Novel insights into ion channels in cancer stem cells (Review)

  • Authors:
    • Qijiao Cheng
    • Anhai Chen
    • Qian Du
    • Qiushi Liao
    • Zhangli Shuai
    • Changmei Chen
    • Xinrong Yang
    • Yaxia Hu
    • Ju Zhao
    • Songpo Liu
    • Guo Rong Wen
    • Jiaxin An
    • Hai Jing
    • Biguang Tuo
    • Rui Xie
    • Jingyu Xu
  • View Affiliations

  • Published online on: July 24, 2018     https://doi.org/10.3892/ijo.2018.4500
  • Pages: 1435-1441
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Cancer stem cells (CSCs) are immortal cells in tumor tissues that have been proposed as the driving force of tumorigenesis and tumor invasion. Previously, ion channels were revealed to contribute to cancer cell proliferation, migration and apoptosis. Recent studies have demonstrated that ion channels are present in various CSCs; however, the functions of ion channels and their mechanisms in CSCs remain unknown. The present review aimed to focus on the roles of ion channels in the regulation of CSC behavior and the CSC-like properties of cancer cells. Evaluation of the relationship between ion channels and CSCs is critically important for understanding malignancy.

References

1 

Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China, 2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Hardingham JE, Grover P, Winter M, Hewett PJ, Price TJ and Thierry B: Detection and clinical significance of circulating tumor cells in colorectal cancer - 20 years of progress. Mol Med. 21(Suppl 1): S25–S31. 2015. View Article : Google Scholar :

3 

Shiozawa Y, Nie B, Pienta KJ, Morgan TM and Taichman RS: Cancer stem cells and their role in metastasis. Pharmacol Ther. 138:285–293. 2013. View Article : Google Scholar : PubMed/NCBI

4 

Dalerba P, Cho RW and Clarke MF: Cancer stem cells: Models and concepts. Annu Rev Med. 58:267–284. 2007. View Article : Google Scholar

5 

Fan ST, Yang ZF, Ho DW, Ng MN, Yu WC and Wong J: Prediction of posthepatectomy recurrence of hepatocellular carcinoma by circulating cancer stem cells: A prospective study. Ann Surg. 254:569–576. 2011. View Article : Google Scholar : PubMed/NCBI

6 

Chinn SB, Darr OA, Peters RD and Prince ME: The role of head and neck squamous cell carcinoma cancer stem cells in tumorigenesis, metastasis, and treatment failure. Front Endocrinol (Lausanne). 3:902012.

7 

Nandy SB and Lakshmanaswamy R: Cancer stem cells and metastasis. Prog Mol Biol Transl Sci. 151:137–176. 2017. View Article : Google Scholar : PubMed/NCBI

8 

Ribatti D: Cancer stem cells and tumor angiogenesis. Cancer Lett. 321:13–17. 2012. View Article : Google Scholar : PubMed/NCBI

9 

Marusyk A, Almendro V and Polyak K: Intra-tumour heterogeneity: A looking glass for cancer? Nat Rev Cancer. 12:323–334. 2012. View Article : Google Scholar : PubMed/NCBI

10 

Ansieau S: EMT in breast cancer stem cell generation. Cancer Lett. 338:63–68. 2013. View Article : Google Scholar

11 

Wei J, Wu A, Kong LY, Wang Y, Fuller G, Fokt I, Melillo G, Priebe W and Heimberger AB: Hypoxia potentiates glioma-mediated immunosuppression. PLoS One. 6:e161952011. View Article : Google Scholar : PubMed/NCBI

12 

Salnikov AV, Liu L, Platen M, Gladkich J, Salnikova O, Ryschich E, Mattern J, Moldenhauer G, Werner J, Schemmer P, et al: Hypoxia induces EMT in low and highly aggressive pancreatic tumor cells but only cells with cancer stem cell characteristics acquire pronounced migratory potential. PLoS One. 7:e463912012. View Article : Google Scholar : PubMed/NCBI

13 

Takanami I, Inoue Y and Gika M: G-protein inwardly rectifying potassium channel 1 (GIRK 1) gene expression correlates with tumor progression in non-small cell lung cancer. BMC Cancer. 4:79–85. 2004. View Article : Google Scholar : PubMed/NCBI

