Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
July-2018 Volume 42 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2018 Volume 42 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Role of Sirtuin 1 in the pathogenesis of ocular disease (Review)

  • Authors:
    • Mengwen Zhou
    • Jing Luo
    • Huiming Zhang
  • View Affiliations / Copyright

    Affiliations: Department of Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China, Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
  • Pages: 13-20
    |
    Published online on: April 16, 2018
       https://doi.org/10.3892/ijmm.2018.3623
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Sirtuin (SIRT)1, a member of the SIRT family, is a highly conserved NAD+‑dependent histone deacetylase, which has a regulatory role in numerous physiological and pathological processes by removing acetyl groups from various proteins. SIRT1 controls the activity of numerous transcription factors and cofactors, which impacts the downstream gene expression, and eventually alleviates oxidative stress and associated damage. Numerous studies have revealed that dysfunction of SIRT1 is linked with ocular diseases, including cataract, age‑associated macular degeneration, diabetic retinopathy and glaucoma, while ectopic upregulation of SIRT1 protects against various ocular diseases. In the present review, the significant role of SIRT1 and the potential therapeutic value of modulating SIRT1 expression in ocular development and eye diseases is summarized.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Portela A and Esteller M: Epigenetic modifications and human disease. Nat Biotechnol. 28:1057–1068. 2010. View Article : Google Scholar : PubMed/NCBI

2 

Glozak MA, Sengupta N, Zhang X and Seto E: Acetylation and deacetylation of non-histone proteins. Gene. 363:15–23. 2005. View Article : Google Scholar : PubMed/NCBI

3 

Gray SG and Ekström TJ: The human histone deacetylase family. Exp Cell Res. 262:75–83. 2001. View Article : Google Scholar : PubMed/NCBI

4 

Gao L, Cueto MA, Asselbergs F and Atadja P: Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem. 277:25748–25755. 2002. View Article : Google Scholar : PubMed/NCBI

5 

Feldman JL, Dittenhafer-Reed KE and Denu JM: Sirtuin catalysis and regulation. J Biol Chem. 287:42419–42427. 2012. View Article : Google Scholar : PubMed/NCBI

6 

Sauve AA, Wolberger C, Schramm VL and Boeke JD: The biochemistry of sirtuins. Annu Rev Biochem. 75:435–465. 2006. View Article : Google Scholar : PubMed/NCBI

7 

Davenport AM, Huber FM and Hoelz A: Structural and functional analysis of human SIRT1. J Mol Biol. 426:526–541. 2014. View Article : Google Scholar :

8 

Yamakuchi M: MicroRNA regulation of SIRT1. Front Physiol. 3:682012. View Article : Google Scholar : PubMed/NCBI

9 

Sasaki T, Maier B, Koclega KD, Chruszcz M, Gluba W, Stukenberg PT, Minor W and Scrable H: Phosphorylation regulates SIRT1 function. PLoS One. 3:e40202008. View Article : Google Scholar : PubMed/NCBI

10 

Yang Y, Fu W, Chen J, Olashaw N, Zhang X, Nicosia SV, Bhalla K and Bai W: SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress. Nat Cell Biol. 9:1253–1262. 2007. View Article : Google Scholar : PubMed/NCBI

11 

Liu X, Wang D, Zhao Y, Tu B, Zheng Z, Wang L, Wang H, Gu W, Roeder RG and Zhu WG: Methyltransferase Set7/9 regulates p53 activity by interacting with Sirtuin 1 (SIRT1). Proc Natl Acad Sci USA. 108:1925–1930. 2011. View Article : Google Scholar : PubMed/NCBI

12 

Kornberg MD, Sen N, Hara MR, Juluri KR, Nguyen JV, Snowman AM, Law L, Hester LD and Snyder SH: GAPDH mediates nitrosylation of nuclear proteins. Nat Cell Biol. 12:1094–1100. 2010. View Article : Google Scholar : PubMed/NCBI

13 

Caito S, Rajendrasozhan S, Cook S, Chung S, Yao H, Friedman AE, Brookes PS and Rahman I: SIRT1 is a redox-sensitive deacetylase that is post-translationally modified by oxidants and carbonyl stress. FASEB J. 24:3145–3159. 2010. View Article : Google Scholar : PubMed/NCBI

14 

Tanno M, Sakamoto J, Miura T, Shimamoto K and Horio Y: Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J Biol Chem. 282:6823–6832. 2007. View Article : Google Scholar : PubMed/NCBI

