosuppressive tumor microenvironment that promotes cancer progression and metastasis. Cancer Lett. 474:138–150. 2020. View Article : Google Scholar : PubMed/NCBI

22 

An J, Hu YG, Cheng K, Li C, Hou XL, Wang GL, Zhang XS, Liu B, Zhao YD and Zhang MZ: ROS-augmented and tumor-microenvironment responsive biodegradable nanoplatform for enhancing chemo-sonodynamic therapy. Biomaterials. 234:1197612020. View Article : Google Scholar : PubMed/NCBI

23 

Arfin S, Jha NK, Jha SK, Kesari KK, Ruokolainen J, Roychoudhury S, Rathi B and Kumar D: Oxidative stress in cancer cell metabolism. Antioxidants (Basel). 10:6422021. View Article : Google Scholar : PubMed/NCBI

24 

Mirzaei S, Hushmandi K, Zabolian A, Saleki H, Torabi SMR, Ranjbar A, SeyedSaleh S, Sharifzadeh SO, Khan H, Ashrafizadeh M, et al: Elucidating role of reactive oxygen species (ROS) in cisplatin chemotherapy: A focus on molecular pathways and possible therapeutic strategies. Molecules. 26:23822021. View Article : Google Scholar : PubMed/NCBI

25 

Igney FH and Krammer PH: Death and anti-death: Tumour resistance to apoptosis. Nat Rev Cancer. 2:277–288. 2002. View Article : Google Scholar : PubMed/NCBI

26 

Saxena N, Yadav P and Kumar O: The Fas/Fas ligand apoptotic pathway is involved in abrin-induced apoptosis. Toxicol Sci. 135:103–118. 2013. View Article : Google Scholar : PubMed/NCBI

27 

Jo E, Jang HJ, Yang KE, Jang MS, Huh YH, Yoo HS, Park JS, Jang IS and Park SJ: Cordyceps militaris induces apoptosis in ovarian cancer cells through TNF-α/TNFR1-mediated inhibition of NF-κB phosphorylation. BMC Complement Med Ther. 20:12020. View Article : Google Scholar : PubMed/NCBI

28 

Zhang P, Wang H, Chen Y, Lodhi A, Sun C, Sun F, Yan L, Deng Y and Ma H: DR5 related autophagy can promote apoptosis in gliomas after irradiation. Biochem Biophys Res Commun. 522:910–916. 2020. View Article : Google Scholar : PubMed/NCBI

29 

Bergeron S, Beauchemin M and Bertrand R: Camptothecin- and etoposide-induced apoptosis in human leukemia cells is independent of cell death receptor-3 and −4 aggregation but accelerates tumor necrosis factor-related apoptosis-inducing ligand-mediated cell death. Mol Cancer Ther. 3:1659–1669. 2004.PubMed/NCBI

30 

Brenner C, Cadiou H, Vieira HL, Zamzami N, Marzo I, Xie Z, Leber B, Andrews D, Duclohier H, Reed JC and Kroemer G: Bcl-2 and Bax regulate the channel activity of the mitochondrial adenine nucleotide translocator. Oncogene. 19:329–336. 2000. View Article : Google Scholar : PubMed/NCBI

31 

Sun KX and Xia HW: Pachymic acid inhibits growth and induces cell cycle arrest and apoptosis in gastric cancer SGC-7901 cells. Oncol Lett. 16:2517–2524. 2018.PubMed/NCBI

32 

Haque M and Islam M: Pleurotus mushroom induces apoptosis by altering the balance of proapoptotic and antiapoptotic genes in breast cancer cells and inhibits tumor sphere formation. Medicina (Kaunas). 55:7162019. View Article : Google Scholar : PubMed/NCBI

33 

Kim JS, Cho IA, Kang KR, Lim H, Kim TH, Yu SK, Kim HJ, Lee SA, Moon SM, Chun HS, et al: Reversine induces caspase-dependent apoptosis of human osteosarcoma cells through extrinsic and intrinsic apoptotic signaling pathways. Genes Genomics. 41:657–665. 2019. View Article : Google Scholar : PubMed/NCBI

34 

Kuranaga E: Beyond apoptosis: Caspase regulatory mechanisms and functions in vivo. Genes Cells. 17:83–97. 2012. View Article : Google Scholar : PubMed/NCBI

35 

Moloney JN and Cotter TG: ROS signalling in the biology of cancer. Semin Cell Dev Biol. 80:50–64. 2018. View Article : Google Scholar : PubMed/NCBI

36 

Lin S, Li Y, Zamyatnin AA Jr, Werner J and Bazhin AV: Reactive oxygen species and colorectal cancer. J Cell Physiol. 233:5119–5132. 2018. View Article : Google Scholar : PubMed/NCBI

37 

Lin B, Chen H, Liang D, Lin W, Qi X, Liu H and Deng X: Acidic pH and high-H2O2 dual tumor microenvironment-responsive nanocatalytic graphene oxide for cancer selective therapy and recognition. ACS Appl Mater Interfaces. 11:11157–11166. 2019. View Article : Google Scholar : PubMed/NCBI

38 

Choi EJ and Jeon SM: NRF2-driven redox metabolism takes center stage in cancer metabolism from an outside-in perspective. Arch Pharm Res. 43:321–336. 2020. View Article : Google Scholar : PubMed/NCBI

39 

Um HD: Bcl-2 family proteins as regulators of cancer cell invasion and metastasis: A review focusing on mitochondrial respiration and reactive oxygen species. Oncotarget. 7:5193–5203. 2016. View Article : Google Scholar : PubMed/NCBI

40 

You L, Dong X, Ni B, Fu J, Yang C, Yin X, Leng X and Ni J: Triptolide induces apoptosis through fas death and mitochondrial pathways in HepaRG cell line. Front Pharmacol. 9:8132018. View Article : Google Scholar : PubMed/NCBI

41 

Zhu Q, Guo Y, Chen S, Fu D, Li Y, Li Z and Ni C: Irinotecan induces autophagy-dependent apoptosis and positively regulates ROS-related JNK- and p38-MAPK pathways in gastric cancer cells. Onco Targets Ther. 13:2807–2817. 2020. View Article : Google Scholar : PubMed/NCBI

42 

Zang YQ, Feng YY, Luo YH, Zhai YQ, Ju XY, Feng YC, Sheng YN, Wang JR, Yu CQ and Jin CH: Quinalizarin induces ROS-mediated apoptosis via the MAPK, STAT3 and NF-κB signaling pathways in human breast cancer cells. Mol Med Rep. 20:4576–4586. 2019.PubMed/NCBI

43 

Hwang KE, Park C, Kwon SJ, Kim YS, Park DS, Lee MK, Kim BR, Park SH, Yoon KH, Jeong ET, et al: Synergistic induction of apoptosis by sulindac and simvastatin in A549 human lung cancer cells via reactive oxygen species-dependent mitochondrial dysfunction. Int J Oncol. 43:262–270. 2013. View Article : Google Scholar : PubMed/NCBI

44 

Zhang T, He WH, Feng LL and Huang HG: Effect of doxorubicin-induced ovarian toxicity on mouse ovarian granulosa cells. Regul Toxicol Pharmacol. 86:1–10. 2017. View Article : Google Scholar : PubMed/NCBI

45 

Liu H, Jiang W, Wang Q, Hang L and Wang Y and Wang Y: ROS-sensitive biomimetic nanocarriers modulate tumor hypoxia for synergistic photodynamic chemotherapy. Biomater Sci. 7:3706–3716. 2019. View Article : Google Scholar : PubMed/NCBI