14 

Stringer BK, Cooper AG and Shepard SB: Overexpression of the G-protein inwardly rectifying potassium channel 1 (GIRK1) in primary breast carcinomas correlates with axillary lymph node metastasis. Cancer Res. 61:582–588. 2001.PubMed/NCBI

15 

Zhang Y, Wang H, Qian Z, Feng B, Zhao X, Jiang X and Tao J: Low-voltage-activated T-type Ca2+ channel inhibitors as new tools in the treatment of glioblastoma: The role of endostatin. Pflugers Arch. 466:811–818. 2014. View Article : Google Scholar : PubMed/NCBI

16 

Wang XT, Nagaba Y, Cross HS, Wrba F, Zhang L and Guggino SE: The mRNA of L-type calcium channel elevated in colon cancer: Protein distribution in normal and cancerous colon. Am J Pathol. 157:1549–1562. 2000. View Article : Google Scholar : PubMed/NCBI

17 

Vanden Abeele F, Lemonnier L, Thébault S, Lepage G, Parys JB, Shuba Y, Skryma R and Prevarskaya N: Two types of store-operated Ca2+ channels with different activation modes and molecular origin in LNCaP human prostate cancer epithelial cells. J Biol Chem. 279:30326–30337. 2004. View Article : Google Scholar : PubMed/NCBI

18 

Catterall WA and Zheng N: Deciphering voltage-gated Na(+) and Ca(2+) channels by studying prokaryotic ancestors. Trends Biochem Sci. 40:526–534. 2015. View Article : Google Scholar : PubMed/NCBI

19 

González C, Baez-Nieto D, Valencia I, Oyarzún I, Rojas P, Naranjo D and Latorre R: K(+) channels: Function-structural overview. Compr Physiol. 2:2087–2149. 2012.

20 

Firth AL, Remillard CV, Platoshyn O, Fantozzi I, Ko EA and Yuan JX: Functional ion channels in human pulmonary artery smooth muscle cells: Voltage-dependent cation channels. Pulm Circ. 1:48–71. 2011. View Article : Google Scholar : PubMed/NCBI

21 

Voglis G and Tavernarakis N: The role of synaptic ion channels in synaptic plasticity. EMBO Rep. 7:1104–1110. 2006. View Article : Google Scholar : PubMed/NCBI

22 

Hua SZ, Gottlieb PA, Heo J and Sachs F: A mechanosensitive ion channel regulating cell volume. Am J Physiol Cell Physiol. 298:C1424–C1430. 2010. View Article : Google Scholar : PubMed/NCBI

23 

Sardini A, Amey JS, Weylandt KH, Nobles M, Valverde MA and Higgins CF: Cell volume regulation and swelling-activated chloride channels. Biochim Biophys Acta. 1618:153–162. 2003. View Article : Google Scholar

24 

Subramanyam P and Colecraft HM: Ion channel engineering: Perspectives and strategies. J Mol Biol. 427:190–204. 2015. View Article : Google Scholar :

25 

Grosse W, Essen LO and Koert U: Strategies and perspectives in ion-channel engineering. ChemBioChem. 12:830–839. 2011. View Article : Google Scholar : PubMed/NCBI

26 

Yang B, Cao L, Liu J, Xu Y, Milne G, Chan W, Heys SD, McCaig CD and Pu J: Low expression of chloride channel accessory 1 predicts a poor prognosis in colorectal cancer. Cancer. 121:1570–1580. 2015. View Article : Google Scholar : PubMed/NCBI

27 

Ievglevskyi O, Isaev D, Netsyk O, Romanov A, Fedoriuk M, Maximyuk O, Isaeva E, Akaike N and Krishtal O: Acid-sensing ion channels regulate spontaneous inhibitory activity in the hippocampus: Possible implications for epilepsy. Philos Trans R Soc Lond B Biol Sci. 371:1–9. 2016. View Article : Google Scholar

28 

Feske S, Wulff H and Skolnik EY: Ion channels in innate and adaptive immunity. Annu Rev Immunol. 33:291–353. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Bulman DE: Phenotype variation and newcomers in ion channel disorders. Hum Mol Genet. 6:1679–1685. 1997. View Article : Google Scholar : PubMed/NCBI

