|
1
|
Portela A and Esteller M: Epigenetic
modifications and human disease. Nat Biotechnol. 28:1057–1068.
2010. View
Article : Google Scholar : PubMed/NCBI
|
|
2
|
Glozak MA, Sengupta N, Zhang X and Seto E:
Acetylation and deacetylation of non-histone proteins. Gene.
363:15–23. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Gray SG and Ekström TJ: The human histone
deacetylase family. Exp Cell Res. 262:75–83. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Gao L, Cueto MA, Asselbergs F and Atadja
P: Cloning and functional characterization of HDAC11, a novel
member of the human histone deacetylase family. J Biol Chem.
277:25748–25755. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Feldman JL, Dittenhafer-Reed KE and Denu
JM: Sirtuin catalysis and regulation. J Biol Chem. 287:42419–42427.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Sauve AA, Wolberger C, Schramm VL and
Boeke JD: The biochemistry of sirtuins. Annu Rev Biochem.
75:435–465. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Davenport AM, Huber FM and Hoelz A:
Structural and functional analysis of human SIRT1. J Mol Biol.
426:526–541. 2014. View Article : Google Scholar :
|
|
8
|
Yamakuchi M: MicroRNA regulation of SIRT1.
Front Physiol. 3:682012. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Sasaki T, Maier B, Koclega KD, Chruszcz M,
Gluba W, Stukenberg PT, Minor W and Scrable H: Phosphorylation
regulates SIRT1 function. PLoS One. 3:e40202008. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Yang Y, Fu W, Chen J, Olashaw N, Zhang X,
Nicosia SV, Bhalla K and Bai W: SIRT1 sumoylation regulates its
deacetylase activity and cellular response to genotoxic stress. Nat
Cell Biol. 9:1253–1262. 2007. View
Article : Google Scholar : PubMed/NCBI
|
|
11
|
Liu X, Wang D, Zhao Y, Tu B, Zheng Z, Wang
L, Wang H, Gu W, Roeder RG and Zhu WG: Methyltransferase Set7/9
regulates p53 activity by interacting with Sirtuin 1 (SIRT1). Proc
Natl Acad Sci USA. 108:1925–1930. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Kornberg MD, Sen N, Hara MR, Juluri KR,
Nguyen JV, Snowman AM, Law L, Hester LD and Snyder SH: GAPDH
mediates nitrosylation of nuclear proteins. Nat Cell Biol.
12:1094–1100. 2010. View
Article : Google Scholar : PubMed/NCBI
|
|
13
|
Caito S, Rajendrasozhan S, Cook S, Chung
S, Yao H, Friedman AE, Brookes PS and Rahman I: SIRT1 is a
redox-sensitive deacetylase that is post-translationally modified
by oxidants and carbonyl stress. FASEB J. 24:3145–3159. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Tanno M, Sakamoto J, Miura T, Shimamoto K
and Horio Y: Nucleocytoplasmic shuttling of the
NAD+-dependent histone deacetylase SIRT1. J Biol Chem.
282:6823–6832. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Brachmann CB, Sherman JM, Devine SE,
Cameron EE, Pillus L and Boeke JD: The SIR2 gene family, conserved
from bacteria to humans, functions in silencing, cell cycle
progression, and chromosome stability. Genes Dev. 9:2888–2902.
1995. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Guarente L: Sir2 links chromatin
silencing, metabolism, and aging. Genes Dev. 14:1021–1026.
2000.PubMed/NCBI
|
|
17
|
Ozawa Y, Kubota S, Narimatsu T, Yuki K,
Koto T, Sasaki M and Tsubota K: Retinal aging and sirtuins.
Ophthalmic Res. 44:199–203. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Mimura T, Kaji Y, Noma H, Funatsu H and
Okamoto S: The role of SIRT1 in ocular aging. Exp Eye Res.
116:17–26. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Balaiya S, Abu-Amero KK, Kondkar AA and
Chalam KV: Sirtuins expression and their role in retinal diseases.
Oxid Med Cell Longev. 2017:31875942017. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
McBurney MW, Yang X, Jardine K, Hixon M,
Boekelheide K, Webb JR, Lansdorp PM and Lemieux M: The mammalian
SIR2alpha protein has a role in embryogenesis and gametogenesis.
