|
1
|
Viganò P, Parazzini F, Somigliana E and
Vercellini P: Endometriosis: Epidemiology and aetiological factors.
Best Pract Res Clin Obstet Gynaecol. 18:177–200. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Eskenazi B and Warner ML: Epidemiology of
endometriosis. Obstet Gynecol Clin North Am. 24:235–258. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Seli E, Berkkanoglu M and Arici A:
Pathogenesis of endometriosis. Obstet Gynecol Clin North Am.
30:41–61. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Houston DE: Evidence for the risk of
pelvic endometriosis by age, race and socioeconomic status.
Epidemiol Rev. 6:167–191. 1984.PubMed/NCBI
|
|
5
|
Kobayashi H, Higashiura Y, Shigetomi H and
Kajihara H: Pathogenesis of endometriosis: The role of initial
infection and subsequent sterile inflammation (Review). Mol Med
Rep. 9:9–15. 2014.
|
|
6
|
Hickey M, Ballard K and Farquhar C:
Endometriosis. BMJ. 348:g17522014. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Sampson J: Peritoneal endometriosis due to
the menstrual dissemination of endometrial tissue into the
peritoneal cavity. Obstet Gynecol. 14:422–469. 1927.
|
|
8
|
Ahn SH, Monsanto SP, Miller C, Singh SS,
Thomas R and Tayade C: Pathophysiology and Immune Dysfunction in
Endometriosis. BioMed Res Int. 2015:7959762015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Nisolle M, Casanas-Roux F, Anaf V, Mine JM
and Donnez J: Morphometric study of the stromal vascularization in
peritoneal endometriosis. Fertil Steril. 59:681–684.
1993.PubMed/NCBI
|
|
10
|
Burney RO and Giudice LC: Pathogenesis and
pathophysiology of endometriosis. Fertil Steril. 98:511–519. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Sanchez AM, Viganò P, Somigliana E, Cioffi
R, Panina-Bordignon P and Candiani M: The endometriotic tissue
lining the internal surface of endometrioma: hormonal, genetic,
epigenetic status, and gene expression profile. Reprod Sci.
22:391–401. 2015. View Article : Google Scholar
|
|
12
|
Lopez J, Percharde M, Coley HM, Webb A and
Crook T: The context and potential of epigenetics in oncology. Br J
Cancer. 100:571–577. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Jaenisch R and Bird A: Epigenetic
regulation of gene expression: How the genome integrates intrinsic
and environmental signals. Nat Genet. 33(Suppl): 245–254. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Bellelis P, Barbeiro DF, Rizzo LV, Baracat
EC, Abrão MS and Podgaec S: Transcriptional changes in the
expression of chemokines related to natural killer and T-regulatory
cells in patients with deep infiltrative endometriosis. Fertil
Steril. 99:1987–1993. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Hansen KA and Eyster KM: Genetics and
genomics of endometriosis. Clin Obstet Gynecol. 53:403–412. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Baranov VS, Ivaschenko TE, Liehr T and
Yarmolinskaya MI: Systems genetics view of endometriosis: A common
complex disorder. Eur J Obstet Gynecol Reprod Biol. 185:59–65.
2015. View Article : Google Scholar
|
|
17
|
Campbell IG and Thomas EJ: Endometriosis:
Candidate genes. Hum Reprod Update. 7:15–20. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Vigano P, Somigliana E, Vignali M, Busacca
M and Blasio AM: Genetics of endometriosis: Current status and
prospects. Front Biosci. 12:3247–3255. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Augoulea A, Alexandrou A, Creatsa M,
Vrachnis N and Lambrinoudaki I: Pathogenesis of endometriosis: The
role of genetics, inflammation and oxidative stress. Arch Gynecol
Obstet. 286:99–103. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Altmüller J, Palmer LJ, Fischer G, Scherb
H and Wjst M: Genomewide scans of complex human diseases: True
linkage is hard to find. Am J Hum Genet. 69:936–950. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Chanock SJ, Manolio T, Boehnke M,
Boerwinkle E, Hunter DJ, Thomas G, Hirschhorn JN, Abecasis G,
Altshuler D, Bailey-Wilson JE, et al: NCI-NHGRI Working Group on
Replication in Association Studies: Replicating genotype-phenotype
associations. Nature. 447:655–660. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Falconer H, D'Hooghe T and Fried G:
Endometriosis and genetic polymorphisms. Obstet Gynecol Surv.
