1
|
Fang ZY, Prins JB and Marwick TH: Diabetic
cardiomyopathy: Evidence, mechanisms and therapeutic implications.
Endocr Rev. 25:543–567. 2004. View Article : Google Scholar : PubMed/NCBI
|
2
|
DeCoux A, Lindsey ML, Villarreal F, Garcia
RA and Schulz R: Myocardial matrix metalloproteinase-2: Inside out
and upside down. J Mol Cell Cardiol. 77:64–72. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Li Q, Sun SZ, Wang Y, Tian YJ and Liu MH:
The roles of MMP-2/TIMP-2 in extracellular matrix remodelling in
the hearts of STZ-induced diabetic rats. Acta Cardiol. 62:485–491.
2007. View Article : Google Scholar : PubMed/NCBI
|
4
|
Chen SL, Hu ZY, Zuo GF, Li MH and Li B:
I(f) current channel inhibitor (ivabradine) deserves
cardioprotective effect via down-regulating the expression of
matrix metalloproteinase (MMP)-2 and attenuating apoptosis in
diabetic mice. BMC Cardiovasc Disord. 14:1502014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Zinman B, Wanner C, Lachin JM, Fitchett D,
Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ,
et al: Empagliflozin, cardiovascular outcomes and mortality in type
2 diabetes. N Engl J Med. 373:2117–2128. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Cefalu WT, Leiter LA, de Bruin TW,
Gause-Nilsson I, Sugg J and Parikh SJ: Dapagliflozin's effects on
glycemia and cardiovascular risk factors in high-risk patients with
type 2 diabetes: A 24-week, multicenter, randomized, double-blind,
placebo-controlled study with a 28-week extension. Diabetes Care.
38:1218–1227. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Song P, Onishi A, Koepsell H and Vallon V:
Sodium glucose cotransporter SGLT1 as a therapeutic target in
diabetes mellitus. Exp Opin Ther Targets. 20:1109–1125. 2016.
View Article : Google Scholar
|
8
|
Kashiwagi Y, Nagoshi T, Yoshino T, Tanaka
TD, Ito K, Harada T, Takahashi H, Ikegami M, Anzawa R and Yoshimura
M: Expression of SGLT1 in human hearts and impairment of cardiac
glucose uptake by phlorizin during ischemia-reperfusion injury in
mice. PLoS One. 10:e01306052015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Banerjee SK, Ramani R, Saba S, Rager J,
Tian R, Mathier MA and Ahmad F: A PRKAG2 mutation causes biphasic
changes in myocardial AMPK activity and does not protect against
ischemia. Biochem Biophys Res Commun. 360:381–387. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ramratnam M, Sharma RK, D'Auria S, Lee SJ,
Wang D, Huang XY and Ahmad F: Transgenic knockdown of cardiac
sodium/glucose cotransporter 1 (SGLT1) attenuates PRKAG2
cardiomyopathy, whereas transgenic overexpression of cardiac SGLT1
causes pathologic hypertrophy and dysfunction in mice. J Am Heart
Assoc. 3:e0008992014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Das S, Mandal M, Chakraborti T, Mandal A
and Chakraborti S: Isolation of MMP-2 from MMP-2/TIMP-2 complex:
Characterization of the complex and the free enzyme in pulmonary
vascular smooth muscle plasma membrane. Biochim Biophys Acta.
1674:158–174. 2004.PubMed/NCBI
|
12
|
Avolio C, Filippi M, Tortorella C, Rocca
MA, Ruggieri M, Agosta F, Tomassini V, Pozzilli C, Stecchi S,
Giaquinto P, et al: Serum MMP-9/TIMP-1 and MMP-2/TIMP-2 ratios in
multiple sclerosis: Relationships with different magnetic resonance
imaging measures of disease activity during IFN-beta-1a treatment.
Mult Scler. 11:441–446. 2005. View Article : Google Scholar : PubMed/NCBI
|
13
|
Liu X, Song X, Lu J, Chen X, Liang E, Liu
X, Zhang M, Zhang Y, Du Z and Zhao Y: Neferine inhibits
proliferation and collagen synthesis induced by high glucose in
cardiac fibroblasts and reduces cardiac fibrosis in diabetic mice.
Oncotarget. 7:61703–61715. 2016.PubMed/NCBI
|
14
|
Rubler S, Dlugash J, Yuceoglu YZ, Kumral
T, Branwood AW and Grishman A: New type of cardiomyopathy
associated with diabetic glomerulosclerosis. Am J Cardiol.
30:595–602. 1972. View Article : Google Scholar : PubMed/NCBI
|
15
|
Jia G, Whaley-Connell A and Sowers JR:
Diabetic cardiomyopathy: A hyperglycaemia- and
insulin-resistance-induced heart disease. Diabetologia. 61:21–28.
2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zou C, Liu X, Xie R, Bao Y, Jin Q, Jia X,
Li L and Liu R: Deferiprone attenuates inflammation and myocardial
fibrosis in diabetic cardiomyopathy rats. Biochem Biophys Res
Commun. 486:930–936. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Lo SH, Hsu CT, Niu HS, Niu CS, Cheng JT
and Chen ZC: Cryptotanshinone inhibits STAT3 signaling to alleviate
cardiac fibrosis in type 1-like diabetic rats. Phytother Res.