15 

Brachmann CB, Sherman JM, Devine SE, Cameron EE, Pillus L and Boeke JD: The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev. 9:2888–2902. 1995. View Article : Google Scholar : PubMed/NCBI

16 

Guarente L: Sir2 links chromatin silencing, metabolism, and aging. Genes Dev. 14:1021–1026. 2000.PubMed/NCBI

17 

Ozawa Y, Kubota S, Narimatsu T, Yuki K, Koto T, Sasaki M and Tsubota K: Retinal aging and sirtuins. Ophthalmic Res. 44:199–203. 2010. View Article : Google Scholar : PubMed/NCBI

18 

Mimura T, Kaji Y, Noma H, Funatsu H and Okamoto S: The role of SIRT1 in ocular aging. Exp Eye Res. 116:17–26. 2013. View Article : Google Scholar : PubMed/NCBI

19 

Balaiya S, Abu-Amero KK, Kondkar AA and Chalam KV: Sirtuins expression and their role in retinal diseases. Oxid Med Cell Longev. 2017:31875942017. View Article : Google Scholar : PubMed/NCBI

20 

McBurney MW, Yang X, Jardine K, Hixon M, Boekelheide K, Webb JR, Lansdorp PM and Lemieux M: The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Mol Cell Biol. 23:38–54. 2003. View Article : Google Scholar :

21 

Kamel C, Abrol M, Jardine K, He X and McBurney MW: SirT1 fails to affect p53-mediated biological functions. Aging Cell. 5:81–88. 2006. View Article : Google Scholar : PubMed/NCBI

22 

Cheng HL, Mostoslavsky R, Saito S, Manis JP, Gu Y, Patel P, Bronson R, Appella E, Alt FW and Chua KF: Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci USA. 100:10794–10799. 2003. View Article : Google Scholar : PubMed/NCBI

23 

Chen D, Pacal M, Wenzel P, Knoepfler PS, Leone G and Bremner R: Division and apoptosis of E2f-deficient retinal progenitors. Nature. 462:925–929. 2009. View Article : Google Scholar : PubMed/NCBI

24 

Jaliffa C, Ameqrane I, Dansault A, Leemput J, Vieira V, Lacassagne E, Provost A, Bigot K, Masson C, Menasche M and Abitbol M: Sirt1 involvement in rd10 mouse retinal degeneration. Invest Ophthalmol Vis Sci. 50:3562–3572. 2009. View Article : Google Scholar : PubMed/NCBI

25 

Alves LF, Fernandes BF, Burnier JV, Mansure JJ, Maloney S, Odashiro AN, Antecka E, De Souza DF and Burnier MN Jr: Expression of SIRT1 in ocular surface squamous neoplasia. Cornea. 31:817–819. 2012. View Article : Google Scholar : PubMed/NCBI

26 

Maloney SC, Antecka E, Odashiro AN, Fernandes BF, Doyle M, Lim LA, Katib YA and Miguel NB Jr: Expression of SIRT1 and DBC1 in developing and adult retinas. Stem Cells Int. 2012:9081832012. View Article : Google Scholar : PubMed/NCBI

27 

Wang Y, Zhao X, Shi D, Chen P, Yu Y, Yang L and Xie L: Overexpression of SIRT1 promotes high glucose-attenuated corneal epithelial wound healing via p53 regulation of the IGFBP3/IGF-1R/AKT pathway. Invest Ophthalmol Vis Sci. 54:3806–3814. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Liu H, Sheng M, Liu Y, Wang P, Chen Y, Chen L, Wang W and Li B: Expression of SIRT1 and oxidative stress in diabetic dry eye. Int J Clin Exp Pathol. 8:7644–7653. 2015.PubMed/NCBI

29 

An J, Chen X, Chen W, Liang R, Reinach PS, Yan D and Tu L: MicroRNA expression profile and the Role of miR-204 in corneal wound healing. Invest Ophthalmol Vis Sci. 56:3673–3683. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Gao J, Wang Y, Zhao X, Chen P and Xie L: MicroRNA-204-5p-mediated regulation of SIRT1 contributes to the delay of epithelial cell cycle traversal in diabetic corneas. Invest Ophthalmol Vis Sci. 56:1493–1504. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Wang Y, Zhao X, Wu X, Dai Y, Chen P and Xie L: microRNA-182 mediates Sirt1-induced diabetic corneal nerve regeneration. Diabetes. 65:2020–2031. 2016. View Article : Google Scholar : PubMed/NCBI