62:616–628. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Guo SW: Epigenetics of endometriosis. Mol
Hum Reprod. 15:587–607. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Inbar-Feigenberg M, Choufani S, Butcher
DT, Roifman M and Weksberg R: Basic concepts of epigenetics. Fertil
Steril. 99:607–615. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Xu X: DNA methylation and cognitive aging.
Oncotarget. 6:13922–13932. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Breiling A and Lyko F: Epigenetic
regulatory functions of DNA modifications: 5-methylcytosine and
beyond. Epigenetics Chromatin. 8:242015. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Burggren WW and Crews D: Epigenetics in
comparative biology: why we should pay attention. Integr Comp Biol.
54:7–20. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Koerner MV and Barlow DP: Genomic
imprinting-an epigenetic gene-regulatory model. Curr Opin Genet
Dev. 20:164–170. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Moore LD, Le T and Fan G: DNA methylation
and its basic function. Neuropsychopharmacology. 38:23–38. 2013.
View Article : Google Scholar
|
|
30
|
Xu F, Mao C, Ding Y, Rui C, Wu L, Shi A,
Zhang H, Zhang L and Xu Z: Molecular and enzymatic profiles of
mammalian DNA methyltransferases: Structures and targets for drugs.
Curr Med Chem. 17:4052–4071. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Jeltsch A: Molecular enzymology of
mammalian DNA methyltransferases. Curr Top. Microbiol Immunol.
301:203–225. 2006.
|
|
32
|
Herman JG and Baylin SB: Gene silencing in
cancer in association with promoter hypermethylation. N Engl J Med.
349:2042–2054. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Bird AP: CpG-rich islands and the function
of DNA methylation. Nature. 321:209–213. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Costello JF and Plass C: Methylation
matters. J Med Genet. 38:285–303. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Weber M and Schübeler D: Genomic patterns
of DNA methylation: Targets and function of an epigenetic mark.
Curr Opin Cell Biol. 19:273–280. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Bird AP and Wolffe AP: Methylation-induced
repression - belts, braces, and chromatin. Cell. 99:451–454. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Koukoura O, Sifakis S and Spandidos DA:
DNA methylation in the human placenta and fetal growth (Review).
Mol Med Rep. 5:883–889. 2012.PubMed/NCBI
|
|
38
|
Romani M, Pistillo MP and Banelli B:
Environmental Epigenetics: Crossroad between Public Health,
Lifestyle, and Cancer Prevention. BioMed Res Int. 2015:5879832015.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Bruner-Tran KL, Resuehr D, Ding T, Lucas
JA and Osteen KG: The role of endocrine disruptors in the
epigenetics of reproductive disease and dysfunction: potential
relevance to humans. Curr Obstet Gynecol Rep. 1:116–123. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Anway MD, Cupp AS, Uzumcu M and Skinner
MK: Epigenetic transgenerational actions of endocrine disruptors
and male fertility. Science. 308:1466–1469. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Danchin É, Charmantier A, Champagne FA,
Mesoudi A, Pujol B and Blanchet S: Beyond DNA: Integrating
inclusive inheritance into an extended theory of evolution. Nat Rev
Genet. 12:475–486. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Bulun SE, Zeitoun KM and Kilic G:
Expression of dioxin-related transactivating factors and target
genes in human eutopic endometrial and endometriotic tissues. Am J
Obstet Gynecol. 182:767–775. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Chiaffarino F, Bravi F, Cipriani S,
Parazzini F, Ricci E, Viganò P and La Vecchia C: Coffee and
caffeine intake and risk of endometriosis: a meta-analysis. Eur J
Nutr. 53:1573–1579. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Nugent BM and Bale TL: The omniscient
placenta: Metabolic and epigenetic regulation of fetal programming.
Front Neuroendocrinol. 39:28–37. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Smith CJ and Ryckman KK: Epigenetic and
developmental influences on the risk of obesity, diabetes, and
metabolic syndrome. Diabetes Metab Syndr Obes. 8:295–302.