46 

Lopes TZ, de Moraes FR, Tedesco AC, Arni RK, Rahal P and Calmon MF: Berberine associated photodynamic therapy promotes autophagy and apoptosis via ROS generation in renal carcinoma cells. Biomed Pharmacother. 123:1097942020. View Article : Google Scholar : PubMed/NCBI

47 

Mowers EE, Sharifi MN and Macleod KF: Functions of autophagy in the tumor microenvironment and cancer metastasis. FEBS J. 285:1751–1766. 2018. View Article : Google Scholar : PubMed/NCBI

48 

Gao L, Loveless J, Shay C and Teng Y: Targeting ROS-mediated crosstalk between autophagy and apoptosis in cancer. Adv Exp Med Biol. 1260:1–12. 2020. View Article : Google Scholar : PubMed/NCBI

49 

Li L, Tan J, Miao Y, Lei P and Zhang Q: ROS and autophagy: Interactions and molecular regulatory mechanisms. Cell Mol Neurobiol. 35:615–621. 2015. View Article : Google Scholar : PubMed/NCBI

50 

Wu Z, Wang H, Fang S and Xu C: Roles of endoplasmic reticulum stress and autophagy on H2O2-induced oxidative stress injury in HepG2 cells. Mol Med Rep. 18:4163–4174. 2018.PubMed/NCBI

51 

Lien JC, Lin MW, Chang SJ, Lai KC, Huang AC, Yu FS and Chung JG: Tetrandrine induces programmed cell death in human oral cancer CAL 27 cells through the reactive oxygen species production and caspase-dependent pathways and associated with beclin-1-induced cell autophagy. Environ Toxicol. 32:329–343. 2017. View Article : Google Scholar : PubMed/NCBI

52 

Kim KY, Park KI, Kim SH, Yu SN, Park SG, Kim YW, Seo YK, Ma JY and Ahn SC: Inhibition of autophagy promotes salinomycin-induced apoptosis via reactive oxygen species-mediated PI3K/AKT/mTOR and ERK/p38 MAPK-dependent signaling in human prostate cancer cells. Int J Mol Sci. 18:10882017. View Article : Google Scholar : PubMed/NCBI

53 

Wei B, Huang Q, Huang S, Mai W and Zhong X: Trichosanthin-induced autophagy in gastric cancer cell MKN-45 is dependent on reactive oxygen species (ROS) and NF-κB/p53 pathway. J Pharmacol Sci. 131:77–83. 2016. View Article : Google Scholar : PubMed/NCBI

54 

Li L, Chen Y and Gibson SB: Starvation-induced autophagy is regulated by mitochondrial reactive oxygen species leading to AMPK activation. Cell Signa. 25:50–65. 2013. View Article : Google Scholar : PubMed/NCBI

55 

Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC, Dong MQ and Han J: RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science. 325:332–336. 2009. View Article : Google Scholar : PubMed/NCBI

56 

Schenk B and Fulda S: Reactive oxygen species regulate Smac mimetic/TNFα-induced necroptotic signaling and cell death. Oncogene. 34:5796–5806. 2015. View Article : Google Scholar : PubMed/NCBI

57 

Li Y, Gong P, Kong C and Tian X: Bufalin engages in RIP1-dependent and ROS-dependent programmed necroptosis in breast cancer cells by targeting the RIP1/RIP3/PGAM5 pathway. Anticancer Drugs. 30:e07702019. View Article : Google Scholar : PubMed/NCBI

58 

Zhang Y, Su SS, Zhao S, Yang Z, Zhong CQ, Chen X, Cai Q, Yang Z, Huang D, Wu R and Han J: RIP1 autophosphorylation is promoted by mitochondrial ROS and is essential for RIP3 recruitment into necrosome. Nat Commun. 8:143292017. View Article : Google Scholar : PubMed/NCBI

59 

Pawlikowska M, Piotrowski J, Jędrzejewski T, Kozak W, Slominski AT and Brożyna AA: Coriolus versicolor-derived protein-bound polysaccharides trigger the caspase-independent cell death pathway in amelanotic but not melanotic melanoma cells. Phytother Res. 34:173–183. 2020. View Article : Google Scholar : PubMed/NCBI

60 

Yang Z, Wang Y, Zhang Y, He X, Zhong CQ, Ni H, Chen X, Liang Y, Wu J, Zhao S, et al: RIP3 targets pyruvate dehydrogenase complex to increase aerobic respiration in TNF-induced necroptosis. Nat Cell Biol. 20:186–197. 2018. View Article : Google Scholar : PubMed/NCBI

61 

Tu HC, Ren D, Wang GX, Chen DY, Westergard TD, Kim H, Sasagawa S, Hsieh JJ and Cheng EH: The p53-cathepsin axis cooperates with ROS to activate programmed necrotic death upon DNA damage. Proc Natl Acad Sci USA. 106:1093–1098. 2009. View Article : Google Scholar : PubMed/NCBI

62 

Ying Y and Padanilam BJ: Regulation of necrotic cell death: p53, PARP1 and cyclophilin D-overlapping pathways of regulated necrosis? Cell Mol Life Sci. 73:2309–2324. 2016. View Article : Google Scholar : PubMed/NCBI

63 

Zheng Q and Hou W: Regulation of angiogenesis by microRNAs in cancer. Mol Med Rep. 24:5832021. View Article : Google Scholar : PubMed/NCBI

64 

Aggarwal V, Tuli HS, Varol A, Thakral F, Yerer MB, Sak K, Varol M, Jain A, Khan MA and Sethi G: Role of reactive oxygen species in cancer progression: Molecular mechanisms and recent advancements. Biomolecules. 9:7352019. View Article : Google Scholar : PubMed/NCBI

65 

Liu B, Cui LS, Zhou B, Zhang LL, Liu ZH and Zhang L: Monocarbonyl curcumin analog A2 potently inhibits angiogenesis by inducing ROS-dependent endothelial cell death. Acta Pharmacol Sin. 40:1412–1423. 2019. View Article : Google Scholar : PubMed/NCBI

66 

Watson EC, Grant ZL and Coultas L: Endothelial cell apoptosis in angiogenesis and vessel regression. Cell Mol Life Sci. 74:4387–4403. 2017. View Article : Google Scholar : PubMed/NCBI

67 

Sakamaki K: Regulation of endothelial cell death and its role in angiogenesis and vascular regression. Curr Neurovasc Res. 1:305–315. 2004. View Article : Google Scholar : PubMed/NCBI

68 

Miao Y, Cui L, Chen Z and Zhang L: Gene expression profiling of DMU-212-induced apoptosis and anti-angiogenesis in vascular endothelial cells. Pharm Biol. 54:660–666. 2016. View Article : Google Scholar : PubMed/NCBI

69 

Li GH, Lin XL, Zhang H, Li S, He XL, Zhang K, Peng J, Tang YL, Zeng JF, Zhao Y, et al: Ox-Lp(a) transiently induces HUVEC autophagy via an ROS-dependent PAPR-1-LKB1-AMPK-mTOR pathway. Atherosclerosis. 243:223–235. 2015.Corrigendum in: Atherosclerosis 250: 189, 2016. View Article : Google Scholar : PubMed/NCBI

