1
|
Rosen ED and Spiegelman BM: Adipocytes as
regulators of energy balance and glucose homeostasis. Nature.
444:847–853. 2006. View Article : Google Scholar : PubMed/NCBI
|
2
|
Gunawardana SC: Benefits of healthy
adipose tissue in the treatment of diabetes. World J Diabetes.
5:420–430. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Eichmann TO, Kumari M, Haas JT, Farese RV
Jr, Zimmermann R, Lass A and Zechner R: Studies on the substrate
and stereo/regioselectivity of adipose triglyceride lipase,
hormone-sensitive lipase, and diacylglycerol-O-acyltransferases. J
Biol Chem. 287:41446–41457. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Haemmerle G, Zimmermann R, Hayn M, Theussl
C, Waeg G, Wagner E, Sattler W, Magin TM, Wagner EF and Zechner R:
Hormone-sensitive lipase deficiency in mice causes diglyceride
accumulation in adipose tissue, muscle, and testis. J Biol Chem.
277:4806–4815. 2002. View Article : Google Scholar : PubMed/NCBI
|
5
|
Wang SP, Yang H, Wu JW, Gauthier N, Fukao
T and Mitchell GA: Metabolism as a tool for understanding human
brain evolution: Lipid energy metabolism as an example. J Hum Evol.
77:41–49. 2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Boden G: Effects of free fatty acids (FFA)
on glucose metabolism: Significance for insulin resistance and type
2 diabetes. Exp Clin Endocrinol Diabetes. 111:121–124. 2003.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Hauke S, Keutler K, Phapale P, Yushchenko
DA and Schultz C: Endogenous fatty acids are essential signaling
factors of pancreatic β-cells and insulin secretion. Diabetes.
67:1986–1998. 2018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Xin Y and Wang Y, Chi J, Zhu X, Zhao H,
Zhao S and Wang Y: Elevated free fatty acid level is associated
with insulin-resistant state in nondiabetic Chinese people.
Diabetes Metab Syndr Obes. 12:139–147. 2019. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kashyap S, Belfort R, Gastaldelli A,
Pratipanawatr T, Berria R, Pratipanawatr W, Bajaj M, Mandarino L,
DeFronzo R and Cusi K: A sustained increase in plasma free fatty
acids impairs insulin secretion in nondiabetic subjects genetically
predisposed to develop type 2 diabetes. Diabetes. 52:2461–2474.
2003. View Article : Google Scholar : PubMed/NCBI
|
10
|
Jin Y, Khadka DB and Cho WJ:
Pharmacological effects of berberine and its derivatives: A patent
update. Expert Opin Ther Pat. 26:229–243. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Choi JS, Kim JH, Ali MY, Min BS, Kim GD
and Jung HA: Coptis chinensis alkaloids exert
anti-adipogenic activity on 3T3-L1 adipocytes by downregulating
C/EBP-α and PPAR-γ. Fitoterapia. 98:199–208. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Li Y, Zhao X, Feng X, Liu X, Deng C and Hu
CH: Berberine alleviates olanzapine-induced adipogenesis via the
AMPKα-SREBP pathway in 3T3-L1 cells. Int J Mol Sci. 17:E18652016.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Wang C, Wang Y, Ma SR, Zuo ZY, Wu YB, Kong
WJ, Wang AP and Jiang JD: Berberine inhibits adipocyte
differentiation, proliferation and adiposity through
down-regulating galectin-3. Sci Rep. 9:134152019. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhou L, Wang X, Yang Y, Wu L, Li F, Zhang
R, Yuan G, Wang N, Chen M and Ning G: Berberine attenuates
cAMP-induced lipolysis via reducing the inhibition of
phosphodiesterase in 3T3-L1 adipocytes. Biochim Biophys Acta.
1812:527–535. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Jiang D, Wang D, Zhuang X, Wang Z, Ni Y,
Chen S and Sun F: Berberine increases adipose triglyceride lipase
in 3T3-L1 adipocytes through the AMPK pathway. Lipids Health Dis.
15:2142016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Carling D: The AMP-activated protein
kinase cascade-a unifying system for energy control. Trends Biochem
Sci. 29:18–24. 2004. View Article : Google Scholar : PubMed/NCBI
|
17
|
Li J, Li S, Wang F and Xin F: Structural
and biochemical insights into the allosteric activation mechanism
of AMP-activated protein kinase. Chem Biol Drug Des. 89:663–669.