32 

Hodge WG, Whitcher JP and Satariano W: Risk factors for age-related cataracts. Epidemiol Rev. 17:336–346. 1995. View Article : Google Scholar : PubMed/NCBI

33 

Zheng Y, Liu Y, Ge J, Wang X, Liu L, Bu Z and Liu P: Resveratrol protects human lens epithelial cells against H2O2-induced oxidative stress by increasing catalase, SOD-1, and HO-1 expression. Mol Vis. 16:1467–1474. 2010.PubMed/NCBI

34 

Zheng T and Lu Y: SIRT1 protects human lens epithelial cells against oxidative stress by Inhibiting p53-dependent apoptosis. Curr Eye Res. 41:1068–1075. 2016. View Article : Google Scholar

35 

Doganay S, Borazan M, Iraz M and Cigremis Y: The effect of resveratrol in experimental cataract model formed by sodium selenite. Curr Eye Res. 31:147–153. 2006. View Article : Google Scholar : PubMed/NCBI

36 

Lin TJ, Peng CH, Chiou SH, Liu JH, Lin-Chung-Woung, Tsai CY, Chuang JH and Chen SJ: Severity of lens opacity, age, and correlation of the level of silent information regulator T1 expression in age-related cataract. J Cataract Refract Surg. 37:1270–1274. 2011. View Article : Google Scholar : PubMed/NCBI

37 

Zheng T and Lu Y: Changes in SIRT1 expression and its downstream pathways in age-related cataract in humans. Curr Eye Res. 36:449–455. 2011. View Article : Google Scholar : PubMed/NCBI

38 

Kondo A, Goto M, Mimura T and Matsubara M: Silent information regulator T1 in aqueous humor of patients with cataract. Clin Ophthalmol. 10:307–312. 2016. View Article : Google Scholar : PubMed/NCBI

39 

Kang L, Zhao W, Zhang G, Wu J and Guan H: Acetylated 8-oxoguanine DNA glycosylase 1 and its relationship with p300 and SIRT1 in lens epithelium cells from age-related cataract. Exp Eye Res. 135:102–108. 2015. View Article : Google Scholar : PubMed/NCBI

40 

van Lookeren Campagne M, LeCouter J, Yaspan BL and Ye W: Mechanisms of age-related macular degeneration and therapeutic opportunities. J Pathol. 232:151–164. 2014. View Article : Google Scholar

41 

Chen Z, Zhai Y, Zhang W, Teng Y and Yao K: Single nucleotide polymorphisms of the sirtuin 1 (SIRT1) gene are associated with age-related macular degeneration in Chinese han individuals: A case-control pilot study. Medicine (Baltimore). 94:e22382015. View Article : Google Scholar

42 

Maloney SC, Antecka E, Granner T, Fernandes B, Lim LA, Orellana ME and Burnier MN Jr: Expression of SIRT1 in choroidal neovascular membranes. Retina. 33:862–866. 2013. View Article : Google Scholar

43 

Peng CH, Chang YL, Kao CL, Tseng LM, Wu CC, Chen YC, Tsai CY, Woung LC, Liu JH, Chiou SH and Chen SJ: SirT1-a sensor for monitoring self-renewal and aging process in retinal stem cells. Sensors. 10:6172–6194. 2010. View Article : Google Scholar

44 

Peng CH, Cherng JY, Chiou GY, Chen YC, Chien CH, Kao CL, Chang YL, Chien Y, Chen LK, Liu JH, et al: Delivery of Oct4 and SirT1 with cationic polyurethanes-short branch PEI to aged retinal pigment epithelium. Biomaterials. 32:9077–9088. 2011. View Article : Google Scholar : PubMed/NCBI

45 

Bhattacharya S, Chaum E, Johnson DA and Johnson LR: Age-related susceptibility to apoptosis in human retinal pigment epithelial cells is triggered by disruption of p53-Mdm2 association. Invest Ophthalmol Vis Sci. 53:8350–8366. 2012. View Article : Google Scholar : PubMed/NCBI

46 

Golestaneh N, Chu Y, Cheng SK, Cao H, Poliakov E and Berinstein DM: Repressed SIRT1/PGC-1α pathway and mitochondrial disintegration in iPSC-derived RPE disease model of age-related macular degeneration. J Transl Med. 14:3442016. View Article : Google Scholar

