1
|
Benowitz NL, Hukkanen J and Jacob P III:
Nicotine chemistry, metabolism, kinetics and biomarkers. Handb Exp
Pharmacol. 192:29–60. 2009.doi: 10.1007/978-3-540-69248-5_2.
View Article : Google Scholar
|
2
|
Broide RS, Winzer-Serhan UH, Chen Y and
Leslie FM: Distribution of alpha7 nicotinic acetylcholine receptor
subunit mRNA in the developing mouse. Front Neuroanat. 13:762019.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Mishra A, Chaturvedi P, Datta S, Sinukumar
S, Joshi P and Garg A: Harmful effects of nicotine. Indian J Med
Paediatr Oncol. 36:24–31. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Bagaitkar J, Demuth DR and Scott DA:
Tobacco use increases susceptibility to bacterial infection. Tob
Induc Dis. 4:122008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Unwin N: Nicotinic acetylcholine receptor
and the structural basis of neuromuscular transmission: Insights
from Torpedo postsynaptic membranes. Q Rev Biophys. 46:283–322.
2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Skok VI: Nicotinic acetylcholine receptors
in autonomic ganglia. Auton Neurosci. 97:1–11. 2002. View Article : Google Scholar : PubMed/NCBI
|
7
|
Gotti C, Zoli M and Clementi F: Brain
nicotinic acetylcholine receptors: Native subtypes and their
relevance. Trends Pharmacol Sci. 27:482–491. 2006. View Article : Google Scholar : PubMed/NCBI
|
8
|
Dani JA: Neuronal nicotinic acetylcholine
receptor structure and function and response to nicotine. Int Rev
Neurobiol. 124:3–19. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Hone AJ and McIntosh JM: Nicotinic
acetylcholine receptors in neuropathic and inflammatory pain. FEBS
Lett. 592:1045–1062. 2018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zaveri N, Jiang F, Olsen C, Polgar W and
Toll L: Novel α3β4 nicotinic acetylcholine receptor-selective
ligands. Discovery, structure-activity studies, and pharmacological
evaluation. J Med Chem. 53:8187–8191. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Aberger K, Chitravanshi VC and Sapru HN:
Cardiovascular responses to microinjections of nicotine into the
caudal ventrolateral medulla of the rat. Brain Res. 892:138–146.
2001. View Article : Google Scholar : PubMed/NCBI
|
12
|
Levin ED, Bettegowda C, Blosser J and
Gordon J: AR-R17779, and alpha7 nicotinic agonist, improves
learning and memory in rats. Behav Pharmacol. 10:675–680. 1999.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Hajos M, Hurst RS, Hoffmann WE, Krause M,
Wall TM, Higdon NR and Groppi VE: The selective alpha7 nicotinic
acetylcholine receptor agonist PNU-282987 [N-[(3R)-
1-Azabicyclo[2.2.2]oct-3-yl]-4-chlorobenzamide hydrochloride]
enhances GABAergic synaptic activity in brain slices and restores
auditory gating deficits in anesthetized rats. J Pharmacol Exp
Ther. 312:1213–1222. 2005. View Article : Google Scholar : PubMed/NCBI
|
14
|
Benowitz NL: Pharmacology of nicotine:
Addiction, smoking-induced disease, and therapeutics. Annu Rev
Pharmacol Toxicol. 49:57–71. 2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
D'Souza MS and Markou A: Neuronal
mechanisms underlying development of nicotine dependence:
Implications for novel smoking-cessation treatments. Addict Sci
Clin Pract. 6:4–16. 2011.PubMed/NCBI
|
16
|
Picciotto MR, Addy NA, Mineur YS and
Brunzell DH: It is not ‘either/or’: Activation and desensitization
of nicotinic acetylcholine receptors both contribute to behaviors
related to nicotine addiction and mood. Prog Neurobiol. 84:329–342.
2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Sun Z, Smyth K, Garcia K, Mattson E, Li L
and Xiao Z: Nicotine inhibits memory CTL programming. PLoS One.