70 

Topalovski M, Hagopian M, Wang M and Brekken RA: Hypoxia and transforming growth factor β cooperate to induce fibulin-5 expression in pancreatic cancer. J Biol Chem. 291:22244–22252. 2016. View Article : Google Scholar : PubMed/NCBI

71 

Zeferino RC, Mota NSRS, Grinevicius VMAS, Filipe KB, Sulis PM, Silva FRMB, Filho DW, Pich CT and Pedrosa RC: Targeting ROS overgeneration by N-benzyl-2-nitro-1-imidazole-acetamide as a potential therapeutic reposition approach for cancer therapy. Invest New Drugs. 38:785–799. 2020. View Article : Google Scholar : PubMed/NCBI

72 

Duraipandy N, Dharunya G, Lakra R, Korapatti PS and Syamala Kiran M: Fabrication of plumbagin on silver nanoframework for tunable redox modulation: Implications for therapeutic angiogenesis. J Cell Physiol. 234:13110–13127. 2019. View Article : Google Scholar : PubMed/NCBI

73 

Cao J, Liu X, Yang Y, Wei B, Li Q, Mao G, He Y, Li Y, Zheng L, Zhang Q, et al: Decylubiquinone suppresses breast cancer growth and metastasis by inhibiting angiogenesis via the ROS/p53/ BAI1 signaling pathway. Angiogenesis. 23:325–338. 2020. View Article : Google Scholar : PubMed/NCBI

74 

Nurmik M, Ullmann P, Rodriguez F, Haan S and Letellier E: In search of definitions: Cancer-associated fibroblasts and their markers. Int J Cancer. 146:895–905. 2020. View Article : Google Scholar : PubMed/NCBI

75 

Liao Z, Tan ZW, Zhu P and Tan NS: Cancer-associated fibroblasts in tumor microenvironment-Accomplices in tumor malignancy. Cell Immunol. 343:1037292019. View Article : Google Scholar : PubMed/NCBI

76 

Pereira BA, Vennin C, Papanicolaou M, Chambers CR, Herrmann D, Morton JP, Cox TR and Timpson P: CAF Subpopulations: A new reservoir of stromal targets in pancreatic cancer. Trends Cancer. 5:724–741. 2019. View Article : Google Scholar : PubMed/NCBI

77 

Kim BG, Sung JS, Jang Y, Cha YJ, Kang S, Han HH, Lee JH and Cho NH: Compression-induced expression of glycolysis genes in CAFs correlates with EMT and angiogenesis gene expression in breast cancer. Commun Biol. 2:3132019. View Article : Google Scholar : PubMed/NCBI

78 

Eiro N, González L, Martínez-Ordoñez A, Fernandez-Garcia B, González LO, Cid S, Dominguez F, Perez-Fernandez R and Vizoso FJ: Cancer-associated fibroblasts affect breast cancer cell gene expression, invasion and angiogenesis. Cell Oncol (Dordr). 41:369–378. 2018. View Article : Google Scholar : PubMed/NCBI

79 

Takahashi H, Sakakura K, Kudo T, Toyoda M, Kaira K, Oyama T and Chikamatsu K: Cancer-associated fibroblasts promote an immunosuppressive microenvironment through the induction and accumulation of protumoral macrophages. Oncotarget. 8:8633–8647. 2017. View Article : Google Scholar : PubMed/NCBI

80 

Yan Y, Chen X, Wang X, Zhao Z, Hu W, Zeng S, Wei J, Yang X, Qian L, Zhou S, et al: The effects and the mechanisms of autophagy on the cancer-associated fibroblasts in cancer. J Exp Clin Cancer Res. 38:1712019. View Article : Google Scholar : PubMed/NCBI

81 

Zhang X, Schönrogge M, Eichberg J, Wendt EHU, Kumstel S, Stenzel J, Lindner T, Jaster R, Krause B, Vollmar B and Zechner D: Blocking autophagy in cancer-associated fibroblasts supports chemotherapy of pancreatic cancer cells. Front Oncol. 8:5902018. View Article : Google Scholar : PubMed/NCBI

82 

Attieh Y and Vignjevic D: The hallmarks of CAFs in cancer invasion. Eur J Cell Biol. 95:493–502. 2016. View Article : Google Scholar : PubMed/NCBI

83 

Yao Q, Qu X, Yang Q, Wei M and Kong B: CLIC4 mediates TGF-beta1-induced fibroblast-to-myofibroblast transdifferentiation in ovarian cancer. Oncol Rep. 22:541–548. 2009.PubMed/NCBI

84 

Sampson N, Brunner E, Weber A, Puhr M, Schäfer G, Szyndralewiez C and Klocker H: Inhibition of Nox4-dependent ROS signaling attenuates prostate fibroblast activation and abrogates stromal-mediated protumorigenic interactions. Int J Cancer. 143:383–395. 2018. View Article : Google Scholar : PubMed/NCBI

85 

Toullec A, Gerald D, Despouy G, Bourachot B, Cardon M, Lefort S, Richardson M, Rigaill G, Parrini MC, Lucchesi C, et al: Oxidative stress promotes myofibroblast differentiation and tumour spreading. EMBO Mol Med. 2:211–230. 2010. View Article : Google Scholar : PubMed/NCBI

86 

Martinez-Outschoorn UE, Lisanti MP and Sotgia F: Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth. Semin Cancer Biol. 25:47–60. 2014. View Article : Google Scholar : PubMed/NCBI

87 

Lisanti MP, Martinez-Outschoorn UE, Chiavarina B, Pavlides S, Whitaker-Menezes D, Tsirigos A, Witkiewicz A, Lin Z, Balliet R, Howell A and Sotgia F: Understanding the ‘lethal’ drivers of tumor-stroma co-evolution: Emerging role(s) for hypoxia, oxidative stress and autophagy/mitophagy in the tumor micro-environment. Cancer Biol Ther. 10:537–542. 2010. View Article : Google Scholar : PubMed/NCBI

88 

Martinez-Outschoorn UE, Trimmer C, Lin Z, Whitaker-Menezes D, Chiavarina B, Zhou J, Wang C, Pavlides S, Martinez-Cantarin MP, Capozza F, et al: Autophagy in cancer associated fibroblasts promotes tumor cell survival: Role of hypoxia, HIF1 induction and NFκB activation in the tumor stromal microenvironment. Cell Cycle. 9:3515–3533. 2010. View Article : Google Scholar : PubMed/NCBI

89 

Bernard M, Yang B, Migneault F, Turgeon J, Dieudé M, Olivier MA, Cardin GB, El-Diwany M, Underwood K, Rodier F and Hébert MJ: Autophagy drives fibroblast senescence through MTORC2 regulation. Autophagy. 16:2004–2016. 2020. View Article : Google Scholar : PubMed/NCBI

90 

Urbano AM: Otto Warburg: The journey towards the seminal discovery of tumor cell bioenergetic reprogramming. Biochim Biophys Acta Mol Basis Dis. 1867:1659652021. View Article : Google Scholar : PubMed/NCBI

91 

Zhang D, Wang Y, Shi Z, Liu J, Sun P, Hou X, Zhang J, Zhao S, Zhou BP and Mi J: Metabolic reprogramming of cancer-associated fibroblasts by IDH3α downregulation. Cell Rep. 10:1335–1348. 2015. View Article : Google Scholar : PubMed/NCBI