Mol Cell Biol. 23:38–54. 2003. View Article : Google Scholar :
|
|
21
|
Kamel C, Abrol M, Jardine K, He X and
McBurney MW: SirT1 fails to affect p53-mediated biological
functions. Aging Cell. 5:81–88. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Cheng HL, Mostoslavsky R, Saito S, Manis
JP, Gu Y, Patel P, Bronson R, Appella E, Alt FW and Chua KF:
Developmental defects and p53 hyperacetylation in Sir2 homolog
(SIRT1)-deficient mice. Proc Natl Acad Sci USA. 100:10794–10799.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Chen D, Pacal M, Wenzel P, Knoepfler PS,
Leone G and Bremner R: Division and apoptosis of E2f-deficient
retinal progenitors. Nature. 462:925–929. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Jaliffa C, Ameqrane I, Dansault A, Leemput
J, Vieira V, Lacassagne E, Provost A, Bigot K, Masson C, Menasche M
and Abitbol M: Sirt1 involvement in rd10 mouse retinal
degeneration. Invest Ophthalmol Vis Sci. 50:3562–3572. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Alves LF, Fernandes BF, Burnier JV,
Mansure JJ, Maloney S, Odashiro AN, Antecka E, De Souza DF and
Burnier MN Jr: Expression of SIRT1 in ocular surface squamous
neoplasia. Cornea. 31:817–819. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Maloney SC, Antecka E, Odashiro AN,
Fernandes BF, Doyle M, Lim LA, Katib YA and Miguel NB Jr:
Expression of SIRT1 and DBC1 in developing and adult retinas. Stem
Cells Int. 2012:9081832012. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Wang Y, Zhao X, Shi D, Chen P, Yu Y, Yang
L and Xie L: Overexpression of SIRT1 promotes high
glucose-attenuated corneal epithelial wound healing via p53
regulation of the IGFBP3/IGF-1R/AKT pathway. Invest Ophthalmol Vis
Sci. 54:3806–3814. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Liu H, Sheng M, Liu Y, Wang P, Chen Y,
Chen L, Wang W and Li B: Expression of SIRT1 and oxidative stress
in diabetic dry eye. Int J Clin Exp Pathol. 8:7644–7653.
2015.PubMed/NCBI
|
|
29
|
An J, Chen X, Chen W, Liang R, Reinach PS,
Yan D and Tu L: MicroRNA expression profile and the Role of miR-204
in corneal wound healing. Invest Ophthalmol Vis Sci. 56:3673–3683.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Gao J, Wang Y, Zhao X, Chen P and Xie L:
MicroRNA-204-5p-mediated regulation of SIRT1 contributes to the
delay of epithelial cell cycle traversal in diabetic corneas.
Invest Ophthalmol Vis Sci. 56:1493–1504. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Wang Y, Zhao X, Wu X, Dai Y, Chen P and
Xie L: microRNA-182 mediates Sirt1-induced diabetic corneal nerve
regeneration. Diabetes. 65:2020–2031. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Hodge WG, Whitcher JP and Satariano W:
Risk factors for age-related cataracts. Epidemiol Rev. 17:336–346.
1995. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Zheng Y, Liu Y, Ge J, Wang X, Liu L, Bu Z
and Liu P: Resveratrol protects human lens epithelial cells against
H2O2-induced oxidative stress by increasing catalase, SOD-1, and
HO-1 expression. Mol Vis. 16:1467–1474. 2010.PubMed/NCBI
|
|
34
|
Zheng T and Lu Y: SIRT1 protects human
lens epithelial cells against oxidative stress by Inhibiting
p53-dependent apoptosis. Curr Eye Res. 41:1068–1075. 2016.