2015.PubMed/NCBI
|
|
46
|
Chan RW, Ng EH and Yeung WS:
Identification of cells with colony-forming activity, self-renewal
capacity, and multipotency in ovarian endometriosis. Am J Pathol.
178:2832–2844. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Wu Y, Strawn E, Basir Z, Halverson G and
Guo SW: Aberrant expression of deoxyribonucleic acid
methyltransferases DNMT1, DNMT3A, and DNMT3B in women with
endometriosis. Fertil Steril. 87:24–32. 2007. View Article : Google Scholar
|
|
48
|
Szczepańska M, Wirstlein P, Skrzypczak J
and Jagodziński PP: Expression of HOXA11 in the mid-luteal
endometrium from women with endometriosis-associated infertility.
Reprod Biol Endocrinol. 10:12012. View Article : Google Scholar
|
|
49
|
van Kaam KJ, Delvoux B, Romano A, D'Hooghe
T, Dunselman GA and Groothuis PG: Deoxyribonucleic acid
methyltransferases and methyl-CpG-binding domain proteins in human
endometrium and endometriosis. Fertil Steril. 95:1421–1427. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Hsiao KY, Wu MH, Chang N, Yang SH, Wu CW,
Sun HS and Tsai SJ: Coordination of AUF1 and miR-148a destabilizes
DNA methyltransferase 1 mRNA under hypoxia in endometriosis. Mol
Hum Reprod. 21:894–904. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Dyson MT, Kakinuma T, Pavone ME, Monsivais
D, Navarro A, Malpani SS, Ono M and Bulun SE: Aberrant expression
and localization of deoxyribonucleic acid methyltransferase 3B in
endometriotic stromal cells. Fertil Steril. 104:953–963.e2. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Critchley HO and Saunders PT: Hormone
receptor dynamics in a receptive human endometrium. Reprod Sci.
16:191–199. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Shao R, Cao S, Wang X, Feng Y and Billig
H: The elusive and controversial roles of estrogen and progesterone
receptors in human endometriosis. Am J Transl Res. 6:104–113.
2014.PubMed/NCBI
|
|
54
|
Tsai MJ and O'Malley BW: Molecular
mechanisms of action of steroid/thyroid receptor superfamily
members. Annu Rev Biochem. 63:451–486. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Fitzpatrick DR and Wilson CB: Methylation
and demethylation in the regulation of genes, cells, and responses
in the immune system. Clin Immunol. 109:37–45. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Fuks F: DNA methylation and histone
modifications: Teaming up to silence genes. Curr Opin Genet Dev.
15:490–495. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Leung YK, Mak P, Hassan S and Ho SM:
Estrogen receptor (ER)-beta isoforms: a key to understanding
ER-beta signaling. Proc Natl Acad Sci USA. 103:13162–13167. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Herynk MH and Fuqua SA: Estrogen receptor
mutations in human disease. Endocr Rev. 25:869–898. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Hewitt SC, Harrell JC and Korach KS:
Lessons in estrogen biology from knockout and transgenic animals.
Annu Rev Physiol. 67:285–308. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Burns KA, Rodriguez KF, Hewitt SC,
Janardhan KS, Young SL and Korach KS: Role of estrogen receptor
signaling required for endometriosis-like lesion establishment in a
mouse model. Endocrinology. 153:3960–3971. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Graham JD and Clarke CL: Physiological
action of progesterone in target tissues. Endocr Rev. 18:502–519.
1997.PubMed/NCBI
|
|
62
|
Bulun SE, Monsivais D, Kakinuma T,
Furukawa Y, Bernardi L, Pavone ME and Dyson M: Molecular biology of
endometriosis: from aromatase to genomic abnormalities. Semin
Reprod Med. 33:220–224. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Pellegrini C, Gori I, Achtari C, Hornung
D, Chardonnens E, Wunder D, Fiche M and Canny GO: The expression of
estrogen receptors as well as GREB1, c-MYC, and cyclin D1,
estrogen-regulated genes implicated in proliferation, is increased
in peritoneal endometriosis. Fertil Steril. 98:1200–1208. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Brandenberger AW, Lebovic DI, Tee MK, Ryan
IP, Tseng JF, Jaffe RB and Taylor RN: Oestrogen receptor (ER)-alpha
and ER-beta isoforms in normal endometrial and
endometriosis-derived stromal cells. Mol Hum Reprod. 5:651–655.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Attia GR, Zeitoun K, Edwards D, Johns A,
Carr BR and Bulun SE: Progesterone receptor isoform A but not B is
expressed in endometriosis. J Clin Endocrinol Metab. 85:2897–2902.
