Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
March-2020 Volume 21 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2020 Volume 21 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article

Iron deficiency attenuates catecholamine‑stimulated lipolysis via downregulation of lipolysis‑related proteins and glucose utilization in 3T3‑L1 adipocytes

  • Authors:
    • Kazuhiko Higashida
    • Nodoka Takeuchi
    • Sachika Inoue
    • Takeshi Hashimoto
    • Naoya Nakai
  • View Affiliations / Copyright

    Affiliations: Department of Nutrition, Laboratory of Exercise Nutrition, University of Shiga Prefecture, Hikone, Shiga 522‑8533, Japan, Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga 525‑8577, Japan
    Copyright: © Higashida et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1383-1389
    |
    Published online on: January 13, 2020
       https://doi.org/10.3892/mmr.2020.10929
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Iron deficiency has been associated with obesity and related metabolic disorders. The aim of the present study was to evaluate the effect of iron deficiency on fat metabolism, particularly regarding the lipolytic activity, lipolysis‑related protein expression, and glucose utilization of adipocytes. Differentiated 3T3‑L1 adipocytes were incubated with an iron chelator, deferoxamine mesylate (DFO), for 48 h. Subsequently, basal and isoproterenol‑stimulated lipolytic activities, the proteins involved in lipolysis and glucose utilization were compared with a control (CON). The results revealed that treatment with DFO significantly decreased the free iron content but did not affect total protein and lipid contents in adipocytes. Iron deprivation caused a significant reduction in isoproterenol‑stimulated lipolysis, but not basal lipolysis. Lipolysis‑related proteins, including perilipin A, adipose triglyceride lipase, hormone sensitive lipase and comparative gene identification‑58, were decreased in the DFO compared with the CON group. Furthermore, glucose utilization, a major precursor of 3‑glycerol phosphate for micro‑lipid droplet synthesis during lipolysis and the expression of glucose transporter (GLUT) 4 were significantly lower in the DFO group when compared with the CON group. However, hypoxia‑inducible factor‑1α and GLUT1 expressions were upregulated in DFO‑treated adipocytes. In conclusion, the results indicated that low iron availability attenuated catecholamine‑stimulated lipolysis by downregulating lipolytic enzymes and glucose utilization in 3T3‑L1 adipocytes.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Haemmerle G, Lass A, Zimmermann R, Gorkiewicz G, Meyer C, Rozman J, Heldmaier G, Maier R, Theussl C, Eder S, et al: Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science. 312:734–737. 2006. View Article : Google Scholar : PubMed/NCBI

2 

Lefèvre C, Jobard F, Caux F, Bouadjar B, Karaduman A, Heilig R, Lakhdar H, Wollenberg A, Verret JL, Weissenbach J, et al: Mutations in CGI-58, the gene encoding a new protein of the esterase/lipase/thioesterase subfamily, in Chanarin-Dorfman syndrome. Am J Hum Genet. 69:1002–1012. 2001. View Article : Google Scholar : PubMed/NCBI

3 

Radner FP, Streith IE, Schoiswohl G, Schweiger M, Kumari M, Eichmann TO, Rechberger G, Koefeler HC, Eder S, Schauer S, et al: Growth retardation, impaired triacylglycerol catabolism, hepatic steatosis, and lethal skin barrier defect in mice lacking comparative gene identification-58 (CGI-58). J Biol Chem. 285:7300–7311. 2010. View Article : Google Scholar : PubMed/NCBI

4 

Langin D, Dicker A, Tavernier G, Hoffstedt J, Mairal A, Rydén M, Arner E, Sicard A, Jenkins CM, Viguerie N, et al: Adipocyte lipases and defect of lipolysis in human obesity. Diabetes. 54:3190–3197. 2005. View Article : Google Scholar : PubMed/NCBI

5 

Steinberg GR, Kemp BE and Watt MJ: Adipocyte triglyceride lipase expression in human obesity. Am J Physiol Endocrinol Metab. 293:E958–E964. 2007. View Article : Google Scholar : PubMed/NCBI