View Article : Google Scholar
|
|
35
|
Doganay S, Borazan M, Iraz M and Cigremis
Y: The effect of resveratrol in experimental cataract model formed
by sodium selenite. Curr Eye Res. 31:147–153. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Lin TJ, Peng CH, Chiou SH, Liu JH,
Lin-Chung-Woung, Tsai CY, Chuang JH and Chen SJ: Severity of lens
opacity, age, and correlation of the level of silent information
regulator T1 expression in age-related cataract. J Cataract Refract
Surg. 37:1270–1274. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Zheng T and Lu Y: Changes in SIRT1
expression and its downstream pathways in age-related cataract in
humans. Curr Eye Res. 36:449–455. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Kondo A, Goto M, Mimura T and Matsubara M:
Silent information regulator T1 in aqueous humor of patients with
cataract. Clin Ophthalmol. 10:307–312. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Kang L, Zhao W, Zhang G, Wu J and Guan H:
Acetylated 8-oxoguanine DNA glycosylase 1 and its relationship with
p300 and SIRT1 in lens epithelium cells from age-related cataract.
Exp Eye Res. 135:102–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
van Lookeren Campagne M, LeCouter J,
Yaspan BL and Ye W: Mechanisms of age-related macular degeneration
and therapeutic opportunities. J Pathol. 232:151–164. 2014.
View Article : Google Scholar
|
|
41
|
Chen Z, Zhai Y, Zhang W, Teng Y and Yao K:
Single nucleotide polymorphisms of the sirtuin 1 (SIRT1) gene are
associated with age-related macular degeneration in Chinese han
individuals: A case-control pilot study. Medicine (Baltimore).
94:e22382015. View Article : Google Scholar
|
|
42
|
Maloney SC, Antecka E, Granner T,
Fernandes B, Lim LA, Orellana ME and Burnier MN Jr: Expression of
SIRT1 in choroidal neovascular membranes. Retina. 33:862–866. 2013.
View Article : Google Scholar
|
|
43
|
Peng CH, Chang YL, Kao CL, Tseng LM, Wu
CC, Chen YC, Tsai CY, Woung LC, Liu JH, Chiou SH and Chen SJ:
SirT1-a sensor for monitoring self-renewal and aging process in
retinal stem cells. Sensors. 10:6172–6194. 2010. View Article : Google Scholar
|
|
44
|
Peng CH, Cherng JY, Chiou GY, Chen YC,
Chien CH, Kao CL, Chang YL, Chien Y, Chen LK, Liu JH, et al:
Delivery of Oct4 and SirT1 with cationic polyurethanes-short branch
PEI to aged retinal pigment epithelium. Biomaterials. 32:9077–9088.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Bhattacharya S, Chaum E, Johnson DA and
Johnson LR: Age-related susceptibility to apoptosis in human
retinal pigment epithelial cells is triggered by disruption of
p53-Mdm2 association. Invest Ophthalmol Vis Sci. 53:8350–8366.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Golestaneh N, Chu Y, Cheng SK, Cao H,
Poliakov E and Berinstein DM: Repressed SIRT1/PGC-1α pathway and
mitochondrial disintegration in iPSC-derived RPE disease model of
age-related macular degeneration. J Transl Med. 14:3442016.
View Article : Google Scholar
|
|
47
|
Zhuge CC, Xu JY, Zhang J, Li W, Li P, Li
Z, Chen L, Liu X, Shang P, Xu H, et al: Fullerenol protects retinal
pigment epithelial cells from oxidative stress-induced premature
senescence via activating SIRT1. Invest Ophthalmol Vis Sci.
55:4628–4638. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Jackson MD, Schmidt MT, Oppenheimer NJ and
Denu JM: Mechanism of nicotinamide inhibition and
transglycosidation by Sir2 histone/protein deacetylases. J Biol
Chem. 278:50985–50998. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Wu Z, Lauer TW, Sick A, Hackett SF and
Campochiaro PA: Oxidative stress modulates complement factor H
expression in retinal pigmented epithelial cells by acetylation of
FOXO3. J Biol Chem. 282:22414–22425. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Cao L, Liu C, Wang F and Wang H: SIRT1
negatively regulates amyloid-beta-induced inflammation via the
NF-κB pathway. Braz J Med Biol Res. 46:659–669. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Ban N, Ozawa Y, Inaba T, Miyake S,
Watanabe M, Shinmura K and Tsubota K: Light-dark condition
regulates sirtuin mRNA levels in the retina. Exp Gerontol.