31:638–646. 2017. View
Article : Google Scholar : PubMed/NCBI
|
18
|
Wang XW, Zhang FX, Yang F, Ding ZF,
Agarwal N, Guo ZK and Mehta JL: Effects of linagliptin and
liraglutide on glucose- and angiotensin II-induced collagen
formation and cytoskeleton degradation in cardiac fibroblasts in
vitro. Acta Pharmacol Sin. 37:1349–1358. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Li J, Dai Y, Su Z and Wei G: MicroRNA-9
inhibits high glucose-induced proliferation, differentiation and
collagen accumulation of cardiac fibroblasts by down-regulation of
TGFBR2. Biosci Rep. 36:e004172016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Meng L, Liu L, Zhou C, Pan S, Zhai X,
Jiang C, Guo Y, Ji Z, Chi J, Peng F and Guo H: Polyphenols and
polypeptides in chinese rice wine inhibit homocysteine-induced
proliferation and migration of vascular smooth muscle cells. J
Cardiovasc Pharmacol. 67:482–490. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Shi YF, Chi JF, Tang WL, Xu FK, Liu LB, Ji
Z, Lv HT and Guo HY: Effects of rosuvastatin on the production and
activation of matrix metalloproteinase-2 and migration of cultured
rat vascular smooth muscle cells induced by homocysteine. J
Zhejiang Univ Sci B. 14:696–704. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Siddesha JM, Valente AJ, Sakamuri SS,
Yoshida T, Gardner JD, Somanna N, Takahashi C, Noda M and
Chandrasekar B: Angiotensin II stimulates cardiac fibroblast
migration via the differential regulation of matrixins and RECK. J
Mol Cell Cardiol. 65:9–18. 2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Cauwe B and Opdenakker G: Intracellular
substrate cleavage: A novel dimension in the biochemistry, biology
and pathology of matrix metalloproteinases. Crit Rev Biochem Mol
Biol. 45:351–423. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Hughes BG, Fan X, Cho WJ and Schulz R:
MMP-2 is localized to the mitochondria-associated membrane of the
heart. Am J Physiol Heart Circ Physiol. 306:H764–H770. 2014.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Westermann D, Savvatis K, Lindner D,
Zietsch C, Becher PM, Hammer E, Heimesaat MM, Bereswill S, Volker
U, Escher F, et al: Reduced degradation of the chemokine MCP-3 by
matrix metalloproteinase-2 exacerbates myocardial inflammation in
experimental viral cardiomyopathy. Circulation. 124:2082–2093.
2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Chen J, Williams S, Ho S, Loraine H, Hagan
D, Whaley JM and Feder JN: Quantitative PCR tissue expression
profiling of the human SGLT2 gene and related family members.
Diabetes Ther. 1:57–92. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Jin X, Yi L, Chen ML, Chen CY, Chang H,
Zhang T, Wang L, Zhu JD, Zhang QY and Mi MT:
Delphinidin-3-glucoside protects against oxidized low-density
lipoprotein-induced mitochondrial dysfunction in vascular
endothelial cells via the sodium-dependent glucose transporter
SGLT1. PLoS One. 8:e686172013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Balteau M, Tajeddine N, de Meester C,
Ginion A, Des Rosiers C, Brady NR, Sommereyns C, Horman S,
Vanoverschelde JL, Gailly P, et al: NADPH oxidase activation by
hyperglycaemia in cardiomyocytes is independent of glucose
metabolism but requires SGLT1. Cardiovasc Res. 92:237–246. 2011.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Van Steenbergen A, Balteau M, Ginion A,
Ferte L, Battault S, Ravenstein CM, Balligand JL, Daskalopoulos EP,
Gilon P, Despa F, et al: Sodium-myoinositol cotransporter-1, SMIT1,
mediates the production of reactive oxygen species induced by
hyperglycemia in the heart. Sci Rep. 7:411662017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Di Franco A, Cantini G, Tani A, Coppini R,
Zecchi-Orlandini S, Raimondi L, Luconi M and Mannucci E:
Sodium-dependent glucose transporters (SGLT) in human ischemic
heart: A new potential pharmacological target. Int J Cardiol.
243:86–90. 2017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Ye Y, Bajaj M, Yang HC, Perez-Polo JR and
Birnbaum Y: SGLT-2 inhibition with dapagliflozin reduces the
activation of the Nlrp3/ASC inflammasome and attenuates the
development of diabetic cardiomyopathy in mice with type 2
diabetes. Further augmentation of the effects with saxagliptin, a
DPP4 inhibitor. Cardiovasc Drugs Ther. 31:119–132. 2017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Joubert M, Jagu B, Montaigne D, Marechal
X, Tesse A, Ayer A, Dollet L, Le May C, Toumaniantz G, Manrique A,
et al: The sodium-glucose cotransporter 2 inhibitor dapagliflozin
prevents cardiomyopathy in a diabetic lipodystrophic mouse model.
Diabetes. 66:1030–1040. 2017. View Article : Google Scholar : PubMed/NCBI
|