8:e681832013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Echeverria Moran V: Brain effects of
nicotine and derived compounds. Front Pharmacol. 4:602013.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Hotston MR, Jeremy JY, Bloor J, Koupparis
A, Persad R and Shukla N: Sildenafil inhibits the up-regulation of
phosphodiesterase type 5 elicited with nicotine and tumour necrosis
factor-alpha in cavernosal vascular smooth muscle cells: Mediation
by superoxide. BJU Int. 99:612–618. 2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Henderson VW: Cognitive changes after
menopause: Influence of estrogen. Clin Obstet Gynecol. 51:618–626.
2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Domek-Łopacińska K and Strosznajder JB:
Cyclic GMP metabolism and its role in brain physiology. J Physiol
Pharmacol. 56 (Suppl 2):S15–S34. 2005.
|
22
|
Cui Q and So KF: Involvement of cAMP in
neuronal survival and axonal regeneration. Anat Sci Int.
79:209–212. 2004. View Article : Google Scholar : PubMed/NCBI
|
23
|
Peixoto CA, Nunes AK and Garcia-Osta A:
Phosphodiesterase-5 inhibitors: Action on the signaling pathways of
neuroinflammation, neurodegeneration, and cognition. Mediators
Inflamm. 2015:9402072015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Biegon A, Kim SW, Logan J, Hooker JM,
Muench L and Fowler JS: Nicotine blocks brain estrogen synthase
(aromatase): In vivo positron emission tomography studies in female
baboons. Biol Psychiatry. 67:774–777. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Bean LA, Ianov L and Foster TC: Estrogen
receptors, the hippocampus, and memory. Neuroscientist. 20:534–545.
2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Luine VN: Estradiol and cognitive
function: Past, present and future. Horm Behav. 66:602–618. 2014.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Neugroschl J and Wang S: Alzheimer's
disease: Diagnosis and treatment across the spectrum of disease
severity. Mt Sinai J Med. 78:596–612. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Murphy MP and LeVine H III: Alzheimer's
disease and the amyloid-beta peptide. J Alzheimers Dis. 19:311–323.
2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Deshpande A, Mina E, Glabe C and Busciglio
J: Different conformations of amyloid beta induce neurotoxicity by
distinct mechanisms in human cortical neurons. J Neurosci.
26:6011–6018. 2006. View Article : Google Scholar : PubMed/NCBI
|
30
|
Schilling T and Eder C: Amyloid-β-induced
reactive oxygen species production and priming are differentially
regulated by ion channels in microglia. J Cell Physiol.
226:3295–3302. 2011. View Article : Google Scholar : PubMed/NCBI
|
31
|
Palop JJ and Mucke L: Amyloid-beta-induced
neuronal dysfunction in Alzheimer's disease: From synapses toward
neural networks. Nat Neurosci. 13:812–818. 2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Jagust W: Is amyloid-β harmful to the
brain? Insights from human imaging studies. Brain. 139:23–30. 2016.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Mendiola-Precoma J, Berumen LC, Padilla K
and Garcia-Alcocer G: Therapies for prevention and treatment of
Alzheimer's disease. Biomed Res Int. 2016:25892762016. View Article : Google Scholar : PubMed/NCBI
|
34
|
Grossberg GT: Cholinesterase inhibitors
for the treatment of Alzheimer's disease: Getting on and staying
on. Curr Ther Res Clin Exp. 64:216–235. 2003. View Article : Google Scholar : PubMed/NCBI
|
35
|
Cheng Q and Yakel JL: The effect of α7
nicotinic receptor activation on glutamatergic transmission in the
hippocampus. Biochem Pharmacol. 97:439–444. 2015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Buckingham SD, Jones AK, Brown LA and
Sattelle DB: Nicotinic acetylcholine receptor signalling: Roles in
Alzheimer's disease and amyloid neuroprotection. Pharmacol Rev.
61:39–61. 2009. View Article : Google Scholar : PubMed/NCBI
|
37
|
Giese KP and Mizuno K: The roles of
protein kinases in learning and memory. Learn Mem. 20:540–552.