48:1212–1217. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Chou WW, Chen KC, Wang YS, Wang JY, Liang
CL and Juo SH: The role of SIRT1/AKT/ERK pathway in ultraviolet B
induced damage on human retinal pigment epithelial cells. Toxicol
In Vitro. 27:1728–1736. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Kubota S, Kurihara T, Ebinuma M, Kubota M,
Yuki K, Sasaki M, Noda K, Ozawa Y, Oike Y, Ishida S and Tsubota K:
Resveratrol prevents light-induced retinal degeneration via
suppressing activator protein-1 activation. Am J Pathol.
177:1725–1731. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Potente M, Ghaeni L, Baldessari D,
Mostoslavsky R, Rossig L, Dequiedt F, Haendeler J, Mione M, Dejana
E, Alt FW, et al: SIRT1 controls endothelial angiogenic functions
during vascular growth. Genes Dev. 21:2644–2658. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Potente M and Dimmeler S: Emerging roles
of SIRT1 in vascular endothelial homeostasis. Cell Cycle.
7:2117–2122. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Balaiya S, Khetpal V and Chalam KV:
Hypoxia initiates sirtuin1-mediated vascular endothelial growth
factor activation in choroidal endothelial cells through hypoxia
inducible factor-2α. Mol Vis. 18:114–120. 2012.
|
|
57
|
Nagineni CN, Raju R, Nagineni KK,
Kommineni VK, Cherukuri A, Kutty RK, Hooks JJ and Detrick B:
Resveratrol suppresses expression of VEGF by human retinal pigment
epithelial cells: Potential nutraceutical for age-related macular
degeneration. Aging Dis. 5:88–100. 2014.PubMed/NCBI
|
|
58
|
Balaiya S, Murthy RK and Chalam KV:
Resveratrol inhibits proliferation of hypoxic choroidal vascular
endothelial cells. Mol Vis. 19:2385–2392. 2013.PubMed/NCBI
|
|
59
|
Zhang H, He S, Spee C, Ishikawa K and
Hinton DR: SIRT1 mediated inhibition of VEGF/VEGFR2 signaling by
resveratrol and its relevance to choroidal neovascularization.
Cytokine. 76:549–552. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Khan AA, Dace DS, Ryazanov AG, Kelly J and
Apte RS: Resveratrol regulates pathologic angiogenesis by a
eukaryotic elongation factor-2 kinase-regulated pathway. Am J
Pathol. 177:481–492. 2010. View Article : Google Scholar :
|
|
61
|
Diabetes Control and Complications Trial
Research Group; Nathan DM, Genuth S, Lachin J, Cleary P, Crofford
O, Davis M, Rand L and Siebert C: The effect of intensive treatment
of diabetes on the development and progression of long-term
complications in insulin-dependent diabetes mellitus. N Engl J Med.
329:977–986. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Nathan DM, Cleary PA, Backlund JY, Genuth
SM, Lachin JM, Orchard TJ, Raskin P and Zinman B; Diabetes Control
and Complications Trial/Epidemiology of Diabetes Interventions and
Complications (DCCT/EDIC) Study Research Group: Intensive diabetes
treatment and cardiovascular disease in patients with type 1
diabetes. N Engl J Med. 353:2643–2653. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Mortuza R, Chen S, Feng B, Sen S and
Chakrabarti S: High glucose induced alteration of SIRTs in
endothelial cells causes rapid aging in a p300 and FOXO regulated
pathway. PLoS One. 8:e545142013. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Kowluru RA, Santos JM and Zhong Q: Sirt1,
a negative regulator of matrix metalloproteinase-9 in diabetic
retinopathy. Invest Ophthalmol Vis Sci. 55:5653–5660. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Kowluru RA, Mishra M and Kumar B: Diabetic
retinopathy and transcriptional regulation of a small molecular
weight G-Protein, Rac1. Exp Eye Res. 147:72–77. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Kubota S, Ozawa Y, Kurihara T, Sasaki M,
Yuki K, Miyake S, Noda K, Ishida S and Tsubota K: Roles of
AMP-activated protein kinase in diabetes-induced retinal
inflammation. Invest Ophthalmol Vis Sci. 52:9142–9148. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zheng Z, Chen H, Li J, Li T, Zheng B,
Zheng Y, Jin H, He Y, Gu Q and Xu X: Sirtuin 1-mediated cellular
metabolic memory of high glucose via the LKB1/AMPK/ROS pathway and
therapeutic effects of metformin. Diabetes. 61:217–228. 2012.
