Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
February-2021 Volume 23 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2021 Volume 23 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Wnt/β‑catenin signaling: Causes and treatment targets of drug resistance in colorectal cancer (Review)

  • Authors:
    • Gui-Xian Zhu
    • Dian Gao
    • Zhao-Zhao Shao
    • Li Chen
    • Wen-Jie Ding
    • Qiong-Fang Yu
  • View Affiliations / Copyright

    Affiliations: Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China, Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
    Copyright: © Zhu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 105
    |
    Published online on: December 1, 2020
       https://doi.org/10.3892/mmr.2020.11744
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Colorectal cancer (CRC) is the third most common malignant tumor in humans. Chemotherapy is used for the treatment of CRC. However, the effect of chemotherapy remains unsatisfactory due to drug resistance. Growing evidence has shown that the presence of highly metastatic tumor stem cells, regulation of non‑coding RNAs and the tumor microenvironment contributes to drug resistance mechanisms in CRC. Wnt/β‑catenin signaling mediates the chemoresistance of CRC in these three aspects. Therefore, the present study analyzed the abundant evidence of the contribution of Wnt/β‑catenin signaling to the development of drug resistance in CRC and discussed its possible role in improving the chemosensitivity of CRC, which may provide guidelines for its clinical treatment.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Keum N and Giovannucci E: Global burden of colorectal cancer: Emerging trends, risk factors and prevention strategies. Nat Rev Gastroenterol Hepatol. 16:713–732. 2019. View Article : Google Scholar

2 

Rawla P, Sunkara T and Barsouk A: Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Prz Gastroenterol. 14:89–103. 2019.

3 

Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global patterns and trends in colorectal cancer incidence and mortality. Gut. 66:683–691. 2017. View Article : Google Scholar

4 

Marmol I, Sanchez-de-Diego C, Pradilla Dieste A, Cerrada E and Rodriguez Yoldi MJ: Colorectal carcinoma: A general overview and future perspectives in colorectal cancer. Int J Mol Sci. 18:1972017. View Article : Google Scholar

5 

Calvert PM and Frucht H: The genetics of colorectal cancer. Ann Intern Med. 137:603–612. 2002. View Article : Google Scholar

6 

Angarita FA, Feinberg AE, Feinberg SM, Riddell RH and McCart JA: Management of complex polyps of the colon and rectum. Int J Colorectal Dis. 33:115–129. 2018. View Article : Google Scholar

7 

Blank A, Roberts DE II, Dawson H, Zlobec I and Lugli A: Tumor heterogeneity in primary colorectal cancer and corresponding metastases. Does the apple fall far from the tree? Front Med (Lausanne). 5:2342018.

8 

Dahmus JD, Kotler DL, Kastenberg DM and Kistler CA: The gut microbiome and colorectal cancer: A review of bacterial pathogenesis. J Gastrointest Oncol. 9:769–777. 2018. View Article : Google Scholar

9 

Jayasekara H, English DR, Haydon A, Hodge AM, Lynch BM, Rosty C, Williamson EJ, Clendenning M, Southey MC, Jenkins MA, et al: Associations of alcohol intake, smoking, physical activity and obesity with survival following colorectal cancer diagnosis by stage, anatomic site and tumor molecular subtype. Int J Cancer. 142:238–250. 2018. View Article : Google Scholar

10 

Mehta A and Patel BM: Therapeutic opportunities in colon cancer: Focus on phosphodiesterase inhibitors. Life Sci. 230:150–161. 2019. View Article : Google Scholar

11 

Salonga D, Danenberg KD, Johnson M, Metzger R, Groshen S, Tsao-Wei DD, Lenz HJ, Leichman CG, Leichman L, Diasio RB and Danenberg PV: Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase. Clin Cancer Res. 6:1322–1327. 2000.

12 

Showalter SL, Showalter TN, Witkiewicz A, Havens R, Kennedy EP, Hucl T, Kern SE, Yeo CJ and Brody JR: Evaluating the drug-target relationship between thymidylate synthase expression and tumor response to 5-fluorouracil. Is it time to move forward? Cancer Biol Ther. 7:986–994. 2008. View Article : Google Scholar

13 

Yaffee P, Osipov A, Tan C, Tuli R and Hendifar A: Review of systemic therapies for locally advanced and metastatic rectal cancer. J Gastrointest Oncol. 6:185–200. 2015.

14 

Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A, Bets D, Mueser M, Harstrick A, Verslype C, et al: Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med. 351:337–345. 2004. View Article : Google Scholar

15 

Van Cutsem E, Peeters M, Siena S, Humblet Y, Hendlisz A, Neyns B, Canon JL, Van Laethem JL, Maurel J, Richardson G, et al: Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol. 25:1658–1664. 2007. View Article : Google Scholar

16 

Hu T, Li Z, Gao CY and Cho CH: Mechanisms of drug resistance in colon cancer and its therapeutic strategies. World J Gastroenterol. 22:6876–6889. 2016. View Article : Google Scholar

17 

Li YJ, Lei YH, Yao N, Wang CR, Hu N, Ye WC, Zhang DM and Chen ZS: Autophagy and multidrug resisitance in cancer. Chin J Cancer. 36:522017. View Article : Google Scholar

18 

Thomas H and Coley HM: Overcoming multidrug resistance in cancer: An update on the clinical strategy of inhibiting p-glycoprotein. Cancer Control. 10:159–165. 2003. View Article : Google Scholar

19 

Tredan O, Galmarini CM, Patel K and Tannock IF: Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst. 99:1441–1454. 2007. View Article : Google Scholar

20 

Wang MY, Qiu YH, Cai ML, Zhang CH, Wang XW, Liu H, Chen Y, Zhao WL, Liu JB and Shao RG: Role and molecular mechanism of stem cells in colorectal cancer initiation. J Drug Target. 28:1–10. 2020. View Article : Google Scholar

21 

Liu X, Fu Q, Du Y, Yang Y and Cho WC: MicroRNA as regulators of cancer stem cells and chemoresistance in colorectal cancer. Curr Cancer Drug Targets. 16:738–754. 2016. View Article : Google Scholar

22 

Fanale D, Barraco N, Listi A, Bazan V and Russo A: Non-coding RNAs functioning in colorectal cancer stem cells. Adv Exp Med Biol. 937:93–108. 2016. View Article : Google Scholar

23 

Rahmani F, Avan A, Hashemy SI and Hassanian SM: Role of Wnt/beta-catenin signaling regulatory microRNAs in the pathogenesis of colorectal cancer. J Cell Physiol. 233:811–817. 2018. View Article : Google Scholar

24 

Das PK, Islam F and Lam AK: The roles of cancer stem cells and therapy resistance in colorectal carcinoma. Cells. 9:13922020. View Article : Google Scholar

25 

Chikazawa N, Tanaka H, Tasaka T, Nakamura M, Tanaka M, Onishi H and Katano M: Inhibition of Wnt signaling pathway decreases chemotherapy-resistant side-population colon cancer cells. Anticancer Res. 30:2041–2048. 2010.