92 

Martinez-Outschoorn UE, Goldberg A, Lin Z, Ko YH, Flomenberg N, Wang C, Pavlides S, Pestell RG, Howell A, Sotgia F and Lisanti MP: Anti-estrogen resistance in breast cancer is induced by the tumor microenvironment and can be overcome by inhibiting mitochondrial function in epithelial cancer cells. Cancer Biol Ther. 12:924–938. 2011. View Article : Google Scholar : PubMed/NCBI

93 

Feng X, Xu W, Li Z, Song W, Ding J and Chen X: Immunomodulatory nanosystems. Adv Sci (Weinh). 6:19001012019. View Article : Google Scholar : PubMed/NCBI

94 

Hamieh M, Dobrin A, Cabriolu A, van der Stegen SJC, Giavridis T, Mansilla-Soto J, Eyquem J, Zhao Z, Whitlock BM, Miele MM, et al: CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape. Nature. 568:112–116. 2019. View Article : Google Scholar : PubMed/NCBI

95 

Strickler JH, Hanks BA and Khasraw M: Tumor mutational burden as a predictor of immunotherapy response: Is more always better? Clin Cancer Res. 27:1236–1241. 2021. View Article : Google Scholar : PubMed/NCBI

96 

Carreau N and Pavlick A: Revolutionizing treatment of advanced melanoma with immunotherapy. Surg Oncol. Jan 12–2019.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

97 

Boyero L, Sánchez-Gastaldo A, Alonso M, Noguera-Uclés JF, Molina-Pinelo S and Bernabé-Caro R: Primary and acquired resistance to immunotherapy in lung cancer: Unveiling the mechanisms underlying of immune checkpoint blockade therapy. Cancers (Basel). 12:37292020. View Article : Google Scholar : PubMed/NCBI

98 

Anichini A, Perotti VE, Sgambelluri F and Mortarini R: Immune escape mechanisms in non small cell lung cancer. Cancers (Basel). 12:36052020. View Article : Google Scholar : PubMed/NCBI

99 

Marshall LA, Marubayashi S, Jorapur A, Jacobson S, Zibinsky M, Robles O, Hu DX, Jackson JJ, Pookot D, Sanchez J, et al: Tumors establish resistance to immunotherapy by regulating Treg recruitment via CCR4. J Immunother Cancer. 8:e0007642020. View Article : Google Scholar : PubMed/NCBI

100 

Mima K, Kosumi K, Baba Y, Hamada T, Baba H and Ogino S: The microbiome, genetics, and gastrointestinal neoplasms: The evolving field of molecular pathological epidemiology to analyze the tumor-immune-microbiome interaction. Hum Genet. 140:725–746. 2021. View Article : Google Scholar : PubMed/NCBI

101 

Ali AMR, Tsai JW, Leung CH, Lin H, Ravi V, Conley AP, Lazar AJ, Wang WL and Nathenson MJ: The immune microenvironment of uterine adenosarcomas. Clin Sarcoma Res. 10:52020. View Article : Google Scholar : PubMed/NCBI

102 

Kosmaczewska A, Ciszak L, Potoczek S and Frydecka I: The significance of Treg cells in defective tumor immunity. Arch Immunol Ther Exp (Warsz). 56:181–191. 2008. View Article : Google Scholar : PubMed/NCBI

103 

Lindau D, Gielen P, Kroesen M, Wesseling P and Adema GJ: The immunosuppressive tumour network: Myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology. 138:105–115. 2013. View Article : Google Scholar : PubMed/NCBI

104 

Augustin RC, Delgoffe GM and Najjar YG: Characteristics of the tumor microenvironment that influence immune cell functions: Hypoxia, oxidative stress, metabolic alterations. Cancers (Basel). 12:38022020. View Article : Google Scholar : PubMed/NCBI

105 

Lötscher J and Balmer ML: Sensing between reactions-how the metabolic microenvironment shapes immunity. Clin Exp Immunol. 197:161–169. 2019. View Article : Google Scholar : PubMed/NCBI

106 

Kotsafti A and Scarpa M, Castagliuolo I and Scarpa M: Reactive oxygen species and antitumor immunity-from surveillance to evasion. Cancers (Basel). 12:17482020. View Article : Google Scholar : PubMed/NCBI

107 

Yin Y, Jiang X, Sun L, Li H, Su C, Zhang Y, Xu G, Li X, Zhao C, Chen Y, Xu H and Zhang K: Continuous inertial cavitation evokes massive ROS for reinforcing sonodynamic therapy and immunogenic cell death against breast carcinoma. Nano Today. 36:1010092021. View Article : Google Scholar : PubMed/NCBI

108 

Yang J, Ma S, Xu R, Wei Y, Zhang J, Zuo T, Wang Z, Deng H, Yang N and Shen Q: Smart biomimetic metal organic frameworks based on ROS-ferroptosis-glycolysis regulation for enhanced tumor chemo-immunotherapy. J Control Release. 334:21–33. 2021. View Article : Google Scholar : PubMed/NCBI

109 

Nakamura Y, Zhenjie Z, Oya K, Tanaka R, Ishitsuka Y, Okiyama N, Watanabe R and Fujisawa Y: Poor lymphocyte infiltration to primary tumors in acral lentiginous melanoma and mucosal melanoma compared to cutaneous melanoma. Front Oncol. 10:5247002020. View Article : Google Scholar : PubMed/NCBI

110 

Murphy MP and Siegel RM: Mitochondrial ROS fire up T cell activation. Immunity. 38:201–202. 2013. View Article : Google Scholar : PubMed/NCBI

111 

Kaminski MM, Sauer SW, Klemke CD, Süss D, Okun JG, Krammer PH and Gülow K: Mitochondrial reactive oxygen species control T cell activation by regulating IL-2 and IL-4 expression: Mechanism of ciprofloxacin-mediated immunosuppression. J Immunol. 184:4827–4841. 2010. View Article : Google Scholar : PubMed/NCBI

112 

Li Y, Liang R, Zhang X, Wang J, Shan C, Liu S, Li L and Zhang S: Copper chaperone for superoxide dismutase promotes breast cancer cell proliferation and migration ROS-Mediated MAPK/ERK signaling. Front Pharmacol. 10:3562019. View Article : Google Scholar : PubMed/NCBI

113 

Ball JA, Vlisidou I, Blunt MD, Wood W and Ward SG: Hydrogen peroxide triggers a dual signaling axis to selectively suppress activated human T lymphocyte migration. J Immunol. 198:3679–3689. 2017. View Article : Google Scholar : PubMed/NCBI

114 

Wang L, Kuang Z, Zhang D, Gao Y, Ying M and Wang T: Reactive oxygen species in immune cells: A new antitumor target. Biomed Pharmacother. 133:1109782021. View Article : Google Scholar : PubMed/NCBI

115 

Belikov AV, Schraven B and Simeoni L: T cells and reactive oxygen species. J Biomed Sci. 22:852015. View Article : Google Scholar : PubMed/NCBI

116 

Scharping NE, Rivadeneira DB, Menk AV, Vignali PDA, Ford BR, Rittenhouse NL, Peralta R, Wang Y, Wang Y, DePeaux K, et al: Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion. Nat Immunol. 22:205–215. 2021. View Article : Google Scholar : PubMed/NCBI

117 

Franco F, Jaccard A, Romero P, Yu YR and Ho PC: Metabolic and epigenetic regulation of T-cell exhaustion. Nat Metab. 2:1001–1012. 2020. View Article : Google Scholar : PubMed/NCBI