6 

Cighetti G, Duca L, Bortone L, Sala S, Nava I, Fiorelli G and Cappellini MD: Oxidative status and malondialdehyde in beta-thalassaemia patients. Eur J Clin Invest. 32 (Suppl 1):55–60. 2002. View Article : Google Scholar : PubMed/NCBI

7 

Yan HF, Liu ZY, Guan ZA and Guo C: Deferoxamine ameliorates adipocyte dysfunction by modulating iron metabolism in ob/ob mice. Endocr Connect. 7:604–616. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Zhao L, Zhang X, Shen Y, Fang X, Wang Y and Wang F: Obesity and iron deficiency: A quantitative meta-analysis. Obes Rev. 16:1081–1093. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Moayeri H, Bidad K, Zadhoush S, Gholami N and Anari S: Increasing prevalence of iron deficiency in overweight and obese children and adolescents (Tehran Adolescent Obesity Study). Eur J Pediatr. 165:813–814. 2006. View Article : Google Scholar : PubMed/NCBI

10 

Nead KG, Halterman JS, Kaczorowski JM, Auinger P and Weitzman M: Overweight children and adolescents: A risk group for iron deficiency. Pediatrics. 114:104–108. 2004. View Article : Google Scholar : PubMed/NCBI

11 

Pinhas-Hamiel O, Newfield RS, Koren I, Agmon A, Lilos P and Phillip M: Greater prevalence of iron deficiency in overweight and obese children and adolescents. Int J Obes Relat Metab Disord. 27:416–418. 2003. View Article : Google Scholar : PubMed/NCBI

12 

Wenzel BJ, Stults HB and Mayer J: Hypoferraemia in obese adolescents. Lancet. 2:327–328. 1962. View Article : Google Scholar : PubMed/NCBI

13 

Bagni UV, Luiz RR and Veiga GV: Overweight is associated with low hemoglobin levels in adolescent girls. Obes Res Clin Pract. 7:e218–e229. 2013. View Article : Google Scholar : PubMed/NCBI

14 

Park CY, Chung J, Koo KO, Kim MS and Han SN: Hepatic iron storage is related to body adiposity and hepatic inflammation. Nutr Metab (Lond). 14:142017. View Article : Google Scholar : PubMed/NCBI

15 

Yamagishi H, Okazaki H, Shimizu M, Izawa T and Komabayashi T: Relationships among serum triacylglycerol, fat pad weight, and lipolysis in iron-deficient rats. J Nutr Biochem. 11:455–460. 2000. View Article : Google Scholar : PubMed/NCBI

16 

Hashimoto T, Segawa H, Okuno M, Kano H, Hamaguchi HO, Haraguchi T, Hiraoka Y, Hasui S, Yamaguchi T, Hirose F, et al: Active involvement of micro-lipid droplets and lipid-droplet-associated proteins in hormone-stimulated lipolysis in adipocytes. J Cell Sci. 125:6127–6136. 2012. View Article : Google Scholar : PubMed/NCBI

17 

Yamaguchi T, Omatsu N, Morimoto E, Nakashima H, Ueno K, Tanaka T, Satouchi K, Hirose F and Osumi T: CGI-58 facilitates lipolysis on lipid droplets but is not involved in the vesiculation of lipid droplets caused by hormonal stimulation. J Lipid Res. 48:1078–1089. 2007. View Article : Google Scholar : PubMed/NCBI

18 

Borel MJ, Beard JL and Farrell PA: Hepatic glucose production and insulin sensitivity and responsiveness in iron-deficient anemic rats. Am J Physiol. 264:E380–E390. 1993.PubMed/NCBI

19 

Han DH, Hancock CR, Jung SR, Higashida K, Kim SH and Holloszy JO: Deficiency of the mitochondrial electron transport chain in muscle does not cause insulin resistance. PLoS One. 6:e197392011. View Article : Google Scholar : PubMed/NCBI

20 

Hashimoto T, Yokokawa T, Endo Y, Iwanaka N, Higashida K and Taguchi S: Modest hypoxia significantly reduces triglyceride content and lipid droplet size in 3T3-L1 adipocytes. Biochem Biophys Res Commun. 440:43–49. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Granneman JG, Moore HP, Krishnamoorthy R and Rathod M: Perilipin controls lipolysis by regulating the interactions of AB-hydrolase containing 5 (Abhd5) and adipose triglyceride lipase (Atgl). J Biol Chem. 284:34538–34544. 2009. View Article : Google Scholar : PubMed/NCBI