2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wang Z, Pini M, Yao T, Zhou Z, Sun C,
Fantuzzi G and Song Z: Homocysteine suppresses lipolysis in
adipocytes by activating the AMPK pathway. Am J Physiol Endocrinol
Metab. 301:E703–E712. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kim SJ, Tang T, Abbott M, Viscarra JA,
Wang Y and Sul HS: AMPK phosphorylates desnutrin/ATGL and
hormone-sensitive lipase to regulate lipolysis and fatty acid
oxidation within adipose tissue. Mol Cell Biol. 36:1961–1976. 2016.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Koopmans SJ and Schuurman T:
Considerations on pig models for appetite, metabolic syndrome and
obese type 2 diabetes: From food intake to metabolic disease. Eur J
Pharmacol. 759:231–239. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Hausman GJ, Basu U, Wei S, Hausman DB and
Dodson MV: Preadipocyte and adipose tissue differentiation in meat
animals: Influence of species and anatomical location. Annu Rev
Anim Biosci. 2:323–351. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Yang Y and Yang G: Rosiglitazone regulates
IL-6-stimulated lipolysis in porcine adipocytes. Biochem Cell Biol.
88:853–860. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Bai L, Pang WJ, Yang YJ and Yang GS:
Modulation of Sirt1 by resveratrol and nicotinamide alters
proliferation and differentiation of pig preadipocytes. Mol Cell
Biochem. 307:129–140. 2008. View Article : Google Scholar : PubMed/NCBI
|
24
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Ding L, Zhang F, Zhao MX, Ren XS, Chen Q,
Li YH, Kang YM and Zhu GQ: Reduced lipolysis response to adipose
afferent reflex involved in impaired activation of
adrenoceptor-cAMP-PKA-hormone sensitive lipase pathway in obesity.
Sci Rep. 6:343742016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Yang Y, Liu F, Lu R and Jia J: Berberine
inhibits adipogenesis in porcine adipocytes via AMP-Activated
protein kinase-dependent and -independent mechanisms. Lipids.
54:667–678. 2019. View Article : Google Scholar : PubMed/NCBI
|
27
|
Yang Y, Ju D, Zhang M and Yang G:
Interleukin-6stimulates lipolysis in porcine adipocytes. Endocrine.
33:261–269. 2008. View Article : Google Scholar : PubMed/NCBI
|
28
|
Capurso C and Capurso A: From excess
adiposity to insulin resistance: The role of free fatty acids.
Vascul Pharmacol. 57:91–97. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Chen C, Yu Z, Li Y, Fichna J and Storr M:
Effects of berberine in the gastrointestinal tract - a review of
actions and therapeutic implications. Am J Chin Med. 42:1053–1070.
2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Xu JH, Liu XZ, Pan W and Zou DJ: Berberine
protects against diet-induced obesity through regulating metabolic
endotoxemia and gut hormone levels. Mol Med Rep. 15:2765–2787.
2017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Ye L, Liang S, Guo C, Yu X, Zhao J, Zhang
H and Shang W: Inhibition of M1 macrophage activation in adipose
tissue by berberine improves insulin resistance. Life Sci.
166:82–91. 2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Zhang X, Zhao Y, Zhang M, Pang X, Xu J,
Kang C, Li M, Zhang C, Zhang Z, Zhang Y, et al: Structural changes
of gut microbiota during berberine-mediated prevention of obesity
and insulin resistance in high-fat diet-fed rats. PLoS One.
7:e425292012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Barazzoni R, Gortan Cappellari G, Ragni M
and Nisoli E: Insulin resistance in obesity: An overview of
fundamental alterations. Eat Weight Disord. 23:149–157. 2018.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Ribas V, Nguyen MT, Henstridge DC, Nguyen
AK, Beaven SW, Watt MJ and Hevener AL: Impaired oxidative
metabolism and inflammation are associated with insulin resistance
in ERalpha-deficient mice. Am J Physiol Endocrinol Metab.
298:E304–E319. 2010. View Article : Google Scholar : PubMed/NCBI
|
35
|
Zambell KL, Horn WF and Keim NL:
Conjugated linoleic acid supplementation in humans: Effects on
fatty acid and glycerol kinetics. Lipids. 36:767–772. 2001.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Miyoshi H, Souza SC, Zhang HH, Strissel
KJ, Christoffolete MA, Kovsan J, Rudich A, Kraemer FB, Bianco AC,
Obin MS, et al: Perilipin promotes hormone-sensitive
lipase-mediated adipocyte lipolysis via phosphorylation-dependent
and -independent mechanisms. J Biol Chem. 281:15837–15844. 2006.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Smith AJ, Thompson BR, Sanders MA and
Bernlohr DA: Interaction of the adipocyte fatty acid-binding
protein with the hormone-sensitive lipase: Regulation by fatty
acids and phosphorylation. J Biol Chem. 282:32424–32432. 2007.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Jocken JW, Roepstorff C, Goossens GH, van
der Baan P, van Baak M, Saris WH, Kiens B and Blaak EE:
Hormone-sensitive lipase serine phosphorylation and glycerol
exchange across skeletal muscle in lean and obese subjects: Effect
of beta-adrenergic stimulation. Diabetes. 57:1834–1841. 2008.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Lass A, Zimmermann R, Haemmerle G,
Riederer M, Schoiswohl G, Schweiger M, Kienesberger P, Strauss JG,
Gorkiewicz G and Zechner R: Adipose triglyceride lipase-mediated
lipolysis of cellular fat stores is activated by CGI-58 and
defective in Chanarin-Dorfman Syndrome. Cell Metab. 3:309–319.
