Anti-inflammatory effect of bee venom in an allergic chronic rhinosinusitis mouse model

  • Authors:
    • Seung‑Heon Shin
    • Mi‑Kyung Ye
    • Sung‑Yong Choi
    • Kwan‑Kyu Park
  • View Affiliations

  • Published online on: March 9, 2018     https://doi.org/10.3892/mmr.2018.8720
  • Pages: 6632-6638
Metrics: HTML 0 views | PDF 0 views     Cited By (CrossRef): 0 citations

Abstract

Bee venom (BV) has long been used as anti-inflammatory agent in traditional oriental medicine; however, the effect of BV on chronic rhinosinusitis (CRS) is not commonly studied. The aim of the present study was to determine the anti-inflammatory effect of BV on an allergic CRS mouse model. An allergic CRS mouse model was established following the administration of ovalbumin with Staphylococcus aureus enterotoxin B (SEB) into the nose. A total of 0.5 or 5 ng/ml of BV were intranasally applied 3 times a week for 8 weeks. Histopathological alterations were observed using hematoxylin and eosin, and Periodic acid Schiff staining. The levels of inflammatory cell infiltration, interleukin (IL)‑4, IL‑10 and interferon (INF)‑γ in nasal lavage fluid (NLF) were measured. Nuclear factor (NF)‑κB and activator protein (AP)‑1 expressions were also determined by immunohistochemical staining. The group treated with BV had significantly decreased inflammatory cell infiltration and PAS‑positive cells. The levels of INF‑γ, and neutrophil and eosinophil counts in NLF were significantly decreased, and the SEB‑induced NF‑κB and AP‑1 expressions in mouse nasal mucosa were significantly suppressed by 0.5 and 5 ng/ml BV. Thus, BV exerted significant anti‑inflammatory effects in an allergic CRS mouse model and may have potential value for the treatment of CRS.

References

1 

Bachert C, Zhang N, Holtappels G, Bachert C, Zhang N, Holtappels G, De Lobel L, van Cauwenberge P, Liu S, Lin P, et al: Presence of IL-5 protein and IgE antibodies to staphylococcal enterotoxins in nasal polyps is associated with comorbid asthma. J Allergy Clin Immunol. 126:962–968. 2010. View Article : Google Scholar : PubMed/NCBI

2 

Wang X, Du J and Zhao C: Bacterial biofilms are associated with inflammatory cells infiltration and the innate immunity in chronic rhinosinusitis with or without nasal polyps. Inflammation. 37:871–879. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Ponikau JU, Sherris DA and Kita H: The role of unbiquitous airborne fungi in chronic rhinosinusitis. Clin Allergy Immunol. 20:177–184. 2007.PubMed/NCBI

4 

Van Zele T, Gevaert P, Watelet JB, Claeys G, Holtappels G, Claeys C, van Cauwenberge P and Bachert C: Staphylococcus aureus colonization and IgE antibody formation to enterotoxins is increased in nasal polyposis. J Allergy Clin Immunol. 114:981–983. 2004. View Article : Google Scholar : PubMed/NCBI

5 

Kim DW, Khalmuratova R, Hur DG, Jeon SY, Kim SW, Shin HW, Lee CH and Rhee CS: Staphylococcus aureus enterotoxin B contributes to induction of nasal polypoid lesions in an allergic rhinosinusitis murine model. Am J Rhinol Allergy. 25:e255–e261. 2011. View Article : Google Scholar : PubMed/NCBI

6 

Jang MH, Shin MC, Lim S, Han SM, Park HJ, Shin I, Lee JS, Kim KA, Kim EH and Kim CJ: Bee venom induces apoptosis and inhibits expression of cyclooxygenase-2 mRNA in human lung cancer cell line NCI-H1299. J Pharmacol Sci. 91:95–104. 2003. View Article : Google Scholar : PubMed/NCBI

7 

Son DJ, Lee JW, Lee YH, Song HS, Lee CK and Hong JT: Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacol Ther. 115:246–270. 2007. View Article : Google Scholar : PubMed/NCBI

8 

Kim JI, Yang EJ, Lee MS, Kim YS, Huh Y, Cho IH, Kang S and Koh HK: Bee venom reduces neuroinflammatin in the MPTP-induced model of parkinson's disease. Int J Neurosci. 121:209–217. 2011. View Article : Google Scholar : PubMed/NCBI