118 

Salas-Benito D, Conde E, Tamayo-Uria I, Mancheño U, Elizalde E, Garcia-Ros D, Aramendia JM, Muruzabal JC, Alcaide J, Guillen-Grima F, et al: The mutational load and a T-cell inflamed tumour phenotype identify ovarian cancer patients rendering tumour-reactive T cells from PD-1+tumour-infiltrating lymphocytes. Br J Cancer. 124:1138–1149. 2021. View Article : Google Scholar : PubMed/NCBI

119 

Kumar A, Chamoto K, Chowdhury PS and Honjo T: Tumors attenuating the mitochondrial activity in T cells escape from PD-1 blockade therapy. Elife. 9:e523302020. View Article : Google Scholar : PubMed/NCBI

120 

Chamoto K, Chowdhury PS, Kumar A, Sonomura K, Matsuda F, Fagarasan S and Honjo T: Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity. Proc Natl Acad Sci USA. 114:E761–E770. 2017. View Article : Google Scholar : PubMed/NCBI

121 

Xia Y, Jia C, Xue Q, Jiang J, Xie Y, Wang R, Ran Z, Xu F, Zhang Y and Ye T: Antipsychotic drug trifluoperazine suppresses colorectal cancer by inducing G0/G1 arrest and apoptosis. Front Pharmacol. 10:10292019. View Article : Google Scholar : PubMed/NCBI

122 

Bailly C: Regulation of PD-L1 expression on cancer cells with ROS-modulating drugs. Life Sci. 246:1174032020. View Article : Google Scholar : PubMed/NCBI

123 

Liu K, Du S, Gao P and Zheng J: Verteporfin suppresses the proliferation, epithelial-mesenchymal transition and stemness of head and neck squamous carcinoma cells via inhibiting YAP1. J Cancer. 10:4196–4207. 2019. View Article : Google Scholar : PubMed/NCBI

124 

Marangoni F, Zhakyp A, Corsini M, Geels SN, Carrizosa E, Thelen M, Mani V, Prüßmann JN, Warner RD, Ozga AJ, et al: Expansion of tumor-associated Treg cells upon disruption of a CTLA-4-dependent feedback loop. Cell. Jun 21–2021.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

125 

Ni D, Tang T, Lu Y, Xu K, Shao Y, Saaoud F, Saredy J, Liu L, Drummer C 4th, Sun Y, et al: Canonical secretomes, innate immune caspase-1-, 4/11-gasdermin D non-canonical secretomes and exosomes may contribute to maintain treg-ness for treg immunosuppression, tissue repair and modulate anti-tumor immunity via ROS pathways. Front Immunol. 12:6782012021. View Article : Google Scholar : PubMed/NCBI

126 

Hang S, Paik D, Yao L, Kim E, Trinath J, Lu J, Ha S, Nelson BN, Kelly SP, Wu L, et al: Bile acid metabolites control T(H)17 and T(reg) cell differentiation. Nature. 576:143–148. 2019. View Article : Google Scholar : PubMed/NCBI

127 

Kunisada Y, Eikawa S, Tomonobu N, Domae S, Uehara T, Hori S, Furusawa Y, Hase K, Sasaki A and Udono H: Attenuation of CD4 + CD25 + regulatory T cells in the tumor microenvironment by metformin, a type 2 diabetes drug. EBioMedicine. 25:154–164. 2017. View Article : Google Scholar : PubMed/NCBI

128 

Yu X, Lao Y, Teng XL, Li S, Zhou Y, Wang F, Guo X, Deng S, Chang Y, Wu X, et al: SENP3 maintains the stability and function of regulatory T cells via BACH2 deSUMOylation. Nat Commun. 9:31572018. View Article : Google Scholar : PubMed/NCBI

129 

Maj T, Wang W, Crespo J, Zhang H, Wang W, Wei S, Zhao L, Vatan L, Shao I, Szeliga W, et al: Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat Immunol. 18:1332–1341. 2017. View Article : Google Scholar : PubMed/NCBI

130 

Betten A, Dahlgren C, Mellqvist UH, Hermodsson S and Hellstrand K: Oxygen radical-induced natural killer cell dysfunction: Role of myeloperoxidase and regulation by serotonin. J Leukoc Biol. 75:1111–1115. 2004. View Article : Google Scholar : PubMed/NCBI

131 

Zheng X, Qian Y, Fu B, Jiao D, Jiang Y, Chen P, Shen Y, Zhang H, Sun R, Tian Z and Wei H: Mitochondrial fragmentation limits NK cell-based tumor immunosurveillance. Nat Immunol. 20:1656–1667. 2019. View Article : Google Scholar : PubMed/NCBI

132 

Mimura K, Kua LF, Shimasaki N, Shiraishi K, Nakajima S, Siang LK, Shabbir A, So J, Yong WP and Kono K: Upregulation of thioredoxin-1 in activated human NK cells confers increased tolerance to oxidative stress. Cancer Immunol Immunother. 66:605–613. 2017. View Article : Google Scholar : PubMed/NCBI

133 

Aydin E, Johansson J, Nazir FH, Hellstrand K and Martner A: Role of NOX2-derived reactive oxygen species in NK cell-mediated control of murine melanoma metastasis. Cancer Immunol Res. 5:804–811. 2017. View Article : Google Scholar : PubMed/NCBI

134 

Aurelius J, Martner A, Riise RE, Romero AI, Palmqvist L, Brune M, Hellstrand K and Thorén FB: Chronic myeloid leukemic cells trigger poly(ADP-ribose) polymerase-dependent inactivation and cell death in lymphocytes. J Leukoc Biol. 93:155–160. 2013. View Article : Google Scholar : PubMed/NCBI

135 

Gu FF, Zhang K, Ma LL, Liu YY, Li C, Hu Y, Yang QF, Liang JY, Zeng YL, Wang Y and Liu L: The superior ability of human BDCA3 + (CD141 +) dendritic cells (DCs) to cross-present antigens derived from necrotic lung cancer cells. Front Immunol. 11:12672020. View Article : Google Scholar : PubMed/NCBI

136 

Paardekooper LM, Vos W and van den Bogaart G: Oxygen in the tumor microenvironment: Effects on dendritic cell function. Oncotarget. 10:883–896. 2019. View Article : Google Scholar : PubMed/NCBI

137 

Giovanelli P, Sandoval TA and Cubillos-Ruiz JR: Dendritic cell metabolism and function in tumors. Trends Immunol. 40:699–718. 2019. View Article : Google Scholar : PubMed/NCBI

138 

Chougnet CA, Thacker RI, Shehata HM, Hennies CM, Lehn MA, Lages CS and Janssen EM: Loss of phagocytic and antigen cross-presenting capacity in aging dendritic cells is associated with mitochondrial dysfunction. J Immunol. 195:2624–2632. 2015. View Article : Google Scholar : PubMed/NCBI

139 

Mao D, Hu F, Yi Z, Kenry, Xu S, Yan S, Luo Z, Wu W, Wang Z, Kong D, et al: AIEgen-coupled upconversion nanoparticles eradicate solid tumors through dual-mode ROS activation. Sci Adv. 6:eabb27122020. View Article : Google Scholar : PubMed/NCBI

140 

Wang C, Li P, Liu L, Pan H, Li H, Cai L and Ma Y: Self-adjuvanted nanovaccine for cancer immunotherapy: Role of lysosomal rupture-induced ROS in MHC class I antigen presentation. Biomaterials. 79:88–100. 2016. View Article : Google Scholar : PubMed/NCBI