47 

Zhuge CC, Xu JY, Zhang J, Li W, Li P, Li Z, Chen L, Liu X, Shang P, Xu H, et al: Fullerenol protects retinal pigment epithelial cells from oxidative stress-induced premature senescence via activating SIRT1. Invest Ophthalmol Vis Sci. 55:4628–4638. 2014. View Article : Google Scholar : PubMed/NCBI

48 

Jackson MD, Schmidt MT, Oppenheimer NJ and Denu JM: Mechanism of nicotinamide inhibition and transglycosidation by Sir2 histone/protein deacetylases. J Biol Chem. 278:50985–50998. 2003. View Article : Google Scholar : PubMed/NCBI

49 

Wu Z, Lauer TW, Sick A, Hackett SF and Campochiaro PA: Oxidative stress modulates complement factor H expression in retinal pigmented epithelial cells by acetylation of FOXO3. J Biol Chem. 282:22414–22425. 2007. View Article : Google Scholar : PubMed/NCBI

50 

Cao L, Liu C, Wang F and Wang H: SIRT1 negatively regulates amyloid-beta-induced inflammation via the NF-κB pathway. Braz J Med Biol Res. 46:659–669. 2013. View Article : Google Scholar : PubMed/NCBI

51 

Ban N, Ozawa Y, Inaba T, Miyake S, Watanabe M, Shinmura K and Tsubota K: Light-dark condition regulates sirtuin mRNA levels in the retina. Exp Gerontol. 48:1212–1217. 2013. View Article : Google Scholar : PubMed/NCBI

52 

Chou WW, Chen KC, Wang YS, Wang JY, Liang CL and Juo SH: The role of SIRT1/AKT/ERK pathway in ultraviolet B induced damage on human retinal pigment epithelial cells. Toxicol In Vitro. 27:1728–1736. 2013. View Article : Google Scholar : PubMed/NCBI

53 

Kubota S, Kurihara T, Ebinuma M, Kubota M, Yuki K, Sasaki M, Noda K, Ozawa Y, Oike Y, Ishida S and Tsubota K: Resveratrol prevents light-induced retinal degeneration via suppressing activator protein-1 activation. Am J Pathol. 177:1725–1731. 2010. View Article : Google Scholar : PubMed/NCBI

54 

Potente M, Ghaeni L, Baldessari D, Mostoslavsky R, Rossig L, Dequiedt F, Haendeler J, Mione M, Dejana E, Alt FW, et al: SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev. 21:2644–2658. 2007. View Article : Google Scholar : PubMed/NCBI

55 

Potente M and Dimmeler S: Emerging roles of SIRT1 in vascular endothelial homeostasis. Cell Cycle. 7:2117–2122. 2008. View Article : Google Scholar : PubMed/NCBI

56 

Balaiya S, Khetpal V and Chalam KV: Hypoxia initiates sirtuin1-mediated vascular endothelial growth factor activation in choroidal endothelial cells through hypoxia inducible factor-2α. Mol Vis. 18:114–120. 2012.

57 

Nagineni CN, Raju R, Nagineni KK, Kommineni VK, Cherukuri A, Kutty RK, Hooks JJ and Detrick B: Resveratrol suppresses expression of VEGF by human retinal pigment epithelial cells: Potential nutraceutical for age-related macular degeneration. Aging Dis. 5:88–100. 2014.PubMed/NCBI

58 

Balaiya S, Murthy RK and Chalam KV: Resveratrol inhibits proliferation of hypoxic choroidal vascular endothelial cells. Mol Vis. 19:2385–2392. 2013.PubMed/NCBI

59 

Zhang H, He S, Spee C, Ishikawa K and Hinton DR: SIRT1 mediated inhibition of VEGF/VEGFR2 signaling by resveratrol and its relevance to choroidal neovascularization. Cytokine. 76:549–552. 2015. View Article : Google Scholar : PubMed/NCBI

60 

Khan AA, Dace DS, Ryazanov AG, Kelly J and Apte RS: Resveratrol regulates pathologic angiogenesis by a eukaryotic elongation factor-2 kinase-regulated pathway. Am J Pathol. 177:481–492. 2010. View Article : Google Scholar :