2000.PubMed/NCBI
|
|
66
|
Xue Q, Lin Z, Cheng YH, Huang CC, Marsh E,
Yin P, Milad MP, Confino E, Reierstad S, Innes J, et al: Promoter
methylation regulates estrogen receptor 2 in human endometrium and
endometriosis. Biol Reprod. 77:681–687. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Wu Y, Strawn E, Basir Z, Halverson G and
Guo SW: Promoter hypermethylation of progesterone receptor isoform
B (PR-B) in endometriosis. Epigenetics. 1:106–111. 2006. View Article : Google Scholar
|
|
68
|
Misao R, Iwagaki S, Fujimoto J, Sun W and
Tamaya T: Dominant expression of progesterone receptor form B mRNA
in ovarian endometriosis. Horm Res. 52:30–34. 1999. View Article : Google Scholar
|
|
69
|
Bukulmez O, Hardy DB, Carr BR, Word RA and
Mendelson CR: Inflammatory status influences aromatase and steroid
receptor expression in endometriosis. Endocrinology. 149:1190–1204.
2008. View Article : Google Scholar
|
|
70
|
Meyer JL, Zimbardi D, Podgaec S, Amorim
RL, Abrão MS and Rainho CA: DNA methylation patterns of steroid
receptor genes ESR1, ESR2 and PGR in deep endometriosis
compromising the rectum. Int J Mol Med. 33:897–904. 2014.PubMed/NCBI
|
|
71
|
Rice DA, Mouw AR, Bogerd AM and Parker KL:
A shared promoter element regulates the expression of three
steroidogenic enzymes. Mol Endocrinol. 5:1552–1561. 1991.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Morohashi K, Honda S, Inomata Y, Handa H
and Omura T: A common trans-acting factor, Ad4-binding protein, to
the promoters of steroidogenic P-450s. J Biol Chem.
267:17913–17919. 1992.PubMed/NCBI
|
|
73
|
Zeitoun K, Takayama K, Michael MD and
Bulun SE: Stimulation of aromatase P450 promoter (II) activity in
endometriosis and its inhibition in endometrium are regulated by
competitive binding of steroidogenic factor-1 and chicken ovalbumin
upstream promoter transcription factor to the same cis-acting
element. Mol Endocrinol. 13:239–253. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Kitawaki J, Kado N, Ishihara H, Koshiba H,
Kitaoka Y and Honjo H: Endometriosis: the pathophysiology as an
estrogen-dependent disease. J Steroid Biochem Mol Biol. 83:149–155.
2002. View Article : Google Scholar
|
|
75
|
Tian Y, Kong B, Zhu W, Su S and Kan Y:
Expression of steroidogenic factor 1 (SF-1) and steroidogenic acute
regulatory protein (StAR) in endometriosis is associated with
endometriosis severity. J Int Med Res. 37:1389–1395. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Xue Q, Lin Z, Yin P, Milad MP, Cheng YH,
Confino E, Reierstad S and Bulun SE: Transcriptional activation of
steroidogenic factor-1 by hypomethylation of the 5′ CpG island in
endometriosis. J Clin Endocrinol Metab. 92:3261–3267. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Yamagata Y, Nishino K, Takaki E, Sato S,
Maekawa R, Nakai A and Sugino N: Genome-wide DNA methylation
profiling in cultured eutopic and ectopic endometrial stromal
cells. PLoS One. 9:e836122014. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Xue Q, Zhou YF, Zhu SN and Bulun SE:
Hypermethylation of the CpG island spanning from exon II to intron
III is associated with steroidogenic factor 1 expression in stromal
cells of endometriosis. Reprod Sci. 18:1080–1084. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Xue Q, Xu Y, Yang H, Zhang L, Shang J,
Zeng C, Yin P and Bulun SE: Methylation of a novel CpG island of
intron 1 is associated with steroidogenic factor 1 expression in
endometriotic stromal cells. Reprod Sci. 21:395–400. 2014.