2013. View Article : Google Scholar : PubMed/NCBI
|
38
|
Diez H, Garrido JJ and Wandosell F:
Specific roles of Akt iso forms in apoptosis and axon growth
regulation in neurons. PLoS One. 7:e327152012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Huang EJ and Reichardt LF: Neurotrophins:
Roles in neuronal development and function. Annu Rev Neurosci.
24:677–736. 2001. View Article : Google Scholar : PubMed/NCBI
|
40
|
Del Puerto A, Wandosell F and Garrido JJ:
Neuronal and glial purinergic receptors functions in neuron
development and brain disease. Front Cell Neurosci.
7:1972013.PubMed/NCBI
|
41
|
Brunet A, Datta SR and Greenberg ME:
Transcription-dependent and -independent control of neuronal
survival by the PI3K-Akt signaling pathway. Curr Opin Neurobiol.
11:297–305. 2001. View Article : Google Scholar : PubMed/NCBI
|
42
|
Shu Y, Zhang H, Kang T, Zhang JJ, Yang Y,
Liu H and Zhang L: PI3K/Akt signal pathway involved in the
cognitive impairment caused by chronic cerebral hypoperfusion in
rats. PLoS One. 8:e819012013. View Article : Google Scholar : PubMed/NCBI
|
43
|
Horwood JM, Dufour F, Laroche S and Davis
S: Signalling mechanisms mediated by the phosphoinositide
3-kinase/Akt cascade in synaptic plasticity and memory in the rat.
Eur J Neurosci. 23:3375–3384. 2006. View Article : Google Scholar : PubMed/NCBI
|
44
|
Chiang HC, Wang L, Xie ZL, Yau A and Zhong
Y: PI3 kinase signaling is involved in A beta-induced memory loss
in Drosophila. Proc Natl Acad Sci USA. 107:7060–7065. 2010.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Yi JH, Baek SJ, Heo S, Park HJ, Kwon H,
Lee S, Jung J, Park SJ, Kim BC, Lee YC, et al: Direct
pharmacological Akt activation rescues Alzheimer's disease like
memory impairments and aberrant synaptic plasticity.
Neuropharmacology. 128:282–292. 2018. View Article : Google Scholar : PubMed/NCBI
|
46
|
Newhouse P, Kellar K, Aisen P, White H,
Wesnes K, Coderre E, Pfaff A, Wilkins H, Howard D and Levin ED:
Nicotine treatment of mild cognitive impairment: A 6-month
double-blind pilot clinical trial. Neurology. 78:91–101. 2012.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Majdi A, Kamari F, Sadigh-Eteghad S and
Gjedde A: Molecular insights into memory-enhancing metabolites of
nicotine in brain: A systematic review. Front Neurosci.
12:10022018. View Article : Google Scholar : PubMed/NCBI
|
48
|
Srivareerat M, Tran TT, Salim S, Aleisa AM
and Alkadhi KA: Chronic nicotine restores normal Aβ levels and
prevents short-term memory and E-LTP impairment in Aβ rat model of
Alzheimer's disease. Neurobiol Aging. 32:834–844. 2011. View Article : Google Scholar : PubMed/NCBI
|
49
|
Knott V, Engeland C, Mohr E, Mahoney C and
Ilivitsky V: Acute nicotine administration in Alzheimer's disease:
An exploratory EEG study. Neuropsychobiology. 41:210–220. 2000.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Sherer TB, Chowdhury S, Peabody K and
Brooks DW: Overcoming obstacles in Parkinson's disease. Mov Disord.
27:1606–1611. 2012. View Article : Google Scholar : PubMed/NCBI
|
51
|
Barber M, Stewart D, Grosset D and MacPhee
G: Patient and carer perception of the management of Parkinson's
disease after surgery. Age Ageing. 30:171–172. 2001. View Article : Google Scholar : PubMed/NCBI
|
52
|
Kinoshita KI, Tada Y, Muroi Y, Unno T and
Ishii T: Selective loss of dopaminergic neurons in the substantia
nigra pars compacta after systemic administration of MPTP
facilitates extinction learning. Life Sci. 137:28–36. 2015.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Ma C, Liu Y, Neumann S and Gao X: Nicotine
from cigarette smoking and diet and Parkinson disease: A review.