61 

Diabetes Control and Complications Trial Research Group; Nathan DM, Genuth S, Lachin J, Cleary P, Crofford O, Davis M, Rand L and Siebert C: The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 329:977–986. 1993. View Article : Google Scholar : PubMed/NCBI

62 

Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ, Raskin P and Zinman B; Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group: Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 353:2643–2653. 2005. View Article : Google Scholar : PubMed/NCBI

63 

Mortuza R, Chen S, Feng B, Sen S and Chakrabarti S: High glucose induced alteration of SIRTs in endothelial cells causes rapid aging in a p300 and FOXO regulated pathway. PLoS One. 8:e545142013. View Article : Google Scholar : PubMed/NCBI

64 

Kowluru RA, Santos JM and Zhong Q: Sirt1, a negative regulator of matrix metalloproteinase-9 in diabetic retinopathy. Invest Ophthalmol Vis Sci. 55:5653–5660. 2014. View Article : Google Scholar : PubMed/NCBI

65 

Kowluru RA, Mishra M and Kumar B: Diabetic retinopathy and transcriptional regulation of a small molecular weight G-Protein, Rac1. Exp Eye Res. 147:72–77. 2016. View Article : Google Scholar : PubMed/NCBI

66 

Kubota S, Ozawa Y, Kurihara T, Sasaki M, Yuki K, Miyake S, Noda K, Ishida S and Tsubota K: Roles of AMP-activated protein kinase in diabetes-induced retinal inflammation. Invest Ophthalmol Vis Sci. 52:9142–9148. 2011. View Article : Google Scholar : PubMed/NCBI

67 

Zheng Z, Chen H, Li J, Li T, Zheng B, Zheng Y, Jin H, He Y, Gu Q and Xu X: Sirtuin 1-mediated cellular metabolic memory of high glucose via the LKB1/AMPK/ROS pathway and therapeutic effects of metformin. Diabetes. 61:217–228. 2012. View Article : Google Scholar

68 

Zhang E, Guo Q, Gao H, Xu R, Teng S and Wu Y: Metformin and resveratrol inhibited high glucose-induced metabolic memory of endothelial senescence through SIRT1/p300/p53/p21 pathway. PLoS One. 10:e01438142015. View Article : Google Scholar : PubMed/NCBI

69 

Zhao S, Li T, Li J, Lu Q, Han C, Wang N, Qiu Q, Cao H, Xu X, Chen H and Zheng Z: miR-23b-3p induces the cellular metabolic memory of high glucose in diabetic retinopathy through a SIRT1-dependent signalling pathway. Diabetologia. 59:644–654. 2016. View Article : Google Scholar

70 

Zhao S, Li J, Wang N, Zheng B, Li T, Gu Q, Xu X and Zheng Z: Fenofibrate suppresses cellular metabolic memory of high glucose in diabetic retinopathy via a sirtuin 1-dependent signalling pathway. Mol Med Rep. 12:6112–6118. 2015. View Article : Google Scholar : PubMed/NCBI

71 

Simó R and Hernández C: Novel approaches for treating diabetic retinopathy based on recent pathogenic evidence. Prog Retin Eye Res. 48:160–180. 2015. View Article : Google Scholar : PubMed/NCBI

72 

Vujosevic S and Simó R: Local and systemic inflammatory biomarkers of diabetic retinopathy: An integrative approach. Invest Ophthalmol Vis Sci. 58:BIO68–BIO75. 2017. View Article : Google Scholar : PubMed/NCBI

73 

Mishra M, Flaga J and Kowluru RA: Molecular mechanism of transcriptional regulation of matrix metalloproteinase-9 in diabetic retinopathy. J Cell Physiol. 231:1709–1718. 2016. View Article : Google Scholar

74 

Mortuza R, Feng B and Chakrabarti S: SIRT1 reduction causes renal and retinal injury in diabetes through endothelin 1 and transforming growth factor β1. J Cell Mol Med. 19:1857–1867. 2015. View Article : Google Scholar : PubMed/NCBI

75 

Zeng Y, Yang K, Wang F, Zhou L, Hu Y, Tang M, Zhang S, Jin S, Zhang J, Wang J, et al: The glucagon like peptide 1 analogue, exendin-4, attenuates oxidative stress-induced retinal cell death in early diabetic rats through promoting Sirt1 and Sirt3 expression. Exp Eye Res. 151:203–211. 2016. View Article : Google Scholar : PubMed/NCBI