View Article : Google Scholar
|
|
68
|
Zhang E, Guo Q, Gao H, Xu R, Teng S and Wu
Y: Metformin and resveratrol inhibited high glucose-induced
metabolic memory of endothelial senescence through
SIRT1/p300/p53/p21 pathway. PLoS One. 10:e01438142015. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Zhao S, Li T, Li J, Lu Q, Han C, Wang N,
Qiu Q, Cao H, Xu X, Chen H and Zheng Z: miR-23b-3p induces the
cellular metabolic memory of high glucose in diabetic retinopathy
through a SIRT1-dependent signalling pathway. Diabetologia.
59:644–654. 2016. View Article : Google Scholar
|
|
70
|
Zhao S, Li J, Wang N, Zheng B, Li T, Gu Q,
Xu X and Zheng Z: Fenofibrate suppresses cellular metabolic memory
of high glucose in diabetic retinopathy via a sirtuin 1-dependent
signalling pathway. Mol Med Rep. 12:6112–6118. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Simó R and Hernández C: Novel approaches
for treating diabetic retinopathy based on recent pathogenic
evidence. Prog Retin Eye Res. 48:160–180. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Vujosevic S and Simó R: Local and systemic
inflammatory biomarkers of diabetic retinopathy: An integrative
approach. Invest Ophthalmol Vis Sci. 58:BIO68–BIO75. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Mishra M, Flaga J and Kowluru RA:
Molecular mechanism of transcriptional regulation of matrix
metalloproteinase-9 in diabetic retinopathy. J Cell Physiol.
231:1709–1718. 2016. View Article : Google Scholar
|
|
74
|
Mortuza R, Feng B and Chakrabarti S: SIRT1
reduction causes renal and retinal injury in diabetes through
endothelin 1 and transforming growth factor β1. J Cell Mol Med.
19:1857–1867. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Zeng Y, Yang K, Wang F, Zhou L, Hu Y, Tang
M, Zhang S, Jin S, Zhang J, Wang J, et al: The glucagon like
peptide 1 analogue, exendin-4, attenuates oxidative stress-induced
retinal cell death in early diabetic rats through promoting Sirt1
and Sirt3 expression. Exp Eye Res. 151:203–211. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Liu S, Lin YU and Liu XIN: Protective
effects of SIRT1 in patients with proliferative diabetic
retinopathy via the inhibition of IL-17 expression. Exp Ther Med.
11:257–262. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Mortuza R, Feng B and Chakrabarti S:
miR-195 regulates SIRT1-mediated changes in diabetic retinopathy.
Diabetologia. 57:1037–1046. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Chen J and Smith LE: Retinopathy of
prematurity. Angiogenesis. 10:133–140. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Chen J, Michan S, Juan AM, Hurst CG,
Hatton CJ, Pei DT, Joyal JS, Evans LP, Cui Z, Stahl A, et al:
Neuronal sirtuin1 mediates retinal vascular regeneration in
oxygen-induced ischemic retinopathy. Angiogenesis. 16:985–992.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Michan S, Juan AM, Hurst CG, Cui Z, Evans
LP, Hatton CJ, Pei DT, Ju M, Sinclair DA, Smith LE and Chen J:
Sirtuin1 over-expression does not impact retinal vascular and
neuronal degeneration in a mouse model of oxygen-induced
retinopathy. PLoS One. 9:e850312014. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Fischer D and Leibinger M: Promoting optic
nerve regeneration. Prog Retin Eye Res. 31:688–701. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Tang BL and Chua CE: SIRT1 and neuronal
diseases. Mol Aspects Med. 29:187–200. 2008. View Article : Google Scholar
|
|
83
|
Kim SH, Park JH, Kim YJ and Park KH: The
neuroprotective effect of resveratrol on retinal ganglion cells
after optic nerve transection. Mol Vis. 19:1667–1676.