30 

Xu J, Yang Y, Xie R, Liu J, Nie X, An J, Wen G, Liu X, Jin H and Tuo B: The NCX1/TRPC6 complex mediates TGFβ-driven migration and invasion of human hepatocellular carcinoma cells. Cancer Res. 78:2564–2576. 2018. View Article : Google Scholar : PubMed/NCBI

31 

Moharil RB, Dive A, Khandekar S and Bodhade A: Cancer stem cells: An insight. J Oral Maxillofac Pathol. 21:4632017. View Article : Google Scholar

32 

Reya T, Morrison SJ, Clarke MF and Weissman IL: Stem cells, cancer, and cancer stem cells. Nature. 414:105–111. 2001. View Article : Google Scholar : PubMed/NCBI

33 

Peters T: Calcium in physiological and pathological cell function. Eur Neurol. 25(Suppl 1): 27–44. 1986. View Article : Google Scholar : PubMed/NCBI

34 

Monteith GR, Davis FM and Roberts-Thomson SJ: Calcium channels and pumps in cancer: Changes and consequences. J Biol Chem. 287:31666–31673. 2012. View Article : Google Scholar : PubMed/NCBI

35 

D'Ascenzo M, Piacentini R, Casalbore P, Budoni M, Pallini R, Azzena GB and Grassi C: Role of L-type Ca2+ channels in neural stem/progenitor cell differentiation. Eur J Neurosci. 23:935–944. 2006. View Article : Google Scholar : PubMed/NCBI

36 

Stewart TA, Yapa KT and Monteith GR: Altered calcium signaling in cancer cells. Biochim Biophys Acta. 1848B:2502–2511. 2015. View Article : Google Scholar

37 

Xie J, Pan H, Yao J, Zhou Y and Han W: SOCE and cancer: Recent progress and new perspectives. Int J Cancer. 138:2067–2077. 2016. View Article : Google Scholar :

38 

Prakriya M and Lewis RS: Store-operated calcium channels. Physiol Rev. 95:1383–1436. 2015. View Article : Google Scholar : PubMed/NCBI

39 

Lee SH, Rigas NK, Lee CR, Bang A, Srikanth S, Gwack Y, Kang MK, Kim RH, Park NH and Shin KH: Orai1 promotes tumor progression by enhancing cancer stemness via NFAT signaling in oral/oropharyngeal squamous cell carcinoma. Oncotarget. 7:43239–43255. 2016.PubMed/NCBI

40 

Zhao W, Wang L, Han H, Jin K, Lin N, Guo T, Chen Y, Cheng H, Lu F, Fang W, et al: 1B50-1, a mAb raised against recurrent tumor cells, targets liver tumor-initiating cells by binding to the calcium channel α2δ1 subunit. Cancer Cell. 23:541–556. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Liu M, Inoue K, Leng T, Guo S and Xiong ZG: TRPM7 channels regulate glioma stem cell through STAT3 and Notch signaling pathways. Cell Signal. 26:2773–2781. 2014. View Article : Google Scholar : PubMed/NCBI

42 

Morelli MB, Nabissi M, Amantini C, Farfariello V, Ricci-Vitiani L, di Martino S, Pallini R, Larocca LM, Caprodossi S, Santoni M, et al: The transient receptor potential vanilloid-2 cation channel impairs glioblastoma stem-like cell proliferation and promotes differentiation. Int J Cancer. 131:E1067–E1077. 2012. View Article : Google Scholar : PubMed/NCBI

43 

Curci A, Mele A, Camerino GM, Dinardo MM and Tricarico D: The large conductance Ca(2+) -activated K(+) (BKCa) channel regulates cell proliferation in SH-SY5Y neuroblastoma cells by activating the staurosporine-sensitive protein kinases. Front Physiol. 5:4762014. View Article : Google Scholar : PubMed/NCBI

44 

Rosa P, Sforna L, Carlomagno S, Mangino G, Miscusi M, Pessia M, Franciolini F, Calogero A and Catacuzzeno L: Overexpression of large-conductance calcium-activated potassium channels in human glioblastoma stem-like cells and their role in cell migration. J Cell Physiol. 232:2478–2488. 2017. View Article : Google Scholar