26 

Shi L, Xi J, Xu X, Peng B and Zhang B: MiR-148a suppressed cell invasion and migration via targeting WNT10b and modulating β-catenin signaling in cisplatin-resistant colorectal cancer cells. Biomed Pharmacother. 109:902–909. 2019. View Article : Google Scholar

27 

Hu YB, Yan C, Mu L, Mi YL, Zhao H, Hu H, Li XL, Tao DD, Wu YQ, Gong JP and Qin JC: Exosomal Wnt-induced dedifferentiation of colorectal cancer cells contributes to chemotherapy resistance. Oncogene. 38:1951–1965. 2019. View Article : Google Scholar

28 

Nusse R and Varmus HE: Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell. 31:99–109. 1982. View Article : Google Scholar

29 

Rijsewijk F, Schuermann M, Wagenaar E, Parren P, Weigel D and Nusse R: The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell. 50:649–657. 1987. View Article : Google Scholar

30 

Kahn M: Can we safely target the WNT pathway? Nat Rev Drug Discov. 13:513–532. 2014. View Article : Google Scholar

31 

Zeng ZY, Zhou YH, Zhang WL, Xiong W, Fan SQ, Li XL, Luo XM, Wu MH, Yang YX, Huang C, et al: Gene expression profiling of nasopharyngeal carcinoma reveals the abnormally regulated Wnt signaling pathway. Hum Pathol. 38:120–133. 2007. View Article : Google Scholar

32 

Pate KT, Stringari C, Sprowl-Tanio S, Wang K, TeSlaa T, Hoverter NP, McQuade MM, Garner C, Digman MA, Teitell MA, et al: Wnt signaling directs a metabolic program of glycolysis and angiogenesis in colon cancer. EMBO J. 33:1454–1473. 2014. View Article : Google Scholar

33 

Polakis P: Wnt signaling in cancer. Cold Spring Harb Perspect Biol. 4:a0080522012. View Article : Google Scholar

34 

Tammela T, Sanchez-Rivera FJ, Cetinbas NM, Wu K, Joshi NS, Helenius K, Park Y, Azimi R, Kerper NR, Wesselhoeft RA, et al: A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma. Nature. 545:355–359. 2017. View Article : Google Scholar

35 

Lee SY, Jeon HM, Ju MK, Kim CH, Yoon G, Han SI, Park HG and Kang HS: Wnt/Snail signaling regulates cytochrome C oxidase and glucose metabolism. Cancer Res. 72:3607–3617. 2012. View Article : Google Scholar

36 

Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T, Yates JR III and Nusse R: Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature. 423:448–452. 2003. View Article : Google Scholar

37 

Takada R, Satomi Y, Kurata T, Ueno N, Norioka S, Kondoh H, Takao T and Takada S: Monounsaturated fatty acid modification of Wnt protein: Its role in Wnt secretion. Dev Cell. 11:791–801. 2006. View Article : Google Scholar

38 

He B, You L, Uematsu K, Xu Z, Lee AY, Matsangou M, McCormick F and Jablons DM: A monoclonal antibody against Wnt-1 induces apoptosis in human cancer cells. Neoplasia. 6:7–14. 2004. View Article : Google Scholar

39 

Chen G, Shukeir N, Potti A, Sircar K, Aprikian A, Goltzman D and Rabbani SA: Up-regulation of Wnt-1 and beta-catenin production in patients with advanced metastatic prostate carcinoma: Potential pathogenetic and prognostic implications. Cancer. 101:1345–1356. 2004. View Article : Google Scholar

40 

Babaei K, Khaksar R, Zeinali T, Hemmati H, Bandegi A, Samidoust P, Ashoobi MT, Hashemian H, Delpasand K, Talebinasab F, et al: Epigenetic profiling of MUTYH, KLF6, WNT1 and KLF4 genes in carcinogenesis and tumorigenesis of colorectal cancer. Biomedicine (Taipei). 9:222019. View Article : Google Scholar

41 

Jia S, Qu T, Feng M, Ji K, Li Z, Jiang W and Ji J: Association of Wnt1-inducible signaling pathway protein-1 with the proliferation, migration and invasion in gastric cancer cells. Tumour Biol. 39:10104283176997552017. View Article : Google Scholar

42 

Bodnar L, Stanczak A, Cierniak S, Smoter M, Cichowicz M, Kozlowski W, Szczylik C, Wieczorek M and Lamparska-Przybysz M: Wnt/β-catenin pathway as a potential prognostic and predictive marker in patients with advanced ovarian cancer. J Ovarian Res. 7:162014. View Article : Google Scholar

43 

Huang CB, Ma RJ, Xu Y, Li N, Li ZX, Yue J, Li HX, Guo Y and Qi D: Wnt2 promotes non-small cell lung cancer progression by activating WNT/β-catenin pathway. Am J Cancer Res. 5:1032–1046. 2015.

44 

Katoh M: Frequent up-regulation of WNT2 in primary gastric cancer and colorectal cancer. Int J Oncol. 19:1003–1007. 2001.

45 

Nakashima N, Liu D, Huang CL, Ueno M, Zhang X and Yokomise H: Wnt3 gene expression promotes tumor progression in non-small cell lung cancer. Lung Cancer. 76:228–234. 2012. View Article : Google Scholar

46 

Wang HS, Nie X, Wu RB, Yuan HW, Ma YH, Liu XL, Zhang JY, Deng XL, Na Q, Jin HY, et al: Downregulation of human Wnt3 in gastric cancer suppresses cell proliferation and induces apoptosis. Onco Targets Ther. 9:3849–3860. 2016. View Article : Google Scholar

47 

Nie XB, Xia FL, Liu Y, Zhou Y, Ye WL, Hean PH, Meng JM, Liu HY, Liu L, Wen JX, et al: Downregulation of Wnt3 suppresses colorectal cancer development through inhibiting cell proliferation and migration. Front Pharmacol. 10:11102019. View Article : Google Scholar

48 

Thiago L, Costa ES, Lopes DV, Otazu IB, Nowill AE, Mendes FA, Portilho DM, Abreu JG, Mermelstein CS, Orfao A, et al: The Wnt signaling pathway regulates Nalm-16 b-cell precursor acute lymphoblastic leukemic cell line survival and etoposide resistance. Biomed Pharmacother. 64:63–72. 2010. View Article : Google Scholar