2013.PubMed/NCBI
|
|
84
|
Chen S, Fan Q, Li A, Liao D, Ge J, Laties
AM and Zhang X: Dynamic mobilization of PGC-1α mediates
mitochondrial biogenesis for the protection of RGC-5 cells by
resveratrol during serum deprivation. Apoptosis. 18:786–799. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Zuo L, Khan RS, Lee V, Dine K, Wu W and
Shindler KS: SIRT1 promotes RGC survival and delays loss of
function following optic nerve crush. Invest Ophthalmol Vis Sci.
54:5097–5102. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Balaiya S, Ferguson LR and Chalam KV:
Evaluation of sirtuin role in neuroprotection of retinal ganglion
cells in hypoxia. Invest Ophthalmol Vis Sci. 53:4315–4322. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Kim SJ, Sung MS, Heo H, Lee JH and Park
SW: Mangiferin protects retinal ganglion cells in ischemic mouse
retina via SIRT1. Curr Eye Res. 41:844–855. 2016.
|
|
88
|
Shindler KS, Ventura E, Rex TS, Elliott P
and Rostami A: SIRT1 activation confers neuroprotection in
experimental optic neuritis. Invest Ophthalmol Vis Sci.
48:3602–3609. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Fonseca-Kelly Z, Nassrallah M, Uribe J,
Khan RS, Dine K, Dutt M and Shindler KS: Resveratrol
neuroprotection in a chronic mouse model of multiple sclerosis.
Front Neurol. 3:842012. View Article : Google Scholar :
|
|
90
|
Shindler KS, Ventura E, Dutt M, Elliott P,
Fitzgerald DC and Rostami A: Oral resveratrol reduces neuronal
damage in a model of multiple sclerosis. J Neuroophthalmol.
30:328–339. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Khan RS, Fonseca-Kelly Z, Callinan C, Zuo
L, Sachdeva MM and Shindler KS: SIRT1 activating compounds reduce
oxidative stress and prevent cell death in neuronal cells. Front
Cell Neurosci. 6:632012. View Article : Google Scholar
|
|
92
|
Khan RS, Dine K, Das Sarma J and Shindler
KS: SIRT1 activating compounds reduce oxidative stress mediated
neuronal loss in viral induced CNS demyelinating disease. Acta
Neuropathol Commun. 2:32014. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Zhang Y, Li H, Cao Y, Zhang M and Wei S:
Sirtuin 1 regulates lipid metabolism associated with optic nerve
regeneration. Mol Med Rep. 12:6962–6968. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Lin P, Suhler EB and Rosenbaum JT: The
future of uveitis treatment. Ophthalmology. 121:365–376. 2014.
View Article : Google Scholar :
|
|
95
|
Kubota S, Kurihara T, Mochimaru H,
Satofuka S, Noda K, Ozawa Y, Oike Y, Ishida S and Tsubota K:
Prevention of ocular inflammation in endotoxin-induced uveitis with
resveratrol by inhibiting oxidative damage and nuclear
factor-kappaB activation. Invest Ophthalmol Vis Sci. 50:3512–3519.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Rossi S, Di Filippo C, Gesualdo C, Testa
F, Trotta MC, Maisto R, Ferraro B, Ferraraccio F, Accardo M,
Simonelli F and D'Amico M: Interplay between Intravitreal RvD1 and
Local Endogenous Sirtuin-1 in the protection from endotoxin-induced
uveitis in rats. Mediators Inflamm. 2015:1264082015. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Gardner PJ, Joshi L, Lee RW, Dick AD,
Adamson P and Calder VL: SIRT1 activation protects against
autoimmune T cell-driven retinal disease in mice via inhibition of
IL-2/Stat5 signaling. J Autoimmun. 42:117–129. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Gardner PJ, Yazid S, Chu CJ, Copland DA,
Adamson P, Dick AD and Calder VL: TNFα regulates SIRT1 cleavage
during ocular autoimmune disease. Am J Pathol. 185:1324–1333. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Anekonda TS and Adamus G: Resveratrol
prevents antibody-induced apoptotic death of retinal cells through
upregulation of Sirt1 and Ku70. BMC Res Notes. 1:1222008.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Bola C, Bartlett H and Eperjesi F:
Resveratrol and the eye: Activity and molecular mechanisms. Graefes
Arch Clin Exp Ophthalmol. 252:699–713. 2014. View Article : Google Scholar : PubMed/NCBI
|