22 

Granneman JG and Moore H-PH: Location, location: Protein trafficking and lipolysis in adipocytes. Trends Endocrinol Metab. 19:3–9. 2008. View Article : Google Scholar : PubMed/NCBI

23 

Zechner R, Kienesberger PC, Haemmerle G, Zimmermann R and Lass A: Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores. J Lipid Res. 50:3–21. 2009. View Article : Google Scholar : PubMed/NCBI

24 

Datz C, Felder TK, Niederseer D and Aigner E: Iron homeostasis in the metabolic syndrome. Eur J Clin Invest. 43:215–224. 2013. View Article : Google Scholar : PubMed/NCBI

25 

Bakar MH, Sarmidi MR, Kai CK, Huri HZ and Yaakob H: Amelioration of mitochondrial dysfunction-induced insulin resistance in differentiated 3T3-L1 adipocytes via inhibition of NF-κB pathways. Int J Mol Sci. 15:22227–22257. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Marques AP, Rosmaninho-Salgado J, Estrada M, Cortez V, Nobre RJ and Cavadas C: Hypoxia mimetic induces lipid accumulation through mitochondrial dysfunction and stimulates autophagy in murine preadipocyte cell line. Biochim Biophys Acta Gen Subj. 1861:673–682. 2017. View Article : Google Scholar : PubMed/NCBI

27 

Wood IS, Wang B, Lorente-Cebrián S and Trayhurn P: Hypoxia increases expression of selective facilitative glucose transporters (GLUT) and 2-deoxy-D-glucose uptake in human adipocytes. Biochem Biophys Res Commun. 361:468–473. 2007. View Article : Google Scholar : PubMed/NCBI

28 

Varela-Guruceaga M, Milagro FI, Martínez JA and de Miguel C: Effect of hypoxia on caveolae-related protein expression and insulin signaling in adipocytes. Mol Cell Endocrinol. 473:257–267. 2018. View Article : Google Scholar : PubMed/NCBI

29 

Weiszenstein M, Musutova M, Plihalova A, Westlake K, Elkalaf M, Koc M, Prochazka A, Pala J, Gulati S, Trnka J, et al: Adipogenesis, lipogenesis and lipolysis is stimulated by mild but not severe hypoxia in 3T3-L1 cells. Biochem Biophys Res Commun. 478:727–732. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Fink T, Abildtrup L, Fogd K, Abdallah BM, Kassem M, Ebbesen P and Zachar V: Induction of adipocyte-like phenotype in human mesenchymal stem cells by hypoxia. Stem Cells. 22:1346–1355. 2004. View Article : Google Scholar : PubMed/NCBI

31 

Lin Q, Lee YJ and Yun Z: Differentiation arrest by hypoxia. J Biol Chem. 281:30678–30683. 2006. View Article : Google Scholar : PubMed/NCBI

32 

Park YS, Huang Y, Park YJ, David AE, White L, He H, Chung HS and Yang VC: Specific down regulation of 3T3-L1 adipocyte differentiation by cell-permeable antisense HIF1alpha-oligonucleotide. Control Release. 144:82–90. 2010. View Article : Google Scholar

33 

Yun Z, Maecker HL, Johnson RS and Giaccia AJ: Inhibition of PPAR gamma 2 gene expression by the HIF-1-regulated gene DEC1/Stra13: A mechanism for regulation of adipogenesis by hypoxia. Dev Cell. 2:331–341. 2002. View Article : Google Scholar : PubMed/NCBI

34 

Kim KH, Song MJ, Chung J, Park H and Kim JB: Hypoxia inhibits adipocyte differentiation in a HDAC-independent manner. Biochem Biophys Res Commun. 333:1178–1184. 2005. View Article : Google Scholar : PubMed/NCBI

35 

Gabrielsen JS, Gao Y, Simcox JA, Huang J, Thorup D, Jones D, Cooksey RC, Gabrielsen D, Adams TD, Hunt SC, et al: Adipocyte iron regulates adiponectin and insulin sensitivity. J Clin Invest. 122:3529–3540. 2012. View Article : Google Scholar : PubMed/NCBI