49 

Zimmerman ZF, Kulikauskas RM, Bomsztyk K, Moon RT and Chien AJ: Activation of Wnt/β-catenin signaling increases apoptosis in melanoma cells treated with trail. PLoS One. 8:e695932013. View Article : Google Scholar

50 

Annavarapu SR, Cialfi S, Dominici C, Kokai GK, Uccini S, Ceccarelli S, McDowell HP and Helliwell TR: Characterization of Wnt/β-catenin signaling in rhabdomyosarcoma. Lab Invest. 93:1090–1099. 2013. View Article : Google Scholar

51 

Fox SA, Richards AK, Kusumah I, Perumal V, Bolitho EM, Mutsaers SE and Dharmarajan AM: Expression profile and function of Wnt signaling mechanisms in malignant mesothelioma cells. Biochem Biophys Res Commun. 440:82–87. 2013. View Article : Google Scholar

52 

Wang SH, Li N, Wei Y, Li QR and Yu ZP: β-catenin deacetylation is essential for WNT-induced proliferation of breast cancer cells. Mol Med Rep. 9:973–978. 2014. View Article : Google Scholar

53 

Akaboshi S, Watanabe S, Hino Y, Sekita Y, Xi Y, Araki K, Yamamura K, Oshima M, Ito T, Baba H and Nakao M: HMGA1 is induced by Wnt/beta-catenin pathway and maintains cell proliferation in gastric cancer. Am J Pathol. 175:1675–1685. 2009. View Article : Google Scholar

54 

Zhao L, Wang LL, Zhang CL, Liu Z, Piao YJ, Yan J, Xiang R, Yao YQ and Y S: E6-induced selective translation of WNT4 and JIP2 promotes the progression of cervical cancer via a noncanonical WNT signaling pathway. Signal Transduct Target Ther. 4:322019. View Article : Google Scholar

55 

McDonald SL and Silver A: The opposing roles of Wnt-5a in cancer. Br J Cancer. 101:209–214. 2009. View Article : Google Scholar

56 

Li J, Ying J, Fan Y, Wu L, Ying Y, Chan AT, Srivastava G and Tao Q: WNT5A antagonizes WNT/β-catenin signaling and is frequently silenced by promoter CpG methylation in esophageal squamous cell carcinoma. Cancer Biol Ther. 10:617–624. 2010. View Article : Google Scholar

57 

Ying J, Li H, Yu J, Ng KM, Poon FF, Wong SC, Chan AT, Sung JJ and Tao Q: WNT5A exhibits tumor-suppressive activity through antagonizing the Wnt/beta-catenin signaling, and is frequently methylated in colorectal cancer. Clin Cancer Res. 14:55–61. 2008. View Article : Google Scholar

58 

Kremenevskaja N, von Wasielewski R, Rao AS, Schofl C, Andersson T and Brabant G: Wnt-5a has tumor suppressor activity in thyroid carcinoma. Oncogene. 24:2144–2154. 2005. View Article : Google Scholar

59 

Thiele S, Rachner TD, Rauner M and Hofbauer LC: WNT5A and its receptors in the bone-cancer dialogue. J Bone Miner Res. 31:1488–1496. 2016. View Article : Google Scholar

60 

Kurayoshi M, Oue N, Yamamoto H, Kishida M, Inoue A, Asahara T, Yasui W and Kikuchi A: Expression of Wnt-5a is correlated with aggressiveness of gastric cancer by stimulating cell migration and invasion. Cancer Res. 66:10439–10448. 2006. View Article : Google Scholar

61 

Huang CL, Liu D, Nakano J, Ishikawa S, Kontani K, Yokomise H and Ueno M: Wnt5a expression is associated with the tumor proliferation and the stromal vascular endothelial growth factor-an expression in non-small-cell lung cancer. J Clin Oncol. 23:8765–8773. 2005. View Article : Google Scholar

62 

Bo H, Zhang S, Gao L, Chen Y, Zhang J, Chang X and Zhu M: Upregulation of Wnt5a promotes epithelial-tomesenchymal transition and metastasis of pancreatic cancer cells. BMC Cancer. 13:4962013. View Article : Google Scholar

63 

Navarrete-Meneses MDP and Perez-Vera P: Epigenetic alterations in acute lymphoblastic leukemia. Bol Med Hosp Infant Mex. 74:243–264. 2017.(In Spanish).

64 

Stewart DJ: Wnt signaling pathway in non-small cell lung cancer. J Natl Cancer Inst. 106:djt3562014. View Article : Google Scholar

65 

Kirikoshi H and Katoh M: Expression of WNT7A in human normal tissues and cancer, and regulation of WNT7A and WNT7B in human cancer. Int J Oncol. 21:895–900. 2002.

66 

Vesel M, Rapp J, Feller D, Kiss E, Jaromi L, Meggyes M, Miskei G, Duga B, Smuk G, Laszlo T, et al: ABCB1 and ABCG2 drug transporters are differentially expressed in non-small cell lung cancers (NSCLC) and expression is modified by cisplatin treatment via altered Wnt signaling. Respir Res. 18:522017. View Article : Google Scholar

67 

Li J, Zhang Z, Wang L and Zhang Y: The oncogenic role of Wnt10a in colorectal cancer through activation of canonical Wnt/β-catenin signaling. Oncol Lett. 17:3657–3664. 2019.

68 

Li P, Liu W, Xu Q and Wang C: Clinical significance and biological role of Wnt10a in ovarian cancer. Oncol Lett. 14:6611–6617. 2017.

69 

Hsu RJ, Ho JY, Cha TL, Yu DS, Wu CL, Huang WP, Chu P, Chen YH, Chen JT and Yu CP: WNT10A plays an oncogenic role in renal cell carcinoma by activating WNT/beta-catenin pathway. PLoS One. 7:e476492012. View Article : Google Scholar

70 

Kirikoshi H, Inoue S, Sekihara H and Katoh M: Expression of WNT10A in human cancer. Int J Oncol. 19:997–1001. 2001.