Transl Neurodegener. 6:182017. View Article : Google Scholar : PubMed/NCBI
|
54
|
Lu JYD, Su P, Barber JEM, Nash JE, Le AD,
Liu F and Wong AHC: The neuroprotective effect of nicotine in
Parkinson's disease models is associated with inhibiting PARP-1 and
caspase-3 cleavage. PeerJ. 5:e39332017. View Article : Google Scholar : PubMed/NCBI
|
55
|
Quik M, O'Leary K and Tanner CM: Nicotine
and Parkinson's disease: Implications for therapy. Mov Disord.
23:1641–1652. 2008. View Article : Google Scholar : PubMed/NCBI
|
56
|
Barreto GE, Iarkov A and Moran VE:
Beneficial effects of nicotine, cotinine and its metabolites as
potential agents for Parkinson's disease. Front Aging Neurosci.
6:340. 2015. View Article : Google Scholar : PubMed/NCBI
|
57
|
Nicholatos JW, Francisco AB, Bender CA,
Yeh T, Lugay FJ, Salazar JE, Glorioso C and Libert S: Nicotine
promotes neuron survival and partially protects from Parkinson's
disease by suppressing SIRT6. Acta Neuropathol Commun. 6:1202018.
View Article : Google Scholar : PubMed/NCBI
|
58
|
Kim H, Kim HS and Kaang BK: Elevated
contextual fear memory by SIRT6 depletion in excitatory neurons of
mouse forebrain. Mol Brain. 11:492018. View Article : Google Scholar : PubMed/NCBI
|
59
|
Yin X, Gao Y, Shi HS, Song L, Wang JC,
Shao J, Geng XH, Xue G, Li JL and Hou YN: Overexpression of SIRT6
in the hippocampal CA1 impairs the formation of long-term
contextual fear memory. Sci Rep. 6:189822016. View Article : Google Scholar : PubMed/NCBI
|
60
|
Kaluski S, Portillo M, Besnard A, Stein D,
Einav M, Zhong L, Ueberham U, Arendt T, Mostoslavsky R, Sahay A and
Toiber D: Neuroprotective functions for the histone deacetylase
SIRT6. Cell Rep. 18:3052–3062. 2017. View Article : Google Scholar : PubMed/NCBI
|
61
|
Rousset B, Dupuy C, Miot F and Dumont J:
Chapter 2 Thyroid Hormone Synthesis and Secretion. Endotext.
Feingold KR, Anawalt B, Boyce A, et al: MDText.com, Inc.; South
Dartmouth, MA: 2000, https://www.ncbi.nlm.nih.gov/books/NBK285550/September
2–2015
|
62
|
Diez D, Grijota-Martinez C, Agretti P, De
Marco G, Tonacchera M, Pinchera A, de Escobar GM, Bernal J and
Morte B: Thyroid hormone action in the adult brain: Gene expression
profiling of the effects of single and multiple doses of
triiodo-L-thyronine in the rat striatum. Endocrinology.
149:3989–4000. 2008. View Article : Google Scholar : PubMed/NCBI
|
63
|
Desouza LA, Ladiwala U, Daniel SM, Agashe
S, Vaidya RA and Vaidya VA: Thyroid hormone regulates hippocampal
neurogenesis in the adult rat brain. Mol Cell Neurosci. 29:414–426.
2005. View Article : Google Scholar : PubMed/NCBI
|
64
|
Fekete C and Lechan RM: Central regulation
of hypothalamic-pituitary-thyroid axis under physiological and
pathophysiological conditions. Endocr Rev. 35:159–194. 2014.
View Article : Google Scholar : PubMed/NCBI
|
65
|
Mariotti S and Beck-Peccoz P: Physiology
of the Hypothalamic-Pituitary Thyroidal System. Endotext. De Groot
LJ, Beck-Peccoz P, Chrousos G, et al: MDText.com, Inc.; South
Dartmouth, MA: 2000, https://www.ncbi.nlm.nih.gov/books/NBK278958August
14–2016
|
66
|
Cheng SY: Multiple mechanisms for
regulation of the transcriptional activity of thyroid hormone
receptors. Rev Endocr Metab Disord. 1:9–18. 2000. View Article : Google Scholar : PubMed/NCBI
|
67
|
Bradley DJ, Towle HC and Young WS III:
Spatial and temporal expression of alpha- and beta-thyroid hormone
receptor mRNAs, including the beta 2-subtype, in the developing
mammalian nervous system. J Neurosci. 12:2288–2302. 1992.