141 

Oberkampf M, Guillerey C, Mouriès J, Rosenbaum P, Fayolle C, Bobard A, Savina A, Ogier-Denis E, Enninga J, Amigorena S, et al: Mitochondrial reactive oxygen species regulate the induction of CD8 T cells by plasmacytoid dendritic cells. Nature Commun. 9:22412018. View Article : Google Scholar : PubMed/NCBI

142 

DeNardo D and Ruffell B: Macrophages as regulators of tumour immunity and immunotherapy. Nat Rev Immunol. 19:369–382. 2019. View Article : Google Scholar : PubMed/NCBI

143 

Allavena P, Anfray C, Ummarino A and Andón FT: Therapeutic manipulation of tumor-associated macrophages: Facts and hopes from a clinical and translational perspective. Clin Cancer Res. 27:3291–3297. 2021. View Article : Google Scholar : PubMed/NCBI

144 

Zhang J, Li H, Wu Q, Chen Y, Deng Y, Yang Z, Zhang L and Liu B: Tumoral NOX4 recruits M2 tumor-associated macrophages via ROS/PI3K signaling-dependent various cytokine production to promote NSCLC growth. Redox Biol. 22:1011162019. View Article : Google Scholar : PubMed/NCBI

145 

Li L, Sun F, Han L, Liu X, Xiao Y, Gregory AD, Shapiro SD, Xiao G and Qu Z: PDLIM2 repression by ROS in alveolar macrophages promotes lung tumorigenesis. JCI Insight. 6:e1443942021. View Article : Google Scholar : PubMed/NCBI

146 

Lin X, Zheng W, Liu J, Zhang Y, Qin H, Wu H, Xue B, Lu Y and Shen P: Oxidative stress in malignant melanoma enhances tumor necrosis factor-α secretion of tumor-associated macrophages that promote cancer cell invasion. Antioxid Redox Signal. 19:1337–1355. 2013. View Article : Google Scholar : PubMed/NCBI

147 

Griess B, Mir S, Datta K and Teoh-Fitzgerald M: Scavenging reactive oxygen species selectively inhibits M2 macrophage polarization and their pro-tumorigenic function in part, via Stat3 suppression. Free Radic Biol Med. 147:48–60. 2020. View Article : Google Scholar : PubMed/NCBI

148 

Ruan J, Ouyang M, Zhang W, Luo Y and Zhou D: The effect of PD-1 expression on tumor-associated macrophage in T cell lymphoma. Clin Transl Oncol. 23:1134–1141. 2021. View Article : Google Scholar : PubMed/NCBI

149 

Wei Y, Huang CX, Xiao X, Chen DP, Shan H, He H and Kuang DM: B cell heterogeneity, plasticity, and functional diversity in cancer microenvironments. Oncogene. Jun 29–2021.(Epub ahead of print). View Article : Google Scholar

150 

Helmink BA, Reddy SM, Gao J, Zhang S, Basar R, Thakur R, Yizhak K, Sade-Feldman M, Blando J, Han G, et al: B cells and tertiary lymphoid structures promote immunotherapy response. Nature. 577:549–555. 2020. View Article : Google Scholar : PubMed/NCBI

151 

Cabrita R, Lauss M, Sanna A, Donia M, Skaarup Larsen M, Mitra S, Johansson I, Phung B, Harbst K, et al: Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature. 577:561–565. 2020. View Article : Google Scholar : PubMed/NCBI

152 

Petitprez F, de Reyniès A, Keung EZ, Chen TW, Sun CM, Calderaro J, Jeng YM, Hsiao LP, Lacroix L, Bougoüin A, et al: B cells are associated with survival and immunotherapy response in sarcoma. Nature. 577:556–560. 2020. View Article : Google Scholar : PubMed/NCBI

153 

Jang JW, Thuy PX, Lee JW and Moon EY: CXCR4 promotes B cell viability by the cooperation of nuclear factor (erythroid-derived 2)-like 2 and hypoxia-inducible factor-1α under hypoxic conditions. Cell Death Dis. 12:3302021. View Article : Google Scholar : PubMed/NCBI

154 

Feng YY, Tang M, Suzuki M, Gunasekara C, Anbe Y, Hiraoka Y, Liu J, Grasberger H, Ohkita M, Matsumura Y, et al: Essential role of NADPH oxidase-dependent production of reactive oxygen species in maintenance of sustained B Cell receptor signaling and b cell proliferation. J Immunol. 202:2546–2557. 2019. View Article : Google Scholar : PubMed/NCBI

155 

Jang KJ, Mano H, Aoki K, Hayashi T, Muto A, Nambu Y, Takahashi K, Itoh K, Taketani S, Nutt SL, et al: Mitochondrial function provides instructive signals for activation-induced B-cell fates. Nat Commun. 6:67502015. View Article : Google Scholar : PubMed/NCBI

156 

Onnis A, Cianfanelli V, Cassioli C, Samardzic D, Pelicci PG, Cecconi F and Baldari CT: The pro-oxidant adaptor p66SHC promotes B cell mitophagy by disrupting mitochondrial integrity and recruiting LC3-II. Autophagy. 14:2117–2138. 2018. View Article : Google Scholar : PubMed/NCBI

157 

Onnis A, Cassioli C, Finetti F and Baldari CT: Regulation of selective B cell autophagy by the pro-oxidant adaptor p66SHC. Front Cell Dev Biol. 8:1932020. View Article : Google Scholar : PubMed/NCBI

158 

Yin K, Xia X, Rui K, Wang T and Wang S: Myeloid-derived suppressor cells: A new and pivotal player in colorectal cancer progression. Front Oncol. 10:6101042020. View Article : Google Scholar : PubMed/NCBI

159 

Ohl K and Tenbrock K: Reactive oxygen species as regulators of MDSC-mediated immune suppression. Front Immunol. 9:24992018. View Article : Google Scholar : PubMed/NCBI

160 

Kusmartsev S and Gabrilovich DI: Inhibition of myeloid cell differentiation in cancer: The role of reactive oxygen species. J Leukoc Biol. 74:186–196. 2003. View Article : Google Scholar : PubMed/NCBI

161 

Park MJ, Lee SH, Kim EK, Lee EJ, Baek JA, Park SH, Kwok SK and Cho ML: Interleukin-10 produced by myeloid-derived suppressor cells is critical for the induction of Tregs and attenuation of rheumatoid inflammation in mice. Sci Rep. 8:37532018. View Article : Google Scholar : PubMed/NCBI

162 

Fortin C, Yang Y and Huang X: Monocytic myeloid-derived suppressor cells regulate T-cell responses against vaccinia virus. Eur J Immunol. 47:1022–1031. 2017. View Article : Google Scholar : PubMed/NCBI

163 

Zhu J, Huang X and Yang Y: Myeloid-derived suppressor cells regulate natural killer cell response to adenovirus-mediated gene transfer. J Virol. 86:13689–13696. 2012. View Article : Google Scholar : PubMed/NCBI

164 

Dong G, Yang Y, Li X, Yao X, Zhu Y, Zhang H, Wang H, Ma Q, Zhang J, Shi H, et al: Granulocytic myeloid-derived suppressor cells contribute to IFN-I signaling activation of B cells and disease progression through the lncRNA NEAT1-BAFF axis in systemic lupus erythematosus. Biochim Biophys Acta Mol Basis Dis. 1866:1655542020. View Article : Google Scholar : PubMed/NCBI