71 

Dong T, Zhang Z, Zhou W, Zhou X, Geng C, Chang LK, Tian X and Liu S: WNT10A/β-catenin pathway in tumorigenesis of papillary thyroid carcinoma. Oncol Rep. 38:1287–1294. 2017. View Article : Google Scholar

72 

Wend P, Runke S, Wend K, Anchondo B, Yesayan M, Jardon M, Hardie N, Loddenkemper C, Ulasov I, Lesniak MS, et al: WNT10B/beta-catenin signalling induces HMGA2 and proliferation in metastatic triple-negative breast cancer. EMBO Mol Med. 5:264–279. 2013. View Article : Google Scholar

73 

Chen H, Wang Y and Xue F: Expression and the clinical significance of Wnt10a and Wnt10b in endometrial cancer are associated with the Wnt/β-catenin pathway. Oncol Rep. 29:507–514. 2013. View Article : Google Scholar

74 

Saitoh T, Kirikoshi H, Mine T and Katoh M: Proto-oncogene WNT10B is up-regulated by tumor necrosis factor alpha in human gastric cancer cell line MKN45. Int J Oncol. 19:1187–1192. 2001.

75 

Bartis D, Csongei V, Weich A, Kiss E, Barko S, Kovacs T, Avdicevic M, D'Souza VK, Rapp J, Kvell K, et al: Down-regulation of canonical and up-regulation of non-canonical Wnt signalling in the carcinogenic process of squamous cell lung carcinoma. PLoS One. 8:e573932013. View Article : Google Scholar

76 

Tian S, Hu J, Tao K, Wang J, Chu Y, Li J, Liu Z, Ding X, Xu L, Li Q, et al: Secreted AGR2 promotes invasion of colorectal cancer cells via Wnt11-mediated non-canonical Wnt signaling. Exp Cell Res. 364:198–207. 2018. View Article : Google Scholar

77 

Toyama T, Lee HC, Koga H, Wands JR and Kim M: Noncanonical Wnt11 inhibits hepatocellular carcinoma cell proliferation and migration. Mol Cancer Res. 8:254–265. 2010. View Article : Google Scholar

78 

Yin P, Wang W, Zhang Z, Bai Y, Gao J and Zhao C: Wnt signaling in human and mouse breast cancer: Focusing on Wnt ligands, receptors and antagonists. Cancer Sci. 109:3368–3375. 2018. View Article : Google Scholar

79 

Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ and Clevers H: Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 449:1003–1007. 2007. View Article : Google Scholar

80 

Bourroul GM, Fragoso HJ, Gomes JW, Bourroul VS, Oshima CT, Gomes TS, Saba GT, Palma RT and Waisberg J: The destruction complex of beta-catenin in colorectal carcinoma and colonic adenoma. Einstein (Sao Paulo). 14:135–142. 2016. View Article : Google Scholar

81 

Sawa M, Masuda M and Yamada T: Targeting the Wnt signaling pathway in colorectal cancer. Expert Opin Ther Targets. 20:419–429. 2016. View Article : Google Scholar

82 

Amit S, Hatzubai A, Birman Y, Andersen JS, Ben-Shushan E, Mann M, Ben-Neriah Y and Alkalay I: Axin-mediated CKI phosphorylation of beta-catenin at Ser 45: A molecular switch for the Wnt pathway. Genes Dev. 16:1066–1076. 2002. View Article : Google Scholar

83 

He X, Semenov M, Tamai K and Zeng X: LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: Arrows point the way. Development. 131:1663–1677. 2004. View Article : Google Scholar

84 

Bilic J, Huang YL, Davidson G, Zimmermann T, Cruciat CM, Bienz M and Niehrs C: Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science. 316:1619–1622. 2007. View Article : Google Scholar

85 

Zarkou V, Galaras A, Giakountis A and Hatzis P: Crosstalk mechanisms between the WNT signaling pathway and long non-coding RNAs. Noncoding RNA Res. 3:42–53. 2018. View Article : Google Scholar

86 

Hammond WA, Swaika A and Mody K: Pharmacologic resistance in colorectal cancer: A review. Ther Adv Med Oncol. 8:57–84. 2016. View Article : Google Scholar

87 

Gheidari F, Bakhshandeh B, Teimoori-Toolabi L, Mehrtash A, Ghadir M and Zeinali S: TCF4 silencing sensitizes the colon cancer cell line to oxaliplatin as a common chemotherapeutic drug. Anticancer Drugs. 25:908–916. 2014. View Article : Google Scholar

88 

Kosuri KV, Wu X, Wang L, Villalona-Calero MA and Otterson GA: An epigenetic mechanism for capecitabine resistance in mesothelioma. Biochem Biophys Res Commun. 391:1465–1470. 2010. View Article : Google Scholar

89 

Rieth J and Subramanian S: Mechanisms of intrinsic tumor resistance to immunotherapy. Int J Mol Sci. 19:13402018. View Article : Google Scholar

90 

Ghadimi BM, Grade M, Difilippantonio MJ, Varma S, Simon R, Montagna C, Fuzesi L, Langer C, Becker H, Liersch T and Ried T: Effectiveness of gene expression profiling for response prediction of rectal adenocarcinomas to preoperative chemoradiotherapy. J Clin Oncol. 23:1826–1838. 2005. View Article : Google Scholar

91 

Emons G, Spitzner M, Reineke S, Moller J, Auslander N, Kramer F, Hu Y, Beissbarth T, Wolff HA, Rave-Frank M, et al: Chemoradiotherapy resistance in colorectal cancer cells is mediated by Wnt/beta-catenin signaling. Mol Cancer Res. 15:1481–1490. 2017. View Article : Google Scholar

92 

Deng YH, Pu XX, Huang MJ, Xiao J, Zhou JM, Lin TY and Lin EH: 5-Fluorouracil upregulates the activity of Wnt signaling pathway in CD133-positive colon cancer stem-like cells. Chin J Cancer. 29:810–815. 2010. View Article : Google Scholar

93 

Vaish V, Kim J and Shim M: Jagged-2 (JAG2) enhances tumorigenicity and chemoresistance of colorectal cancer cells. Oncotarget. 8:53262–53275. 2017. View Article : Google Scholar

94 

Kukcinaviciute E, Jonusiene V, Sasnauskiene A, Dabkeviciene D, Eidenaite E and Laurinavicius A: Significance of Notch and Wnt signaling for chemoresistance of colorectal cancer cells HCT116. J Cell Biochem. 119:5913–5920. 2018. View Article : Google Scholar

95 

Gonzalez-Exposito R, Semiannikova M, Griffiths B, Khan K, Barber LJ, Woolston A, Spain G, von Loga K, Challoner B, Patel R, et al: CEA expression heterogeneity and plasticity confer resistance to the CEA-targeting bispecific immunotherapy antibody cibisatamab (CEA-TCB) in patient-derived colorectal cancer organoids. J Immunother Cancer. 7:1012019. View Article : Google Scholar