View Article : Google Scholar : PubMed/NCBI
|
68
|
Williams GR: Cloning and characterization
of two novel thyroid hormone receptor beta isoforms. Mol Cell Biol.
20:8329–8342. 2000. View Article : Google Scholar : PubMed/NCBI
|
69
|
Brent GA: Mechanisms of thyroid hormone
action. J Clin Invest. 122:3035–3043. 2012. View Article : Google Scholar : PubMed/NCBI
|
70
|
Yen PM: Physiological and molecular basis
of thyroid hormone action. Physiol Rev. 81:1097–1142. 2001.
View Article : Google Scholar : PubMed/NCBI
|
71
|
Ge JF, Peng L, Hu CM and Wu TN: Impaired
learning and memory performance in a subclinical hypothyroidism rat
model induced by hemi-thyroid electrocauterisation. J
Neuroendocrinol. 24:953–961. 2012. View Article : Google Scholar : PubMed/NCBI
|
72
|
Cooke GE, Mullally S, Correia N, O'Mara SM
and Gibney J: Hippocampal volume is decreased in adults with
hypothyroidism. Thyroid. 24:433–440. 2014. View Article : Google Scholar : PubMed/NCBI
|
73
|
Singh S, Rana P, Kumar P, Shankar LR and
Khushu S: Hippocampal neurometabolite changes in hypothyroidism: An
in vivo (1) H magnetic resonance spectroscopy study before and
after thyroxine treatment. J Neuroendocrinol. 282016.doi:
10.1111/jne.12399.
|
74
|
Alzoubi KH, Aleisa AM, Gerges NZ and
Alkadhi KA: Nicotine reverses adult-onset hypothyroidism-induced
impairment of learning and memory: Behavioral and
electrophysiological studies. J Neurosci Res. 84:944–953. 2006.
View Article : Google Scholar : PubMed/NCBI
|
75
|
Leach PT, Kenney JW, Connor DA and Gould
TJ: Thyroid receptor β involvement in the effects of acute nicotine
on hippocampus-dependent memory. Neuropharmacology. 93:155–163.
2015. View Article : Google Scholar : PubMed/NCBI
|
76
|
Alzoubi KH, Aleisa AM and Alkadhi KA:
Molecular studies on the protective effect of nicotine in
adult-onset hypothyroidism-induced impairment of long-term
potentiation. Hippocampus. 16:861–874. 2006. View Article : Google Scholar : PubMed/NCBI
|
77
|
Pi HJ, Otmakhov N, El Gaamouch F, Lemelin
D, De Koninck P and Lisman J: CaMKII control of spine size and
synaptic strength: Role of phosphorylation states and nonenzymatic
action. Proc Natl Acad Sci USA. 107:14437–14442. 2010. View Article : Google Scholar : PubMed/NCBI
|
78
|
Aleisa AM, Alzoubi KH, Gerges NZ and
Alkadhi KA: Chronic psychosocial stress-induced impairment of
hippocampal LTP: Possible role of BDNF. Neurobiol Dis. 22:453–462.
2006. View Article : Google Scholar : PubMed/NCBI
|
79
|
Misrani A, Tabassum S, Wang M, Chen J,
Yang L and Long C: Citalopram prevents sleep-deprivation-induced
reduction in CaMKII-CREB-BDNF signaling in mouse prefrontal cortex.
Brain Res Bull. 155:11–18. 2020. View Article : Google Scholar : PubMed/NCBI
|
80
|
Mao LM, Jin DZ, Xue B, Chu XP and Wang JQ:
Phosphorylation and regulation of glutamate receptors by CaMKII.