36 

Boudina S and Graham TE: Mitochondrial function/dysfunction in white adipose tissue. Exp Physiol. 99:1168–1178. 2014. View Article : Google Scholar : PubMed/NCBI

37 

Fassina G, Dorigo P and Gaion RM: Equilibrium between metabolic pathways producing energy: A key factor in regulating lipolysis. Pharmacol Res Commun. 6:1–21. 1974. View Article : Google Scholar : PubMed/NCBI

38 

Rensvold JW, Krautkramer KA, Dowell JA, Denu JM and Pagliarini DJ: Iron Deprivation Induces Transcriptional Regulation of Mitochondrial Biogenesis. J Biol Chem. 291:20827–20837. 2016. View Article : Google Scholar : PubMed/NCBI

39 

Rensvold JW, Ong SE, Jeevananthan A, Carr SA, Mootha VK and Pagliarini DJ: Complementary RNA and protein profiling identifies iron as a key regulator of mitochondrial biogenesis. Cell Rep. 3:237–245. 2013. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Higashida K, Takeuchi N, Inoue S, Hashimoto T and Nakai N: Iron deficiency attenuates catecholamine‑stimulated lipolysis via downregulation of lipolysis‑related proteins and glucose utilization in 3T3‑L1 adipocytes. Mol Med Rep 21: 1383-1389, 2020.
APA
Higashida, K., Takeuchi, N., Inoue, S., Hashimoto, T., & Nakai, N. (2020). Iron deficiency attenuates catecholamine‑stimulated lipolysis via downregulation of lipolysis‑related proteins and glucose utilization in 3T3‑L1 adipocytes. Molecular Medicine Reports, 21, 1383-1389. https://doi.org/10.3892/mmr.2020.10929
MLA
Higashida, K., Takeuchi, N., Inoue, S., Hashimoto, T., Nakai, N."Iron deficiency attenuates catecholamine‑stimulated lipolysis via downregulation of lipolysis‑related proteins and glucose utilization in 3T3‑L1 adipocytes". Molecular Medicine Reports 21.3 (2020): 1383-1389.
Chicago
Higashida, K., Takeuchi, N., Inoue, S., Hashimoto, T., Nakai, N."Iron deficiency attenuates catecholamine‑stimulated lipolysis via downregulation of lipolysis‑related proteins and glucose utilization in 3T3‑L1 adipocytes". Molecular Medicine Reports 21, no. 3 (2020): 1383-1389. https://doi.org/10.3892/mmr.2020.10929
Copy and paste a formatted citation
x
Spandidos Publications style
Higashida K, Takeuchi N, Inoue S, Hashimoto T and Nakai N: Iron deficiency attenuates catecholamine‑stimulated lipolysis via downregulation of lipolysis‑related proteins and glucose utilization in 3T3‑L1 adipocytes. Mol Med Rep 21: 1383-1389, 2020.
APA
Higashida, K., Takeuchi, N., Inoue, S., Hashimoto, T., & Nakai, N. (2020). Iron deficiency attenuates catecholamine‑stimulated lipolysis via downregulation of lipolysis‑related proteins and glucose utilization in 3T3‑L1 adipocytes. Molecular Medicine Reports, 21, 1383-1389. https://doi.org/10.3892/mmr.2020.10929
MLA
Higashida, K., Takeuchi, N., Inoue, S., Hashimoto, T., Nakai, N."Iron deficiency attenuates catecholamine‑stimulated lipolysis via downregulation of lipolysis‑related proteins and glucose utilization in 3T3‑L1 adipocytes". Molecular Medicine Reports 21.3 (2020): 1383-1389.
Chicago
Higashida, K., Takeuchi, N., Inoue, S., Hashimoto, T., Nakai, N."Iron deficiency attenuates catecholamine‑stimulated lipolysis via downregulation of lipolysis‑related proteins and glucose utilization in 3T3‑L1 adipocytes". Molecular Medicine Reports 21, no. 3 (2020): 1383-1389. https://doi.org/10.3892/mmr.2020.10929
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team