45 

Zhang YY, Yue J, Che H, Sun HY, Tse HF and Li GR: BKCa and hEag1 channels regulate cell proliferation and differentiation in human bone marrow-derived mesenchymal stem cells. J Cell Physiol. 229:202–212. 2014. View Article : Google Scholar

46 

Nio K, Yamashita T and Kaneko S: The evolving concept of liver cancer stem cells. Mol Cancer. 16:42017. View Article : Google Scholar : PubMed/NCBI

47 

Heubach JF, Graf EM, Leutheuser J, Bock M, Balana B, Zahanich I, Christ T, Boxberger S, Wettwer E and Ravens U: Electrophysiological properties of human mesenchymal stem cells. J Physiol. 554:659–672. 2004. View Article : Google Scholar

48 

Li G-R, Sun H, Deng X and Lau CP: Characterization of ionic currents in human mesenchymal stem cells from bone marrow. Stem Cells. 23:371–382. 2005. View Article : Google Scholar : PubMed/NCBI

49 

Wang S-P, Wang J-A, Luo R-H, Cui W-Y and Wang H: Potassium channel currents in rat mesenchymal stem cells and their possible roles in cell proliferation. Clin Exp Pharmacol Physiol. 35:1077–1084. 2008. View Article : Google Scholar : PubMed/NCBI

50 

Pardo LA and Stühmer W: The roles of K(+) channels in cancer. Nat Rev Cancer. 14:39–48. 2014. View Article : Google Scholar

51 

Wang ZH, Shen B, Yao HL, Jia YC, Ren J, Feng YJ and Wang YZ: Blockage of intermediate-conductance-Ca(2+) -activated K(+) channels inhibits progression of human endometrial cancer. Oncogene. 26:5107–5114. 2007. View Article : Google Scholar : PubMed/NCBI

52 

Rao VR, Perez-Neut M, Kaja S and Gentile S: Voltage-gated ion channels in cancer cell proliferation. Cancers (Basel). 7:849–875. 2015. View Article : Google Scholar

53 

Šatková J and Bébarová M: Functional impact of hERG: From physiological role to target of anticancer therapy. Vnitr Lek. 63:114–123. 2017.In Czech.

54 

Li H, Liu L, Guo L, Zhang J, Du W, Li X, Liu W, Chen X and Huang S: HERG K+ channel expression in CD34+/CD38/CD123(high) cells and primary leukemia cells and analysis of its regulation in leukemia cells. Int J Hematol. 87:387–392. 2008. View Article : Google Scholar : PubMed/NCBI

55 

Jehle J, Schweizer PA, Katus HA and Thomas D: Novel roles for hERG K(+) channels in cell proliferation and apoptosis. Cell Death Dis. 2:e1932011. View Article : Google Scholar : PubMed/NCBI

56 

Kubota D, Orita H, Yoshida A, Gotoh M, Kanda T, Tsuda H, Hasegawa T, Katai H, Shimada Y, Kaneko K, et al: Pfetin as a prognostic biomarker for gastrointestinal stromal tumor: Validation study in multiple clinical facilities. Jpn J Clin Oncol. 41:1194–1202. 2011. View Article : Google Scholar : PubMed/NCBI

57 

Li L, Duan T, Wang X, Zhang RH, Zhang M, Wang S, Wang F, Wu Y, Huang H and Kang T: KCTD12 Regulates colorectal cancer cell stemness through the ERK pathway. Sci Rep. 6:204602016. View Article : Google Scholar : PubMed/NCBI

58 

Jentsch TJ, Stein V, Weinreich F and Zdebik AA: Molecular structure and physiological function of chloride channels. Physiol Rev. 82:503–568. 2002. View Article : Google Scholar : PubMed/NCBI

59 

Nako Y, Shiozaki A, Ichikawa D, Komatsu S, Konishi H, Iitaka D, Ishii H, Ikoma H, Kubota T, Fujiwara H, et al: Enhancement of the cytocidal effects of hypotonic solution using a chloride channel blocker in pancreatic cancer cells. Pancreatology. 12:440–448. 2012. View Article : Google Scholar : PubMed/NCBI

60 

Soroceanu L, Manning TJ Jr and Sontheimer H: Modulation of glioma cell migration and invasion using Cl(−) and K(+) ion channel blockers. J Neurosci. 19:5942–5954. 1999. View Article : Google Scholar : PubMed/NCBI