165 

Jaufmann J, Lelis FJN, Teschner AC, Fromm K, Rieber N, Hartl D and Beer-Hammer S: Human monocytic myeloid-derived suppressor cells impair B-cell phenotype and function in vitro. Eur J Immunol. 50:33–47. 2020. View Article : Google Scholar : PubMed/NCBI

166 

Lelis FJN, Jaufmann J, Singh A, Fromm K, Teschner AC, Pöschel S, Schäfer I, Beer-Hammer S, Rieber N and Hartl D: Myeloid-derived suppressor cells modulate B-cell responses. Immunol Lett. 188:108–115. 2017. View Article : Google Scholar : PubMed/NCBI

167 

Satoh H, Moriguchi T, Taguchi K, Takai J, Maher JM, Suzuki T, Winnard PT Jr, Raman V, Ebina M, Nukiwa T and Yamamoto M: Nrf2-deficiency creates a responsive microenvironment for metastasis to the lung. Carcinogenesis. 31:1833–1843. 2010. View Article : Google Scholar : PubMed/NCBI

168 

Saleh R and Elkord E: Acquired resistance to cancer immunotherapy: Role of tumor-mediated immunosuppression. Semin Cancer Biol. 65:13–27. 2020. View Article : Google Scholar : PubMed/NCBI

169 

Hernández ÁP, Juanes-Velasco P, Landeira-Viñuela A, Bareke H, Montalvillo E, Góngora R and Fuentes M: Restoring the immunity in the tumor microenvironment: Insights into immunogenic cell death in onco-therapies. Cancers (Basel). 13:28212021. View Article : Google Scholar : PubMed/NCBI

170 

Galluzzi L, Buqué A, Kepp O, Zitvogel L and Kroemer G: Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol. 17:97–111. 2017. View Article : Google Scholar : PubMed/NCBI

171 

Li Z, Zhu L, Sun H, Shen Y, Hu D, Wu W, Wang Y, Qian C and Sun M: Fluorine assembly nanocluster breaks the shackles of immunosuppression to turn the cold tumor hot. Proc Natl Acad Sci USA. 117:32962–32969. 2020. View Article : Google Scholar : PubMed/NCBI

172 

Deng H, Yang W, Zhou Z, Tian R, Lin L, Ma Y, Song J and Chen X: Targeted scavenging of extracellular ROS relieves suppressive immunogenic cell death. Nat Commun. 11:49512020. View Article : Google Scholar : PubMed/NCBI

173 

Garg AD, Dudek AM, Ferreira GB, Verfaillie T, Vandenabeele P, Krysko DV, Mathieu C and Agostinis P: ROS-induced autophagy in cancer cells assists in evasion from determinants of immunogenic cell death. Autophagy. 9:1292–1307. 2013. View Article : Google Scholar : PubMed/NCBI

174 

Buono R and Longo VD: Starvation, stress resistance, and cancer. Trends Endocrinol Metab. 29:271–280. 2018. View Article : Google Scholar : PubMed/NCBI

175 

Li XX, Wang ZJ, Zheng Y, Guan YF, Yang PB, Chen X, Peng C, He JP, Ai YL, Wu SF, et al: Nuclear receptor Nur77 facilitates melanoma cell survival under metabolic stress by protecting fatty acid oxidation. Mol Cell. 69:480–492 e7. 2018. View Article : Google Scholar : PubMed/NCBI

176 

Sullivan LB and Chandel NS: Mitochondrial reactive oxygen species and cancer. Cancer Metab. 2:172014. View Article : Google Scholar : PubMed/NCBI

177 

Wu Z, Zuo M, Zeng L, Cui K, Liu B, Yan C, Chen L, Dong J, Shangguan F, Hu W, et al: OMA1 reprograms metabolism under hypoxia to promote colorectal cancer development. EMBO Rep. 22:e508272020.PubMed/NCBI

178 

Wang YP, Zhou W, Wang J, Huang X, Zuo Y, Wang TS, Gao X, Xu YY, Zou SW, Liu YB, et al: Arginine Methylation of MDH1 by CARM1 inhibits glutamine metabolism and suppresses pancreatic cancer. Mol Cell. 64:673–687. 2016. View Article : Google Scholar : PubMed/NCBI

179 

Panieri E, Telkoparan-Akillilar P, Suzen S and Saso L: The NRF2/KEAP1 axis in the regulation of tumor metabolism: Mechanisms and therapeutic perspectives. Biomolecules. 10:7912020. View Article : Google Scholar : PubMed/NCBI

180 

Shao S, Qin T, Qian W, Yue Y, Xiao Y, Li X, Zhang D, Wang Z, Ma Q and Lei J: Positive feedback in Cav-1-ROS signalling in PSCs mediates metabolic coupling between PSCs and tumour cells. J Cell Mol Med. 24:9397–9408. 2020. View Article : Google Scholar : PubMed/NCBI

181 

Ilkhani K, Bastami M, Delgir S, Safi A, Talebian S and Alivand MR: The engaged role of tumor microenvironment in cancer metabolism: Focusing on cancer-associated fibroblast and exosome mediators. Anticancer Agents Med Chem. 21:254–266. 2021. View Article : Google Scholar : PubMed/NCBI

182 

Zhai Y, Chai L and Chen J: The relationship between the expressions of tumor associated fibroblasts Cav-1 and MCT4 and the prognosis of papillary carcinoma of breast. Pak J Pharm Sci. 30 (Suppl 1):S263–S372. 2017.

183 

Ngwa VM, Edwards DN, Philip M and Chen J: Microenvironmental metabolism regulates antitumor immunity. Cancer Res. 79:4003–4008. 2019. View Article : Google Scholar : PubMed/NCBI

184 

Song M, Sandoval TA, Chae CS, Chopra S, Tan C, Rutkowski MR, Raundhal M, Chaurio RA, Payne KK, Konrad C, et al: IRE1α-XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity. Nature. 562:423–428. 2018. View Article : Google Scholar : PubMed/NCBI

185 

Gottesman MM, Lavi O, Hall MD and Gillet JP: Toward a better understanding of the complexity of cancer drug resistance. Annu Rev Pharmacol Toxicol. 56:85–102. 2016. View Article : Google Scholar : PubMed/NCBI

186 

Cui Q, Wang JQ, Assaraf YG, Ren L, Gupta P, Wei L, Ashby CR Jr, Yang DH and Chen ZS: Modulating ROS to overcome multidrug resistance in cancer. Drug Resist Updat. 41:1–25. 2018. View Article : Google Scholar : PubMed/NCBI

187 

Jadhao M, Tsai EM, Yang HC, Chen YF, Liang SS, Wang TN, Teng YN, Huang HW, Wang LF and Chiu CC: The long-term DEHP exposure confers multidrug resistance of triple-negative breast cancer cells through ABC transporters and intracellular ROS. Antioxidants (Basel). 10:9492021. View Article : Google Scholar : PubMed/NCBI

188 

Lee SY, Jeong EK, Ju MK, Jeon HM, Kim MY, Kim CH, Park HG, Han SI and Kang HS: Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Mol Cancer. 16:102017. View Article : Google Scholar : PubMed/NCBI

189 

Ge W, Zhao K, Wang X, Li H, Yu M, He M, Xue X, Zhu Y, Zhang C, Cheng Y, et al: iASPP is an antioxidative factor and drives cancer growth and drug resistance by competing with Nrf2 for Keap1 Binding. Cancer Cell. 32:561–573.e6. 2017. View Article : Google Scholar : PubMed/NCBI