View Article : Google Scholar :
|
|
80
|
Hu M, Yao J, Cai L, Bachman KE, van den
Brûle F, Velculescu V and Polyak K: Distinct epigenetic changes in
the stromal cells of breast cancers. Nat Genet. 37:899–905. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Hoivik EA, Bjanesoy TE, Mai O, Okamoto S,
Minokoshi Y, Shima Y, Morohashi K, Boehm U and Bakke M: DNA
methylation of intronic enhancers directs tissue-specific
expression of steroidogenic factor 1/adrenal 4 binding protein
(SF-1/Ad4BP). Endocrinology. 152:2100–2112. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Feinberg AP and Tycko B: The history of
cancer epigenetics. Nat Rev Cancer. 4:143–153. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Bell AC and Felsenfeld G: Methylation of a
CTCF-dependent boundary controls imprinted expression of the Igf2
gene. Nature. 405:482–485. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Zanatta A, Rocha AM, Carvalho FM, Pereira
RM, Taylor HS, Motta EL, Baracat EC and Serafini PC: The role of
the Hoxa10/HOXA10 gene in the etiology of endometriosis and its
related infertility: A review. J Assist Reprod Genet. 27:701–710.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Eun Kwon H and Taylor HS: The role of HOX
genes in human implantation. Ann N Y Acad Sci. 1034:1–18. 2004.
View Article : Google Scholar
|
|
86
|
Taylor HS, Arici A, Olive D and Igarashi
P: HOXA10 is expressed in response to sex steroids at the time of
implantation in the human endometrium. J Clin Invest.
101:1379–1384. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Gui Y, Zhang J, Yuan L and Lessey BA:
Regulation of HOXA-10 is and its expression in normal and abnormal
endometrium. Mol Hum Reprod. 5:866–873. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Szczepańska M, Wirstlein P, Luczak M,
Jagodziński PP and Skrzypczak J: Reduced expression of HOXA10 in
the midluteal endometrium from infertile women with minimal
endometriosis. Biomed Pharmacother. 64:697–705. 2010. View Article : Google Scholar
|
|
89
|
Wu Y, Halverson G, Basir Z, Strawn E, Yan
P and Guo SW: Aberrant methylation at HOXA10 may be responsible for
its aberrant expression in the endometrium of patients with
endometriosis. Am J Obstet Gynecol. 193:371–380. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Kim JJ, Taylor HS, Lu Z, Ladhani O,
Hastings JM, Jackson KS, Wu Y, Guo SW and Fazleabas AT: Altered
expression of HOXA10 in endometriosis: Potential role in
decidualization. Mol Hum Reprod. 13:323–332. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Lee B, Du H and Taylor HS: Experimental
murine endometriosis induces DNA methylation and altered gene
expression in eutopic endometrium. Biol Reprod. 80:79–85. 2009.
View Article : Google Scholar
|
|
92
|
Fambrini M, Sorbi F, Bussani C, Cioni R,
Sisti G and Andersson KL: Hypermethylation of HOXA10 gene in
mid-luteal endometrium from women with ovarian endometriomas. Acta
Obstet Gynecol Scand. 92:1331–1334. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Lu H, Yang X, Zhang Y, Lu R and Wang X:
Epigenetic disorder may cause downregulation of HOXA10 in the
eutopic endometrium of fertile women with endometriosis. Reprod
Sci. 20:78–84. 2013. View Article : Google Scholar
|
|
94
|
Bromer JG, Wu J, Zhou Y and Taylor HS:
Hypermethylation of homeobox A10 by in utero diethylstilbestrol
exposure: An epigenetic mechanism for altered developmental
programming. Endocrinology. 150:3376–3382. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Naqvi H, Ilagan Y, Krikun G and Taylor HS:
Altered genome-wide methylation in endometriosis. Reprod Sci.
21:1237–1243. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Simpson ER, Mahendroo MS, Means GD,
Kilgore MW, Hinshelwood MM, Graham-Lorence S, Amarneh B, Ito Y,
Fisher CR, Michael MD, et al: Aromatase cytochrome P450, the enzyme
responsible for estrogen biosynthesis. Endocr Rev. 15:342–355.
1994.PubMed/NCBI
|
|
97
|
Abu Hashim H: Potential role of aromatase
inhibitors in the treatment of endometriosis. Int J Womens Health.