96 

Chang TC, Yeh CT, Adebayo BO, Lin YC, Deng L, Rao YK, Huang CC, Lee WH, Wu AT, Hsiao M, et al: 4-Acetylantroquinonol B inhibits colorectal cancer tumorigenesis and suppresses cancer stem-like phenotype. Toxicol Appl Pharmacol. 288:258–268. 2015. View Article : Google Scholar

97 

Vermeulen L, Sprick MR, Kemper K, Stassi G and Medema JP: Cancer stem cells-old concepts, new insights. Cell Death Differ. 15:947–958. 2008. View Article : Google Scholar

98 

Munro MJ, Wickremesekera SK, Peng L, Tan ST and Itinteang T: Cancer stem cells in colorectal cancer: A review. J Clin Pathol. 71:110–116. 2018. View Article : Google Scholar

99 

Li N, Babaei-Jadidi R, Lorenzi F, Spencer-Dene B, Clarke P, Domingo E, Tulchinsky E, Vries RGJ, Kerr D, Pan Y, et al: An FBXW7-ZEB2 axis links EMT and tumour microenvironment to promote colorectal cancer stem cells and chemoresistance. Oncogenesis. 8:132019. View Article : Google Scholar

100 

Prieti-Vila M, Takahashi R, Usuba W, Kohama I and Ochiya T: Drug resistance driven by cancer stem cells and their niche. Int J Mol Sci. 18:25742017. View Article : Google Scholar

101 

Li L and Xie T: Stem cell niche: Structure and function. Annu Rev Cell Dev Biol. 21:605–631. 2005. View Article : Google Scholar

102 

Liu H, Zhang W, Jia Y, Yu Q, Grau GE, Peng L, Ran Y, Yang Z, Deng H and Lou J: Single-cell clones of liver cancer stem cells have the potential of differentiating into different types of tumor cells. Cell Death Dis. 4:e8572013. View Article : Google Scholar

103 

Daverey A, Drain AP and Kidambi S: Physical intimacy of breast cancer cells with mesenchymal stem cells elicits trastuzumab resistance through src activation. Sci Rep. 5:137442015. View Article : Google Scholar

104 

Kim JY, Lee HY, Park KK, Choi YK, Nam JS and Hong IS: CWP232228 targets liver cancer stem cells through Wnt/β-catenin signaling: A novel therapeutic approach for liver cancer treatment. Oncotarget. 7:20395–20409. 2016. View Article : Google Scholar

105 

Fevr T, Robine S, Louvard D and Huelsken J: Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Mol Cell Biol. 27:7551–7559. 2007. View Article : Google Scholar

106 

Dahal Lamichane B, Jung SY, Yun J, Kang S, Kim DY, Lamichane S, Kim YJ, Park JH, Jang WB, Ji ST, et al: AGR2 is a target of canonical Wnt/β-catenin signaling and is important for stemness maintenance in colorectal cancer stem cells. Biochem Biophys Res Commun. 515:600–606. 2019. View Article : Google Scholar

107 

Liu YS, Hsu HC, Tseng KC, Chen HC and Chen SJ: Lgr5 promotes cancer stemness and confers chemoresistance through ABCB1 in colorectal cancer. Biomed Pharmacother. 67:791–799. 2013. View Article : Google Scholar

108 

Zhan T, Ambrosi G, Wandmacher AM, Rauscher B, Betge J, Rindtorff N, Haussler RS, Hinsenkamp I, Bamberg L, Hessling B, et al: MEK inhibitors activate Wnt signalling and induce stem cell plasticity in colorectal cancer. Nat Commun. 10:21972019. View Article : Google Scholar

109 

Wu W, Cao J, Ji Z, Wang J, Jiang T and Ding H: Co-expression of Lgr5 and CXCR4 characterizes cancer stem-like cells of colorectal cancer. Oncotarget. 7:81144–81155. 2016. View Article : Google Scholar

110 

Kobayashi S, Yamada-Okabe H, Suzuki M, Natori O, Kato A, Matsubara K, Jau Chen Y, Yamazaki M, Funahashi S, Yoshida K, et al: LGR5-positive colon cancer stem cells interconvert with drug-resistant LGR5-negative cells and are capable of tumor reconstitution. Stem Cells. 30:2631–2644. 2012. View Article : Google Scholar

111 

Villanueva-Toledo J, Ponciano-Gomez A, Ortiz-Sanchez E and Garrido E: Side populations from cervical-cancer-derived cell lines have stem-cell-like properties. Mol Biol Rep. 41:1993–2004. 2014. View Article : Google Scholar

112 

Steinbichler TB, Dudas J, Skvortsov S, Ganswindt U, Riechelmann H and Skvortsova II: Therapy resistance mediated by cancer stem cells. Semin Cancer Biol. 53:156–167. 2018. View Article : Google Scholar

113 

Singh A and Settleman J: EMT, cancer stem cells and drug resistance: An emerging axis of evil in the war on cancer. Oncogene. 29:4741–4751. 2010. View Article : Google Scholar

114 

Martin-Orozco E, Sanchez-Fernandez A, Ortiz-Parra I and Ayala-San Nicolas M: WNT signaling in tumors: The way to evade drugs and immunity. Front Immunol. 10:28542019. View Article : Google Scholar

115 

Islam MO, Kanemura Y, Tajria J, Mori H, Kobayashi S, Shofuda T, Miyake J, Hara M, Yamasaki M and Okano H: Characterization of ABC transporter ABCB1 expressed in human neural stem/progenitor cells. FEBS Lett. 579:3473–3480. 2005. View Article : Google Scholar

116 

Falasca M and Linton KJ: Investigational ABC transporter inhibitors. Expert Opin Investig Drugs. 21:657–666. 2012. View Article : Google Scholar

117 

Duan Z, Li X, Huang H, Yuan W, Zheng SL, Liu X, Zhang Z, Choy E, Harmon D, Mankin H and Hornicek F: Synthesis and evaluation of (2-(4-methoxyphenyl)-4-quinolinyl)(2-piperidinyl)methanol (NSC23925) isomers to reverse multidrug resistance in cancer. J Med Chem. 55:3113–3121. 2012. View Article : Google Scholar

118 

Huang XC, Sun YL, Salim AA, Chen ZS and Capon RJ: Parguerenes: Marine red alga bromoditerpenes as inhibitors of P-glycoprotein (ABCB1) in multidrug resistant human cancer cells. Biochem Pharmacol. 85:1257–1268. 2013. View Article : Google Scholar

119 

Zinzi L, Contino M, Cantore M, Capparelli E, Leopoldo M and Colabufo NA: ABC transporters in CSCs membranes as a novel target for treating tumor relapse. Front Pharmacol. 5:1632014. View Article : Google Scholar