190 

Wang L, Leite de Oliveira R, Huijberts S, Bosdriesz E, Pencheva N, Brunen D, Bosma A, Song JY, Zevenhoven J, Los-de Vries GT, et al: An acquired vulnerability of drug-resistant melanoma with therapeutic potential. Cell. 173:1413–1425.e14. 2018. View Article : Google Scholar : PubMed/NCBI

191 

Menéndez ST, Gallego B, Murillo D, Rodríguez A and Rodríguez R: Cancer stem cells as a source of drug resistance in bone sarcomas. J Clin Med. 10:26212021. View Article : Google Scholar : PubMed/NCBI

192 

Choi HJ, Jhe YL, Kim J, Lim JY, Lee JE, Shin MK and Cheong JH: FoxM1-dependent and fatty acid oxidation-mediated ROS modulation is a cell-intrinsic drug resistance mechanism in cancer stem-like cells. Redox Biol. 36:1015892020. View Article : Google Scholar : PubMed/NCBI

193 

Banerjee S, Mukherjee S, Bhattacharya A, Basak U, Chakraborty S, Paul S, Khan P, Jana K, Hazra TK and Das T: Pyridoxine enhances chemo-responsiveness of breast cancer stem cells via redox reconditioning. Free Radic Biol Med. 152:152–165. 2020. View Article : Google Scholar : PubMed/NCBI

194 

Li D, Fu Z, Chen R, Zhao X, Zhou Y, Zeng B, Yu M, Zhou Q, Lin Q, Gao W, et al: Inhibition of glutamine metabolism counteracts pancreatic cancer stem cell features and sensitizes cells to radiotherapy. Oncotarget. 6:31151–31163. 2015. View Article : Google Scholar : PubMed/NCBI

195 

Tsai TL, Lai YH, Hw Chen H and Su WC: Overcoming radiation resistance by iron-platinum metal alloy nanoparticles in human copper transport 1-overexpressing cancer cells via mitochondrial disturbance. Int J Nanomedicine. 16:2071–2085. 2021. View Article : Google Scholar : PubMed/NCBI

196 

Li Q, Zhang J, Li J, Ye H, Li M, Hou W, Li H and Wang Z: Glutathione-activated NO-/ROS-generation nanoparticles to modulate the tumor hypoxic microenvironment for enhancing the effect of HIFU-combined chemotherapy. ACS Appl Mater Interfaces. 13:26808–26823. 2021. View Article : Google Scholar : PubMed/NCBI

197 

Chen W, Yu D, Sun SY and Li F: Nanoparticles for co-delivery of osimertinib and selumetinib to overcome osimertinib-acquired resistance in non-small cell lung cancer. Acta Biomater. 29:258–268. 2021. View Article : Google Scholar : PubMed/NCBI

198 

Banstola A, Poudel K, Pathak S, Shrestha P, Kim JO, Jeong JH and Yook S: Hypoxia-mediated ROS amplification triggers mitochondria-mediated apoptotic cell death via PD-L1/ROS-responsive, dual-targeted, drug-laden thioketal nanoparticles. ACS Appl Mater Interfaces. 13:22955–22969. 2021. View Article : Google Scholar : PubMed/NCBI

199 

Cen J, Zhang L, Liu F, Zhang F and Ji BS: Long-term alteration of reactive oxygen species led to multidrug resistance in MCF-7 cells. Oxid Med Cell Longev. 2016:70534512016. View Article : Google Scholar : PubMed/NCBI

200 

Wang J, Liu L, Cen J and Ji B: BME, a novel compound of anthraquinone, down regulated P-glycoprotein expression in doxorubicin-resistant human myelogenous leukemia (K562/DOX) cells via generation of reactive oxygen species. Chem Biol Interact. 239:139–145. 2015. View Article : Google Scholar : PubMed/NCBI

201 

Murciano-Goroff YR, Warner AB and Wolchok JD: The future of cancer immunotherapy: Microenvironment-targeting combinations. Cell Res. 30:507–519. 2020. View Article : Google Scholar : PubMed/NCBI

202 

Reina-Campos M, Moscat J and Diaz-Meco M: Metabolism shapes the tumor microenvironment. Curr Opin Cell Biol. 48:47–53. 2017. View Article : Google Scholar : PubMed/NCBI

203 

Chen X and Cubillos-Ruiz J: Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nat Rev Cancer. 21:71–88. 2021. View Article : Google Scholar : PubMed/NCBI

204 

Andrews AM, Tennant MD and Thaxton JE: Stress relief for cancer immunotherapy: Implications for the ER stress response in tumor immunity. Cancer Immunol Immunother. 70:1165–1175. 2020. View Article : Google Scholar : PubMed/NCBI

205 

Harris IS and DeNicola GM: The Complex Interplay between Antioxidants and ROS in Cancer. Trends Cell Biol. 30:440–451. 2020. View Article : Google Scholar : PubMed/NCBI

206 

Cheung EC, Lee P, Ceteci F, Nixon C, Blyth K, Sansom OJ and Vousden KH: Opposing effects of TIGAR- and RAC1-derived ROS on Wnt-driven proliferation in the mouse intestine. Genes Dev. 30:52–63. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Liang W, He X, Bi J, Hu T and Sun Y: Role of reactive oxygen species in tumors based on the ‘seed and soil’ theory: A complex interaction (Review). Oncol Rep 46: 208, 2021.
APA
Liang, W., He, X., Bi, J., Hu, T., & Sun, Y. (2021). Role of reactive oxygen species in tumors based on the ‘seed and soil’ theory: A complex interaction (Review). Oncology Reports, 46, 208. https://doi.org/10.3892/or.2021.8159
MLA
Liang, W., He, X., Bi, J., Hu, T., Sun, Y."Role of reactive oxygen species in tumors based on the ‘seed and soil’ theory: A complex interaction (Review)". Oncology Reports 46.3 (2021): 208.
Chicago
Liang, W., He, X., Bi, J., Hu, T., Sun, Y."Role of reactive oxygen species in tumors based on the ‘seed and soil’ theory: A complex interaction (Review)". Oncology Reports 46, no. 3 (2021): 208. https://doi.org/10.3892/or.2021.8159
Copy and paste a formatted citation
x
Spandidos Publications style
Liang W, He X, Bi J, Hu T and Sun Y: Role of reactive oxygen species in tumors based on the ‘seed and soil’ theory: A complex interaction (Review). Oncol Rep 46: 208, 2021.
APA
Liang, W., He, X., Bi, J., Hu, T., & Sun, Y. (2021). Role of reactive oxygen species in tumors based on the ‘seed and soil’ theory: A complex interaction (Review). Oncology Reports, 46, 208. https://doi.org/10.3892/or.2021.8159
MLA
Liang, W., He, X., Bi, J., Hu, T., Sun, Y."Role of reactive oxygen species in tumors based on the ‘seed and soil’ theory: A complex interaction (Review)". Oncology Reports 46.3 (2021): 208.
Chicago
Liang, W., He, X., Bi, J., Hu, T., Sun, Y."Role of reactive oxygen species in tumors based on the ‘seed and soil’ theory: A complex interaction (Review)". Oncology Reports 46, no. 3 (2021): 208. https://doi.org/10.3892/or.2021.8159
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team