61 

Setti M, Savalli N, Osti D, Richichi C, Angelini M, Brescia P, Fornasari L, Carro MS, Mazzanti M and Pelicci G: Functional role of CLIC1 ion channel in glioblastoma-derived stem/progenitor cells. J Natl Cancer Inst. 105:1644–1655. 2013. View Article : Google Scholar : PubMed/NCBI

62 

Deng YJ, Tang N, Liu C, Zhang JY, An SL, Peng YL, Ma LL, Li GQ, Jiang Q, Hu CT, et al: CLIC4, ERp29, and Smac/DIABLO derived from metastatic cancer stem-like cells stratify prognostic risks of colorectal cancer. Clin Cancer Res. 20:3809–3817. 2014. View Article : Google Scholar : PubMed/NCBI

63 

Higgins CF: Volume-activated chloride currents associated with the multidrug resistance P-glycoprotein. J Physiol. 482(Suppl): 31S–36S. 1995. View Article : Google Scholar : PubMed/NCBI

64 

Zhao L, Zhao Y, Schwarz B, Mysliwietz J, Hartig R, Camaj P, Bao Q, Jauch KW, Guba M, Ellwart JW, et al: Verapamil inhibits tumor progression of chemotherapy-resistant pancreatic cancer side population cells. Int J Oncol. 49:99–110. 2016. View Article : Google Scholar : PubMed/NCBI

65 

Comes N, Bielanska J, Vallejo-Gracia A, Serrano-Albarrás A, Marruecos L, Gómez D, Soler C, Condom E, Ramón Y, Cajal S, Hernández-Losa J, et al: The voltage-dependent K(+) channels Kv1.3 and Kv1.5 in human cancer. Front Physiol. 4:2832013. View Article : Google Scholar : PubMed/NCBI

66 

Fraser SP, Grimes JA and Djamgoz MB: Effects of voltage-gated ion channel modulators on rat prostatic cancer cell proliferation: Comparison of strongly and weakly metastatic cell lines. Prostate. 44:61–76. 2000. View Article : Google Scholar : PubMed/NCBI

67 

D'Alessandro G, Grimaldi A, Chece G, Porzia A, Esposito V, Santoro A, Salvati M, Mainiero F, Ragozzino D, Di Angelantonio S, et al: KCa3.1 channel inhibition sensitizes malignant gliomas to temozolomide treatment. Oncotarget. 7:30781–30796. 2016. View Article : Google Scholar : PubMed/NCBI

68 

Kang MK and Kang SK: Pharmacologic blockade of chloride channel synergistically enhances apoptosis of chemotherapeutic drug-resistant cancer stem cells. Biochem Biophys Res Commun. 373:539–544. 2008. View Article : Google Scholar : PubMed/NCBI

69 

Gritti M, Würth R, Angelini M, Barbieri F, Peretti M, Pizzi E, Pattarozzi A, Carra E, Sirito R, Daga A, et al: Metformin repositioning as antitumoral agent: Selective antiproliferative effects in human glioblastoma stem cells, via inhibition of CLIC1-mediated ion current. Oncotarget. 5:11252–11268. 2014. View Article : Google Scholar : PubMed/NCBI

70 

Chiu LY, Ko JL, Lee YJ, Yang TY, Tee YT and Sheu GT: L-type calcium channel blockers reverse docetaxel and vincristine-induced multidrug resistance independent of ABCB1 expression in human lung cancer cell lines. Toxicol Lett. 192:408–418. 2010. View Article : Google Scholar

71 

Firuzi O, Javidnia K, Mansourabadi E, Saso L, Mehdipour AR and Miri R: Reversal of multidrug resistance in cancer cells by novel asymmetrical 1,4-dihydropyridines. Arch Pharm Res. 36:1392–1402. 2013. View Article : Google Scholar : PubMed/NCBI

72 

Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA and Dick JE: A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 367:645–648. 1994. View Article : Google Scholar : PubMed/NCBI

73 

Bonnet D and Dick JE: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hema-topoietic cell. Nat Med. 3:730–737. 1997. View Article : Google Scholar : PubMed/NCBI

74 

Hu G, Li F, Ouyang K, Xie F, Tang X, Wang K, Han S, Jiang Z, Zhu M, Wen D, et al: Intrinsic gemcitabine resistance in a novel pancreatic cancer cell line is associated with cancer stem cell-like phenotype. Int J Oncol. 40:798–806. 2012.