120 

Liu YY, Gupta V, Patwardhan GA, Bhinge K, Zhao Y, Bao J, Mehendale H, Cabot MC, Li YT and Jazwinski SM: Glucosylceramide synthase upregulates MDR1 expression in the regulation of cancer drug resistance through cSrc and beta-catenin signaling. Mol Cancer. 9:1452010. View Article : Google Scholar

121 

Kugimiya N, Nishimoto A, Hosoyama T, Ueno K, Enoki T, Li TS and Hamano K: The c-MYC-ABCB5 axis plays a pivotal role in 5-fluorouracil resistance in human colon cancer cells. J Cell Mol Med. 19:1569–1581. 2015. View Article : Google Scholar

122 

Wang T, Chen Z, Zhu Y, Pan Q, Liu Y, Qi X, Jin L, Jin J, Ma X and Hua D: Inhibition of transient receptor potential channel 5 reverses 5-Fluorouracil resistance in human colorectal cancer cells. J Biol Chem. 290:448–456. 2015. View Article : Google Scholar

123 

Plaks V, Kong N and Werb Z: The cancer stem cell niche: How essential is the niche in regulating stemness of tumor cells? Cell Stem Cell. 16:225–238. 2015. View Article : Google Scholar

124 

Osthus RC, Shim H, Kim S, Li Q, Reddy R, Mukherjee M, Xu Y, Wonsey D, Lee LA and Dang CV: Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem. 275:21797–21800. 2000. View Article : Google Scholar

125 

Wang T, Ning K, Lu TX and Hua D: Elevated expression of TrpC5 and GLUT1 is associated with chemoresistance in colorectal cancer. Oncol Rep. 37:1059–1065. 2017. View Article : Google Scholar

126 

Matsui M and Corey DR: Non-coding RNAs as drug targets. Nat Rev Drug Discov. 16:167–179. 2017. View Article : Google Scholar

127 

Ling H, Fabbri M and Calin GA: MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov. 12:847–865. 2013. View Article : Google Scholar

128 

Laurent GS, Wahlestedt C and Kapranov P: The landscape of long noncoding RNA classification. Trends Genet. 31:239–251. 2015. View Article : Google Scholar

129 

Sato-Kuwabara Y, Melo SA, Soares FA and Calin GA: The fusion of two worlds: Non-coding RNAs and extracellular vesicles-diagnostic and therapeutic implications (Review). Int J Oncol. 46:17–27. 2015. View Article : Google Scholar

130 

Ebbesen KK, Kjems J and Hansen TB: Circular RNAs: Identification, biogenesis and function. Biochim Biophys Acta. 1859:163–168. 2016. View Article : Google Scholar

131 

Chen HY, Lang YD, Lin HN, Liu YR, Liao CC, Nana AW, Yen Y and Chen RH: miR-103/107 prolong Wnt/β-catenin signaling and colorectal cancer stemness by targeting Axin2. Sci Rep. 9:96872019. View Article : Google Scholar

132 

Zhou H, Lin C, Zhang Y, Zhang X, Zhang C, Zhang P, Xie X and Ren Z: miR-506 enhances the sensitivity of human colorectal cancer cells to oxaliplatin by suppressing MDR1/P-gp expression. Cell Prolif. 50:e123412017. View Article : Google Scholar

133 

Lu ML, Zhang Y, Li J, Fu Y, Li WH, Zhao GF, Li XH, Wei L, Liu GB and Huang H: MicroRNA-124 inhibits colorectal cancer cell proliferation and suppresses tumor growth by interacting with PLCB1 and regulating Wnt/β-catenin signaling pathway. Eur Rev Med Pharmacol Sci. 23:121–136. 2019.

134 

Liang CQ, Fu YM, Liu ZY, Xing BR, Jin Y and Huang JL: The effect of miR-224 down-regulation on SW80 cell proliferation and apoptosis and weakening of ADM drug resistance. Eur Rev Med Pharmacol Sci. 21:5008–5016. 2017.

135 

Lucero OM, Dawson DW, Moon RT and Chien AJ: A re-evaluation of the ‘oncogenic’ nature of Wnt/beta-catenin signaling in melanoma and other cancers. Curr Oncol Rep. 12:314–318. 2010. View Article : Google Scholar

136 

Song C, Lu P, Sun G, Yang L and Wang Z and Wang Z: miR-34a sensitizes lung cancer cells to cisplatin via p53/miR-34a/MYCN axis. Biochem Biophys Res Commun. 482:22–27. 2017. View Article : Google Scholar

137 

Schulz-Heddergott R, Stark N, Edmunds SJ, Li J, Conradi LC, Bohnenberger H, Ceteci F, Greten FR, Dobbelstein M and Moll UM: Therapeutic ablation of gain-of-function mutant p53 in colorectal cancer inhibits stat3-mediated tumor growth and invasion. Cancer Cell. 34:298–314 e297. 2018. View Article : Google Scholar

138 

Nakayama M, Sakai E, Echizen K, Yamada Y, Oshima H, Han TS, Ohki R, Fujii S, Ochiai A, Robine S, et al: Intestinal cancer progression by mutant p53 through the acquisition of invasiveness associated with complex glandular formation. Oncogene. 36:5885–5896. 2017. View Article : Google Scholar

139 

Lane DP, Cheok CF and Lain S: p53-based cancer therapy. Cold Spring Harb Perspect Biol. 2:a0012222010. View Article : Google Scholar

140 

Tsou SH, Hou MH, Hsu LC, Chen TM and Chen YH: Gain-of-function p53 mutant with 21-bp deletion confers susceptibility to multidrug resistance in MCF-7 cells. Int J Mol Med. 37:233–242. 2016. View Article : Google Scholar

141 

Li XL, Zhou J, Chen ZR and Chng WJ: P53 mutations in colorectal cancer-molecular pathogenesis and pharmacological reactivation. World J Gastroenterol. 21:84–93. 2015. View Article : Google Scholar

142 

Kwak B, Kim DU, Kim TO, Kim HS and Kim SW: MicroRNA-552 links Wnt signaling to p53 tumor suppressor in colorectal cancer. Int J Oncol. 53:1800–1808. 2018.