6:671–680. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Maia H Jr, Haddad C, Coelho G and Casoy J:
Role of inflammation and aromatase expression in the eutopic
endometrium and its relationship with the development of
endometriosis. Womens Health (Lond Engl). 8:647–658. 2012.
View Article : Google Scholar
|
|
99
|
Bulun SE, Takayama K, Suzuki T, Sasano H,
Yilmaz B and Sebastian S: Organization of the human aromatase p450
(CYP19) gene. Semin Reprod Med. 22:5–9. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Izawa M, Harada T, Taniguchi F, Ohama Y,
Takenaka Y and Terakawa N: An epigenetic disorder may cause
aberrant expression of aromatase gene in endometriotic stromal
cells. Fertil Steril. 89(Suppl 5): 1390–1396. 2008. View Article : Google Scholar
|
|
101
|
Izawa M, Taniguchi F, Uegaki T, Takai E,
Iwabe T, Terakawa N and Harada T: Demethylation of a nonpromoter
cytosine-phosphate-guanine island in the aromatase gene may cause
the aberrant up-regulation in endometriotic tissues. Fertil Steril.
95:33–39. 2011. View Article : Google Scholar
|
|
102
|
Dubois RN, Abramson SB, Crofford L, Gupta
RA, Simon LS, Van De Putte LB and Lipsky PE: Cyclooxygenase in
biology and disease. FASEB J. 12:1063–1073. 1998.PubMed/NCBI
|
|
103
|
Ota H, Igarashi S, Sasaki M and Tanaka T:
Distribution of cyclooxygenase-2 in eutopic and ectopic endometrium
in endometriosis and adenomyosis. Hum Reprod. 16:561–566. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Matsuzaki S, Canis M, Pouly JL, Wattiez A,
Okamura K and Mage G: Cyclooxygenase-2 expression in deep
endometriosis and matched eutopic endometrium. Fertil Steril.
82:1309–1315. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Buchweitz O, Staebler A, Wülfing P,
Hauzman E, Greb R and Kiesel L: COX-2 overexpression in peritoneal
lesions is correlated with nonmenstrual chronic pelvic pain. Eur J
Obstet Gynecol Reprod Biol. 124:216–221. 2006. View Article : Google Scholar
|
|
106
|
Zidan HE, Rezk NA, Alnemr AA and Abd El
Ghany AM: COX-2 gene promoter DNA methylation status in eutopic and
ectopic endometrium of Egyptian women with endometriosis. J Reprod
Immunol. 112:63–67. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Wang D, Chen Q, Zhang C, Ren F and Li T:
DNA hypo-methylation of the COX-2 gene promoter is associated with
up-regulation of its mRNA expression in eutopic endometrium of
endometriosis. Eur J Med Res. 17:122012. View Article : Google Scholar
|
|
108
|
Starzinski-Powitz A, Gaetje R, Zeitvogel
A, Kotzian S, Handrow-Metzmacher H, Herrmann G, Fanning E and
Baumann R: Tracing cellular and molecular mechanisms involved in
endometriosis. Hum Reprod Update. 4:724–729. 1998. View Article : Google Scholar
|
|
109
|
Wu Y, Starzinski-Powitz A and Guo SW:
Trichostatin A, a histone deacetylase inhibitor, attenuates
invasiveness and reactivates E-cadherin expression in immortalized
endometriotic cells. Reprod Sci. 14:374–382. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Zhou H, Li J, Podratz KC, Tipton T,
Marzolf S, Chen HB and Jiang SW: Hypomethylation and activation of
syncytin-1 gene in endometriotic tissue. Curr Pharm Des.
20:1786–1795. 2014. View Article : Google Scholar
|
|
111
|
Stern RC, Dash R, Bentley RC, Snyder MJ,
Haney AF and Robboy SJ: Malignancy in endometriosis: Frequency and
comparison of ovarian and extraovarian types. Int J Gynecol Pathol.