75 

de la Mare JA, Sterrenberg JN, Sukhthankar MG, Chiwakata MT, Beukes DR, Blatch GL and Edkins AL: Assessment of potential anti-cancer stem cell activity of marine algal compounds using an in vitro mammosphere assay. Cancer Cell Int. 13:392013. View Article : Google Scholar : PubMed/NCBI

76 

Kise K, Kinugasa-Katayama Y and Takakura N: Tumor micro-environment for cancer stem cells. Adv Drug Deliv Rev. 99B:197–205. 2016. View Article : Google Scholar

77 

Broz ML, Binnewies M, Boldajipour B, Nelson AE, Pollack JL, Erle DJ, Barczak A, Rosenblum MD, Daud A, Barber DL, et al: Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell. 26:638–652. 2014. View Article : Google Scholar : PubMed/NCBI

78 

Ishiwata T: Cancer stem cells and epithelial-mesenchymal transition: Novel therapeutic targets for cancer. Pathol Int. 66:601–608. 2016. View Article : Google Scholar : PubMed/NCBI

79 

Plaks V, Kong N and Werb Z: The cancer stem cell niche: How essential is the niche in regulating stemness of tumor cells? Cell Stem Cell. 16:225–238. 2015. View Article : Google Scholar : PubMed/NCBI

80 

Wang L, Fan J, Hitron JA, Son YO, Wise JT, Roy RV, Kim D, Dai J, Pratheeshkumar P, Zhang Z, et al: Cancer stem-like cells accumulated in nickel-induced malignant transformation. Toxicol Sci. 151:376–387. 2016. View Article : Google Scholar : PubMed/NCBI

81 

Oskarsson T, Batlle E and Massagué J: Metastatic stem cells: Sources, niches, and vital pathways. Cell Stem Cell. 14:306–321. 2014. View Article : Google Scholar : PubMed/NCBI

82 

Tian Y, Bresenitz P, Reska A, El Moussaoui L, Beier CP and Gründer S: Glioblastoma cancer stem cell lines express functional acid sensing ion channels ASIC1a and ASIC3. Sci Rep. 7:136742017. View Article : Google Scholar : PubMed/NCBI

83 

Shiozaki A, Kudou M, Ichikawa D, Fujiwara H, Shimizu H, Ishimoto T, Arita T, Kosuga T, Konishi H, Komatsu S, et al: Esophageal cancer stem cells are suppressed by tranilast, a TRPV2 channel inhibitor. J Gastroenterol. 53:197–207. 2018. View Article : Google Scholar

84 

Bao B, Azmi AS, Li Y, Ahmad A, Ali S, Banerjee S, Kong D and Sarkar FH: Targeting CSCs in tumor microenvironment: The potential role of ROS-associated miRNAs in tumor aggressiveness. Curr Stem Cell Res Ther. 9:22–35. 2014. View Article : Google Scholar

Related Articles

Journal Cover

October 2018
Volume 53 Issue 4

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Cheng, Q., Chen, A., Du, Q., Liao, Q., Shuai, Z., Chen, C. ... Xu, J. (2018). Novel insights into ion channels in cancer stem cells (Review). International Journal of Oncology, 53, 1435-1441. https://doi.org/10.3892/ijo.2018.4500
MLA
Cheng, Q., Chen, A., Du, Q., Liao, Q., Shuai, Z., Chen, C., Yang, X., Hu, Y., Zhao, J., Liu, S., Wen, G. R., An, J., Jing, H., Tuo, B., Xie, R., Xu, J."Novel insights into ion channels in cancer stem cells (Review)". International Journal of Oncology 53.4 (2018): 1435-1441.
Chicago
Cheng, Q., Chen, A., Du, Q., Liao, Q., Shuai, Z., Chen, C., Yang, X., Hu, Y., Zhao, J., Liu, S., Wen, G. R., An, J., Jing, H., Tuo, B., Xie, R., Xu, J."Novel insights into ion channels in cancer stem cells (Review)". International Journal of Oncology 53, no. 4 (2018): 1435-1441. https://doi.org/10.3892/ijo.2018.4500