143 

Zhou AD, Diao LT, Xu H, Xiao ZD, Li JH, Zhou H and Qu LH: β-Catenin/LEF1 transactivates the microRNA-371-373 cluster that modulates the Wnt/β-catenin-signaling pathway. Oncogene. 31:2968–2978. 2012. View Article : Google Scholar

144 

Wang LQ, Yu P, Li B, Guo YH, Liang ZR, Zheng LL, Yang JH, Xu H, Liu S, Zheng LS, et al: miR-372 and miR-373 enhance the stemness of colorectal cancer cells by repressing differentiation signaling pathways. Mol Oncol. 12:1949–1964. 2018. View Article : Google Scholar

145 

Han P, Li JW, Zhang BM, Lv JC, Li YM, Gu XY, Yu ZW, Jia YH, Bai XF, Li L, et al: The lncRNA CRNDE promotes colorectal cancer cell proliferation and chemoresistance via miR-181a-5p-mediated regulation of Wnt/β-catenin signaling. Mol Cancer. 16:92017. View Article : Google Scholar

146 

Xiao Z, Qu Z, Chen Z, Fang Z, Zhou K, Huang Z, Guo X and Zhang Y: LncRNA HOTAIR is a prognostic biomarker for the proliferation and chemoresistance of colorectal cancer via MiR-203a-3p-mediated Wnt/ß-catenin signaling pathway. Cell Physiol Biochem. 46:1275–1285. 2018. View Article : Google Scholar

147 

Wu KF, Liang WC, Feng L, Pang JX, Waye MM, Zhang JF and Fu WM: H19 mediates methotrexate resistance in colorectal cancer through activating Wnt/β-catenin pathway. Exp Cell Res. 350:312–317. 2017. View Article : Google Scholar

148 

Deng X, Ruan H, Zhang X, Xu X, Zhu Y, Peng H, Zhang X, Kong F and Guan M: Long noncoding RNA CCAL transferred from fibroblasts by exosomes promotes chemoresistance of colorectal cancer cells. Int J Cancer. 146:1700–1716. 2020. View Article : Google Scholar

149 

Ma Y, Yang Y, Wang F, Moyer MP, Wei Q, Zhang P, Yang Z, Liu W, Zhang H, Chen N, et al: Long non-coding RNA CCAL regulates colorectal cancer progression by activating Wnt/β-catenin signalling pathway via suppression of activator protein 2α. Gut. 65:1494–1504. 2016. View Article : Google Scholar

150 

Hanahan D and Coussens LM: Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell. 21:309–322. 2012. View Article : Google Scholar

151 

Sun Y: Tumor microenvironment and cancer therapy resistance. Cancer Lett. 380:205–215. 2016. View Article : Google Scholar

152 

Castellone MD, Teramoto H, Williams BO, Druey KM and Gutkind JS: Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science. 310:1504–1510. 2005. View Article : Google Scholar

153 

Yang L, Lin C and Liu ZR: P68 RNA helicase mediates PDGF-induced epithelial mesenchymal transition by displacing Axin from beta-catenin. Cell. 127:139–155. 2006. View Article : Google Scholar

154 

Gupta GP and Massague J: Cancer metastasis: Building a framework. Cell. 127:679–695. 2006. View Article : Google Scholar

155 

Gross JC, Chaudhary V, Bartscherer K and Boutros M: Active Wnt proteins are secreted on exosomes. Nat Cell Biol. 14:1036–1045. 2012. View Article : Google Scholar

156 

Hu JL, Wang W, Lan XL, Zeng ZC, Liang YS, Yan YR, Song FY, Wang FF, Zhu XH, Liao WJ, et al: CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer. Mol Cancer. 18:912019. View Article : Google Scholar

157 

Xu X, Chang W, Yuan J, Han X, Tan X, Ding Y, Luo Y, Cai H, Liu Y, Gao X, et al: Periostin expression in intra-tumoral stromal cells is prognostic and predictive for colorectal carcinoma via creating a cancer-supportive niche. Oncotarget. 7:798–813. 2016. View Article : Google Scholar

158 

Sun Y, Campisi J, Higano C, Beer TM, Porter P, Coleman I, True L and Nelson PS: Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat Med. 18:1359–1368. 2012. View Article : Google Scholar

159 

Sun Y, Zhu D, Chen F, Qian M, Wei H, Chen W and Xu J: SFRP2 augments WNT16B signaling to promote therapeutic resistance in the damaged tumor microenvironment. Oncogene. 35:4321–4334. 2016. View Article : Google Scholar

160 

Izumi D, Toden S, Ureta E, Ishimoto T, Baba H and Goel A: TIAM1 promotes chemoresistance and tumor invasiveness in colorectal cancer. Cell Death Dis. 10:2672019. View Article : Google Scholar

161 

Takada K, Zhu D, Bird GH, Sukhdeo K, Zhao JJ, Mani M, Lemieux M, Carrasco DE, Ryan J, Horst D, et al: Targeted disruption of the BCL9/β-catenin complex inhibits oncogenic Wnt signaling. Sci Transl Med. 4:148ra1172012. View Article : Google Scholar

162 

Tan Z, Huang Q, Zang J, Teng SF, Chen TR, Wei HF, Song DW, Liu TL, Yang XH, Fu CG, et al: HIF-1α activates hypoxia-induced BCL-9 expression in human colorectal cancer cells. Oncotarget. 8:25885–25896. 2017. View Article : Google Scholar

163 

Wu X, Gu Z, Chen Y, Chen B, Chen W, Weng L and Liu X: Application of PD-1 blockade in cancer immunotherapy. Comput Struct Biotechnol J. 17:661–674. 2019. View Article : Google Scholar

164 

Yaghoubi N, Soltani A, Ghazvini K, Hassanian SM and Hashemy SI: PD-1/PD-L1 blockade as a novel treatment for colorectal cancer. Biomed Pharmacother. 110:312–318. 2019. View Article : Google Scholar

165 

Payandeh Z, Khalili S, Somi MH, Mard-Soltani M, Baghbanzadeh A, Hajiasgharzadeh K, Samadi N and Baradaran B: PD-1/PD-L1-dependent immune response in colorectal cancer. J Cell Physiol. 235:5461–5475. 2020. View Article : Google Scholar

166 

Topalian SL, Taube JM, Anders RA and Pardoll DM: Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 16:275–287. 2016. View Article : Google Scholar

167 

Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, Tosolini M, Camus M, Berger A, Wind P, et al: Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 313:1960–1964. 2006. View Article : Google Scholar

168 

Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V, et al: PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 515:568–571. 2014. View Article : Google Scholar

169 

Spranger S, Koblish HK, Horton B, Scherle PA, Newton R and Gajewski TF: Mechanism of tumor rejection with doublets of CTLA-4, PD-1/PD-L1, or IDO blockade involves restored IL-2 production and proliferation of CD8+ T cells directly within the tumor microenvironment. J Immunother Cancer. 2:32014. View Article : Google Scholar

170 

Spranger S, Dai D, Horton B and Gajewski TF: Tumor-residing Batf3 dendritic cells are required for effector t cell trafficking and adoptive t cell therapy. Cancer Cell. 31:711–723. 2017. View Article : Google Scholar