9 

Mousli M, Bueb JL, Bronner C, Rouot B and Landry Y: G protein activation: A receptor independent mode of action for cationic amphiphilic neuropeptides and venom peptides. Tends Pharmacol Sci. 11:358–362. 1990. View Article : Google Scholar

10 

Shin JM, Jeong YJ, Cho HJ, Park KK, Chung IK, Lee IK, Kwak JY, Chang HW, Kim CH, Moon SK, et al: Melittin suppresses HIF-1α/VEGF expression through inhibition of ERK and mTOR/p70S6K pathway in human cervical carcinoma cell. PLoS One. 8:e693802013. View Article : Google Scholar : PubMed/NCBI

11 

Shin SH, Ye MK, Kim JK and Park KK: Bee venom at different concentrations modulates the aeroallergen-induced activation of nasal polyp epithelial cells. Pharmacol. 91:39–47. 2013. View Article : Google Scholar

12 

Shin SH, Kim YH, Kim JK and Park KK: Anti-allergic effect of bee venom in an allergic rhinitis mouse model. Biol Pharma Bull. 37:1295–1300. 2014. View Article : Google Scholar

13 

Han S, Lee K, Yeo J, Kweon H, Woo S, Lee M, Baek H, Kim S and Park K: Effect of honey bee venom on microglial cells nitric oxide and tumor necrosis factor-alpha production stimulated by LPS. J Ethnopharmacol. 111:176–181. 2007. View Article : Google Scholar : PubMed/NCBI

14 

Kim JY, Lee WR, Kim KH, An HJ, Chang YC, Han SM, Park YY, Pak SC and Park KK: Effects of bee venom against propionibacterium acnes-induced inflammation in human keratinocytes and monocytes. Int J Mol Med. 35:1651–1656. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Kim WH, An HJ, Kim JY, Gwon MG, Gu H, Park JB, Sung WJ, Kwon YC, Park KD, Han SM and Park KK: Bee venom inhibits porphyromonas gingivalis lipopolysaccharides-induced pro-inflammatory cytokines through suppression of NF-κB and AP-1 signaling pathways. Molecules. 21:pii: E1508. 2016. View Article : Google Scholar

16 

Shin SH and Ye MK: The effect of nano-silver on allergic rhinitis model in mice. Clin Exp Otorhinolaryngol. 5:222–227. 2012. View Article : Google Scholar : PubMed/NCBI

17 

Saini SS, Peterson JW and Chopra AK: Melittin binds to secretory phospholipase A2 and inhibits its enzymatic activity. Biochem Biophys Res Commun. 238:436–442. 1997. View Article : Google Scholar : PubMed/NCBI

18 

Fujioka S, Niu J, Schmidt C, Sclabas GM, Peng B, Uwagawa T, Li Z, Evans DB, Abbruzzese JL and Chiao PJ: NF-kappaB and AP-1 connection: Mechanism of NF-kappaB-dependent regulation of AP-1 activity. Mol Cell Biol. 24:7806–7819. 2004. View Article : Google Scholar : PubMed/NCBI

19 

Park HJ, Son DJ, Lee CW, Choi MS, Lee US, Song HS, Lee JM and Hong JT: Melittin inhibits inflammatory target gene expression and mediator generation via interaction with IkappaB kinase. Biochem Pharmacol. 73:237–247. 2007. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

May 2018
Volume 17 Issue 5

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Shin, S., Ye, M., Choi, S., & Park, K. (2018). Anti-inflammatory effect of bee venom in an allergic chronic rhinosinusitis mouse model. Molecular Medicine Reports, 17, 6632-6638. https://doi.org/10.3892/mmr.2018.8720
MLA
Shin, S., Ye, M., Choi, S., Park, K."Anti-inflammatory effect of bee venom in an allergic chronic rhinosinusitis mouse model". Molecular Medicine Reports 17.5 (2018): 6632-6638.
Chicago
Shin, S., Ye, M., Choi, S., Park, K."Anti-inflammatory effect of bee venom in an allergic chronic rhinosinusitis mouse model". Molecular Medicine Reports 17, no. 5 (2018): 6632-6638. https://doi.org/10.3892/mmr.2018.8720