76 

Liu S, Lin YU and Liu XIN: Protective effects of SIRT1 in patients with proliferative diabetic retinopathy via the inhibition of IL-17 expression. Exp Ther Med. 11:257–262. 2016. View Article : Google Scholar : PubMed/NCBI

77 

Mortuza R, Feng B and Chakrabarti S: miR-195 regulates SIRT1-mediated changes in diabetic retinopathy. Diabetologia. 57:1037–1046. 2014. View Article : Google Scholar : PubMed/NCBI

78 

Chen J and Smith LE: Retinopathy of prematurity. Angiogenesis. 10:133–140. 2007. View Article : Google Scholar : PubMed/NCBI

79 

Chen J, Michan S, Juan AM, Hurst CG, Hatton CJ, Pei DT, Joyal JS, Evans LP, Cui Z, Stahl A, et al: Neuronal sirtuin1 mediates retinal vascular regeneration in oxygen-induced ischemic retinopathy. Angiogenesis. 16:985–992. 2013. View Article : Google Scholar : PubMed/NCBI

80 

Michan S, Juan AM, Hurst CG, Cui Z, Evans LP, Hatton CJ, Pei DT, Ju M, Sinclair DA, Smith LE and Chen J: Sirtuin1 over-expression does not impact retinal vascular and neuronal degeneration in a mouse model of oxygen-induced retinopathy. PLoS One. 9:e850312014. View Article : Google Scholar : PubMed/NCBI

81 

Fischer D and Leibinger M: Promoting optic nerve regeneration. Prog Retin Eye Res. 31:688–701. 2012. View Article : Google Scholar : PubMed/NCBI

82 

Tang BL and Chua CE: SIRT1 and neuronal diseases. Mol Aspects Med. 29:187–200. 2008. View Article : Google Scholar

83 

Kim SH, Park JH, Kim YJ and Park KH: The neuroprotective effect of resveratrol on retinal ganglion cells after optic nerve transection. Mol Vis. 19:1667–1676. 2013.PubMed/NCBI

84 

Chen S, Fan Q, Li A, Liao D, Ge J, Laties AM and Zhang X: Dynamic mobilization of PGC-1α mediates mitochondrial biogenesis for the protection of RGC-5 cells by resveratrol during serum deprivation. Apoptosis. 18:786–799. 2013. View Article : Google Scholar : PubMed/NCBI

85 

Zuo L, Khan RS, Lee V, Dine K, Wu W and Shindler KS: SIRT1 promotes RGC survival and delays loss of function following optic nerve crush. Invest Ophthalmol Vis Sci. 54:5097–5102. 2013. View Article : Google Scholar : PubMed/NCBI

86 

Balaiya S, Ferguson LR and Chalam KV: Evaluation of sirtuin role in neuroprotection of retinal ganglion cells in hypoxia. Invest Ophthalmol Vis Sci. 53:4315–4322. 2012. View Article : Google Scholar : PubMed/NCBI

87 

Kim SJ, Sung MS, Heo H, Lee JH and Park SW: Mangiferin protects retinal ganglion cells in ischemic mouse retina via SIRT1. Curr Eye Res. 41:844–855. 2016.

88 

Shindler KS, Ventura E, Rex TS, Elliott P and Rostami A: SIRT1 activation confers neuroprotection in experimental optic neuritis. Invest Ophthalmol Vis Sci. 48:3602–3609. 2007. View Article : Google Scholar : PubMed/NCBI

89 

Fonseca-Kelly Z, Nassrallah M, Uribe J, Khan RS, Dine K, Dutt M and Shindler KS: Resveratrol neuroprotection in a chronic mouse model of multiple sclerosis. Front Neurol. 3:842012. View Article : Google Scholar :

90 

Shindler KS, Ventura E, Dutt M, Elliott P, Fitzgerald DC and Rostami A: Oral resveratrol reduces neuronal damage in a model of multiple sclerosis. J Neuroophthalmol. 30:328–339. 2010. View Article : Google Scholar : PubMed/NCBI

91 

Khan RS, Fonseca-Kelly Z, Callinan C, Zuo L, Sachdeva MM and Shindler KS: SIRT1 activating compounds reduce oxidative stress and prevent cell death in neuronal cells. Front Cell Neurosci. 6:632012. View Article : Google Scholar

92 

Khan RS, Dine K, Das Sarma J and Shindler KS: SIRT1 activating compounds reduce oxidative stress mediated neuronal loss in viral induced CNS demyelinating disease. Acta Neuropathol Commun. 2:32014. View Article : Google Scholar : PubMed/NCBI