20:133–139. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Matalliotakis I, Mahutte NG, Koukoura O
and Arici A: Endometriosis associated with Stage IA clear cell
ovarian carcinoma in a woman with IVF-ET treatments in the Yale
Series. Arch Gynecol Obstet. 274:184–186. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Shih IeM and Kurman RJ: Ovarian
tumorigenesis: A proposed model based on morphological and
molecular genetic analysis. Am J Pathol. 164:1511–1518. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Koukoura O, Spandidos DA, Daponte A and
Sifakis S: DNA methylation profiles in ovarian cancer: Implication
in diagnosis and therapy (Review). Mol Med Rep. 10:3–9.
2014.PubMed/NCBI
|
|
115
|
Martini M, Ciccarone M, Garganese G,
Maggiore C, Evangelista A, Rahimi S, Zannoni G, Vittori G and
Larocca LM: Possible involvement of hMLH1, p16(INK4a) and PTEN in
the malignant transformation of endometriosis. Int J Cancer.
102:398–406. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Senthong A, Kitkumthorn N, Rattanatanyong
P, Khemapech N, Triratanachart S and Mutirangura A: Differences in
LINE-1 methylation between endometriotic ovarian cyst and
endometriosis-associated ovarian cancer. Int J Gynecol Cancer.
24:36–42. 2014. View Article : Google Scholar
|
|
117
|
Guo C, Ren F, Wang D, Li Y, Liu K, Liu S
and Chen P: RUNX3 is inactivated by promoter hypermethylation in
malignant transformation of ovarian endometriosis. Oncol Rep.
32:2580–2588. 2014.PubMed/NCBI
|
|
118
|
Perez-Janices N, Blanco-Luquin I, Torrea
N, Liechtenstein T, Escors D, Cordoba A, Vicente-Garcia F, Jauregui
I, De La Cruz S, Illarramendi JJ, et al: Differential involvement
of RASSF2 hypermethylation in breast cancer subtypes and their
prognosis. Oncotarget. 6:23944–23958. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Guerrero-Setas D, Pérez-Janices N,
Blanco-Fernandez L, Ojer A, Cambra K, Berdasco M, Esteller M,
Maria-Ruiz S, Torrea N and Guarch R: RASSF2 hypermethylation is
present and related to shorter survival in squamous cervical
cancer. Mod Pathol. 26:1111–1122. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Zhao L, Cui Q, Lu Z and Chen J: Aberrant
methylation of RASSF2A in human pancreatic ductal adenocarcinoma
and its relation to clinicopathologic features. Pancreas.
41:206–211. 2012. View Article : Google Scholar
|
|
121
|
Ren F, Wang DB, Li T, Chen YH and Li Y:
Identification of differentially methylated genes in the malignant
transformation of ovarian endometriosis. J Ovarian Res. 7:732014.
View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Borghese B, Barbaux S, Mondon F, Santulli
P, Pierre G, Vinci G, Chapron C and Vaiman D: Research resource:
Genome-wide profiling of methylated promoters in endometriosis
reveals a subtelomeric location of hypermethylation. Mol
Endocrinol. 24:1872–1885. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Dyson MT, Roqueiro D, Monsivais D, Ercan
CM, Pavone ME, Brooks DC, Kakinuma T, Ono M, Jafari N, Dai Y, et
al: Genome-wide DNA methylation analysis predicts an epigenetic
switch for GATA factor expression in endometriosis. PLoS Genet.
10:e10041582014. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Yoo CB and Jones PA: Epigenetic therapy of
cancer: Past, present and future. Nat Rev Drug Discov. 5:37–50.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Nie Jichan, Liu Xishi and Guo SW: Promoter
hypermethylation of progesterone receptor isoform B (PR-B) in
adenomyosis and its rectification by a histone deacetylase
inhibitor and a demethylation agent. Reprod Sci. 17:995–1005. 2010.
View Article : Google Scholar
|
|
126
|
Arosh JA, Lee J, Starzinski-Powitz A and
Banu SK: Selective inhibition of prostaglandin E2 receptors EP2 and
EP4 modulates DNA methylation and histone modification machinery
proteins in human endometriotic cells. Mol Cell Endocrinol.
409:51–58. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Bergman MD, Schachter BS, Karelus K,
Combatsiaris EP, Garcia T and Nelson JF: Up-regulation of the
uterine estrogen receptor and its messenger ribonucleic acid during
the mouse estrous cycle: The role of estradiol. Endocrinology.
130:1923–1930. 1992.PubMed/NCBI
|