2006. View Article : Google Scholar : PubMed/NCBI
|
40
|
Subramanian V, Rothenberg A, Gomez C,
Cohen AW, Garcia A, Bhattacharyya S, Shapiro L, Dolios G, Wang R,
Lisanti MP, et al: Perilipin A mediates the reversible binding of
CGI-58 to lipid droplets in 3T3-L1 adipocytes. J Biol Chem.
279:42062–42071. 2004. View Article : Google Scholar : PubMed/NCBI
|
41
|
Sahu-Osen A, Montero-Moran G, Schittmayer
M, Fritz K, Dinh A, Chang YF, McMahon D, Boeszoermenyi A, Cornaciu
I, Russell D, et al: CGI-58/ABHD5 is phosphorylated on Ser239 by
protein kinase A: Control of subcellular localization. J Lipid Res.
56:109–121. 2015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Durand S and Cimarelli A: The inside out
of lentiviral vectors. Viruses. 3:132–159. 2011. View Article : Google Scholar : PubMed/NCBI
|
43
|
Yan Y, Yang X, Zhao T, Zou Y, Li R and Xu
Y: Salicylates promote mitochondrial biogenesis by regulating the
expression of PGC-1α in murine 3T3-L1 pre-adipocytes. Biochem
Biophys Res Commun. 491:436–441. 2017. View Article : Google Scholar : PubMed/NCBI
|
44
|
Yan M, Audet-Walsh É, Manteghi S, Dufour
CR, Walker B, Baba M, St-Pierre J, Giguère V and Pause A: Chronic
AMPK activation via loss of FLCN induces functional beige adipose
tissue through PGC-1α/ERRα. Genes Dev. 30:1034–1046. 2016.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Kleiner S, Mepani RJ, Laznik D, Ye L,
Jurczak MJ, Jornayvaz FR, Estall JL, Chatterjee Bhowmick D, Shulman
GI and Spiegelman BM: Development of insulin resistance in mice
lacking PGC-1α in adipose tissues. Proc Natl Acad Sci USA.
109:9635–9640. 2012. View Article : Google Scholar : PubMed/NCBI
|
46
|
Scarpulla RC: Transcriptional paradigms in
mammalian mitochondrial biogenesis and function. Physiol Rev.
88:611–638. 2008. View Article : Google Scholar : PubMed/NCBI
|
47
|
Chen Z, Tao S, Li X and Yao Q: Resistin
destroys mitochondrial biogenesis by inhibiting the PGC-1α/
NRF1/TFAM signaling pathway. Biochem Biophys Res Commun. 504:13–18.
2018. View Article : Google Scholar : PubMed/NCBI
|
48
|
Calderon-Dominguez M, Sebastián D, Fucho
R, Weber M, Mir JF, García-Casarrubios E, Obregón MJ, Zorzano A,
Valverde ÁM, Serra D, et al: Carnitine palmitoyltransferase 1
increases lipolysis, UCP1 protein expression and mitochondrial
activity in brown adipocytes. PLoS One. 11:e01593992016. View Article : Google Scholar : PubMed/NCBI
|
49
|
Jia JJ, Zhang X, Ge CR and Jois M: The
polymorphisms of UCP2 and UCP3 genes associated with fat
metabolism, obesity and diabetes. Obes Rev. 10:519–526. 2009.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Demine S, Tejerina S, Bihin B, Thiry M,
Reddy N, Renard P, Raes M, Jadot M and Arnould T: Mild
mitochondrial uncoupling induces HSL/ATGL-independent lipolysis
relying on a form of autophagy in 3T3-L1 adipocytes. J Cell
Physiol. 233:1247–1265. 2018. View Article : Google Scholar : PubMed/NCBI
|
51
|
Hotamisligil GS: Inflammation and
metabolic disorders. Nature. 444:860–867. 2006. View Article : Google Scholar : PubMed/NCBI
|
52
|
Tanti JF and Jager J: Cellular mechanisms
of insulin resistance: Role of stress-regulated serine kinases and
insulin receptor substrates (IRS) serine phosphorylation. Curr Opin
Pharmacol. 9:753–762. 2009. View Article : Google Scholar : PubMed/NCBI
|