171 

Feng M, Jin JQ, Xia L, Xiao T, Mei S, Wang X, Huang X, Chen J, Liu M, Chen C, et al: Pharmacological inhibition of β-catenin/BCL9 interaction overcomes resistance to immune checkpoint blockades by modulating T reg. Sci Adv. 5:eaau52402019. View Article : Google Scholar

172 

Bottcher JP and Reis e Sousa C: The role of type 1 conventional dendritic cells in cancer immunity. Trends Cancer. 4:784–792. 2018. View Article : Google Scholar

173 

Liu K and Li J, Wu X, Chen M, Luo F and Li J: GSK-3β inhibitor 6-bromo-indirubin-3′-oxime promotes both adhesive activity and drug resistance in colorectal cancer cells. Int J Oncol. 51:1821–1830. 2017. View Article : Google Scholar

174 

Yan L, Yu HH, Liu YS, Wang YS and Zhao WH: Esculetin enhances the inhibitory effect of 5-Fluorouracil on the proliferation, migration and epithelial-mesenchymal transition of colorectal cancer. Cancer Biomark. 24:231–240. 2019. View Article : Google Scholar

175 

Cai MH, Xu XG, Yan SL, Sun Z, Ying Y, Wang BK and Tu YX: Regorafenib suppresses colon tumorigenesis and the generation of drug resistant cancer stem-like cells via modulation of miR-34a associated signaling. J Exp Clin Cancer Res. 37:1512018. View Article : Google Scholar

176 

Siraj AK, Kumar Parvathareddy S, Pratheeshkumar P, Padmaja Divya S, Ahmed SO, Melosantos R, Begum R, Concepcion R, Al-Sanea N, Ashari LH, et al: APC truncating mutations in middle eastern population: Tankyrase inhibitor is an effective strategy to sensitize APC mutant CRC To 5-FU chemotherapy. Biomed Pharmacother. 121:1095722020. View Article : Google Scholar

177 

Wang J, Min H, Hu B, Xue X and Liu Y: Guanylate-binding protein-2 inhibits colorectal cancer cell growth and increases the sensitivity to paclitaxel of paclitaxel-resistant colorectal cancer cells by interfering Wnt signaling. J Cell Biochem. 121:1250–1259. 2020. View Article : Google Scholar

178 

Wu CE, Zhuang YW, Zhou JY, Liu SL, Wang RP and Shu P: Cinnamaldehyde enhances apoptotic effect of oxaliplatin and reverses epithelial-mesenchymal transition and stemnness in hypoxic colorectal cancer cells. Exp Cell Res. 383:1115002019. View Article : Google Scholar

179 

Zhao B, Wang L, Qiu H, Zhang M, Sun L, Peng P, Yu Q and Yuan X: Mechanisms of resistance to anti-EGFR therapy in colorectal cancer. Oncotarget. 8:3980–4000. 2017. View Article : Google Scholar

180 

Sansom OJ, Meniel V, Wilkins JA, Cole AM, Oien KA, Marsh V, Jamieson TJ, Guerra C, Ashton GH, Barbacid M and Clarke AR: Loss of Apc allows phenotypic manifestation of the transforming properties of an endogenous K-ras oncogene in vivo. Proc Natl Acad Sci USA. 103:14122–14127. 2006. View Article : Google Scholar

181 

He L, Zhu H, Zhou S, Wu T, Wu H, Yang H, Mao H, SekharKathera C, Janardhan A, Edick AM, et al: Wnt pathway is involved in 5-FU drug resistance of colorectal cancer cells. Exp Mol Med. 50:1012018. View Article : Google Scholar

182 

Zhao Q, Zhuang K, Han K, Tang H, Wang Y, Si W and Yang Z: Silencing DVL3 defeats MTX resistance and attenuates stemness via Notch signaling pathway in colorectal cancer. Pathol Res Pract. 216:1529642020. View Article : Google Scholar

183 

Zhang F, Sun H, Zhang S, Yang X, Zhang G and Su T: Overexpression of PER3 inhibits self-renewal capability and chemoresistance of colorectal cancer stem-like cells via inhibition of notch and β-catenin signaling. Oncol Res. 25:709–719. 2017. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhu G, Gao D, Shao Z, Chen L, Ding W and Yu Q: Wnt/β‑catenin signaling: Causes and treatment targets of drug resistance in colorectal cancer (Review). Mol Med Rep 23: 105, 2021.
APA
Zhu, G., Gao, D., Shao, Z., Chen, L., Ding, W., & Yu, Q. (2021). Wnt/β‑catenin signaling: Causes and treatment targets of drug resistance in colorectal cancer (Review). Molecular Medicine Reports, 23, 105. https://doi.org/10.3892/mmr.2020.11744
MLA
Zhu, G., Gao, D., Shao, Z., Chen, L., Ding, W., Yu, Q."Wnt/β‑catenin signaling: Causes and treatment targets of drug resistance in colorectal cancer (Review)". Molecular Medicine Reports 23.2 (2021): 105.
Chicago
Zhu, G., Gao, D., Shao, Z., Chen, L., Ding, W., Yu, Q."Wnt/β‑catenin signaling: Causes and treatment targets of drug resistance in colorectal cancer (Review)". Molecular Medicine Reports 23, no. 2 (2021): 105. https://doi.org/10.3892/mmr.2020.11744
Copy and paste a formatted citation
x
Spandidos Publications style
Zhu G, Gao D, Shao Z, Chen L, Ding W and Yu Q: Wnt/β‑catenin signaling: Causes and treatment targets of drug resistance in colorectal cancer (Review). Mol Med Rep 23: 105, 2021.
APA
Zhu, G., Gao, D., Shao, Z., Chen, L., Ding, W., & Yu, Q. (2021). Wnt/β‑catenin signaling: Causes and treatment targets of drug resistance in colorectal cancer (Review). Molecular Medicine Reports, 23, 105. https://doi.org/10.3892/mmr.2020.11744
MLA
Zhu, G., Gao, D., Shao, Z., Chen, L., Ding, W., Yu, Q."Wnt/β‑catenin signaling: Causes and treatment targets of drug resistance in colorectal cancer (Review)". Molecular Medicine Reports 23.2 (2021): 105.
Chicago
Zhu, G., Gao, D., Shao, Z., Chen, L., Ding, W., Yu, Q."Wnt/β‑catenin signaling: Causes and treatment targets of drug resistance in colorectal cancer (Review)". Molecular Medicine Reports 23, no. 2 (2021): 105. https://doi.org/10.3892/mmr.2020.11744
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team