Sheng Li Xue Bao. 66:365–372. 2014.PubMed/NCBI
|
81
|
Aleisa AM, Helal G, Alhaider IA, Alzoubi
KH, Srivareerat M, Tran TT, Al-Rejaie SS and Alkadhi KA: Acute
nicotine treatment prevents REM sleep deprivation-induced learning
and memory impairment in rat. Hippocampus. 21:899–909.
2011.PubMed/NCBI
|
82
|
Shilatifard A: Chromatin modifications by
methylation and ubiquitination: Implications in the regulation of
gene expression. Annual Rev Biochem. 75:243–269. 2006. View Article : Google Scholar
|
83
|
Marwick JA, Kirkham PA, Stevenson CS,
Danahay H, Giddings J, Butler K, Donaldson K, Macnee W and Rahman
I: Cigarette smoke alters chromatin remodeling and induces
proinflammatory genes in rat lungs. Am J Respir Cell Mol Biol.
31:633–642. 2004. View Article : Google Scholar : PubMed/NCBI
|
84
|
Volkow ND: Epigenetics of nicotine:
Another nail in the coughing. Sci Transl Med. 3:107ps1432011.
View Article : Google Scholar
|
85
|
Kouzarides T: Chromatin modifications and
their function. Cell. 128:693–705. 2007. View Article : Google Scholar : PubMed/NCBI
|
86
|
Brehove M, Wang T, North J, Luo Y, Dreher
SJ, Shimko JC, Ottesen JJ, Luger K and Poirier MG: Histone core
phosphorylation regulates DNA accessibility. J Biol Chem.
290:22612–22621. 2015. View Article : Google Scholar : PubMed/NCBI
|
87
|
Zhang Y, Griffin K, Mondal N and Parvin
JD: Phosphorylation of histone H2A inhibits transcription on
chromatin templates. J Biol Chem. 279:21866–21872. 2004. View Article : Google Scholar : PubMed/NCBI
|
88
|
Legube G and Trouche D: Regulating histone
acetyltransferases and deacetylases. EMBO Rep. 4:944–947. 2003.
View Article : Google Scholar : PubMed/NCBI
|
89
|
Vecsey CG, Hawk JD, Lattal KM, Stein JM,
Fabian SA, Attner MA, Cabrera SM, McDonough CB, Brindle PK, Abel T
and Wood MA: Histone deacetylase inhibitors enhance memory and
synaptic plasticity via CREB: CBP-dependent transcriptional
activation. J Neurosci. 27:6128–6140. 2007. View Article : Google Scholar : PubMed/NCBI
|
90
|
Kim MS, Akhtar MW, Adachi M, Mahgoub M,
Bassel-Duby R, Kavalali ET, Olson EN and Monteggia LM: An essential
role for histone deacetylase 4 in synaptic plasticity and memory
formation. J Neurosci. 32:10879–10886. 2012. View Article : Google Scholar : PubMed/NCBI
|
91
|
Pulvermuller F, Garagnani M and Wennekers
T: Thinking in circuits: Toward neurobiological explanation in
cognitive neuroscience. Biol Cybern. 108:573–593. 2014. View Article : Google Scholar : PubMed/NCBI
|
92
|
Richter-Levin G, Canevari L and Bliss TV:
Long-term potentiation and glutamate release in the dentate gyrus:
Links to spatial learning. Behav Brain Res. 66:37–40. 1995.
View Article : Google Scholar : PubMed/NCBI
|
93
|
Aleisa AM, Alzoubi KH and Alkadhi KA:
Nicotine prevents stress-induced enhancement of long-term
depression in hippocampal area CA1: Electrophysiological and
molecular studies. J Neurosci Res. 83:309–317. 2006. View Article : Google Scholar : PubMed/NCBI
|
94
|
Alkadhi KA: Chronic stress and Alzheimer's
disease-like pathogenesis in a rat model: Prevention by nicotine.
Curr Neuropharmacol. 9:587–597. 2011. View Article : Google Scholar : PubMed/NCBI
|
95
|
Alzoubi KH and Alkadhi KA: Chronic
nicotine treatment reverses hypothyroidism-induced impairment of
L-LTP induction phase: Critical role of CREB. Mol Neurobiol.
49:1245–1255. 2014. View Article : Google Scholar : PubMed/NCBI
|