93 

Zhang Y, Li H, Cao Y, Zhang M and Wei S: Sirtuin 1 regulates lipid metabolism associated with optic nerve regeneration. Mol Med Rep. 12:6962–6968. 2015. View Article : Google Scholar : PubMed/NCBI

94 

Lin P, Suhler EB and Rosenbaum JT: The future of uveitis treatment. Ophthalmology. 121:365–376. 2014. View Article : Google Scholar :

95 

Kubota S, Kurihara T, Mochimaru H, Satofuka S, Noda K, Ozawa Y, Oike Y, Ishida S and Tsubota K: Prevention of ocular inflammation in endotoxin-induced uveitis with resveratrol by inhibiting oxidative damage and nuclear factor-kappaB activation. Invest Ophthalmol Vis Sci. 50:3512–3519. 2009. View Article : Google Scholar : PubMed/NCBI

96 

Rossi S, Di Filippo C, Gesualdo C, Testa F, Trotta MC, Maisto R, Ferraro B, Ferraraccio F, Accardo M, Simonelli F and D'Amico M: Interplay between Intravitreal RvD1 and Local Endogenous Sirtuin-1 in the protection from endotoxin-induced uveitis in rats. Mediators Inflamm. 2015:1264082015. View Article : Google Scholar : PubMed/NCBI

97 

Gardner PJ, Joshi L, Lee RW, Dick AD, Adamson P and Calder VL: SIRT1 activation protects against autoimmune T cell-driven retinal disease in mice via inhibition of IL-2/Stat5 signaling. J Autoimmun. 42:117–129. 2013. View Article : Google Scholar : PubMed/NCBI

98 

Gardner PJ, Yazid S, Chu CJ, Copland DA, Adamson P, Dick AD and Calder VL: TNFα regulates SIRT1 cleavage during ocular autoimmune disease. Am J Pathol. 185:1324–1333. 2015. View Article : Google Scholar : PubMed/NCBI

99 

Anekonda TS and Adamus G: Resveratrol prevents antibody-induced apoptotic death of retinal cells through upregulation of Sirt1 and Ku70. BMC Res Notes. 1:1222008. View Article : Google Scholar : PubMed/NCBI

100 

Bola C, Bartlett H and Eperjesi F: Resveratrol and the eye: Activity and molecular mechanisms. Graefes Arch Clin Exp Ophthalmol. 252:699–713. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhou M, Luo J and Zhang H: Role of Sirtuin 1 in the pathogenesis of ocular disease (Review). Int J Mol Med 42: 13-20, 2018.
APA
Zhou, M., Luo, J., & Zhang, H. (2018). Role of Sirtuin 1 in the pathogenesis of ocular disease (Review). International Journal of Molecular Medicine, 42, 13-20. https://doi.org/10.3892/ijmm.2018.3623
MLA
Zhou, M., Luo, J., Zhang, H."Role of Sirtuin 1 in the pathogenesis of ocular disease (Review)". International Journal of Molecular Medicine 42.1 (2018): 13-20.
Chicago
Zhou, M., Luo, J., Zhang, H."Role of Sirtuin 1 in the pathogenesis of ocular disease (Review)". International Journal of Molecular Medicine 42, no. 1 (2018): 13-20. https://doi.org/10.3892/ijmm.2018.3623
Copy and paste a formatted citation
x
Spandidos Publications style
Zhou M, Luo J and Zhang H: Role of Sirtuin 1 in the pathogenesis of ocular disease (Review). Int J Mol Med 42: 13-20, 2018.
APA
Zhou, M., Luo, J., & Zhang, H. (2018). Role of Sirtuin 1 in the pathogenesis of ocular disease (Review). International Journal of Molecular Medicine, 42, 13-20. https://doi.org/10.3892/ijmm.2018.3623
MLA
Zhou, M., Luo, J., Zhang, H."Role of Sirtuin 1 in the pathogenesis of ocular disease (Review)". International Journal of Molecular Medicine 42.1 (2018): 13-20.
Chicago
Zhou, M., Luo, J., Zhang, H."Role of Sirtuin 1 in the pathogenesis of ocular disease (Review)". International Journal of Molecular Medicine 42, no. 1 (2018): 13-20. https://doi.org/10.3892/ijmm.2018.3623
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team