|
1
|
Li J, Ananthapanyasut W and Yu AS:
Claudins in renal physiology and disease. Pediatr Nephrol.
26:2133–2142. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Singh AB, Uppada SB and Dhawan P: Claudin
proteins, outside-in signaling, and carcinogenesis. Pflugers Arch.
469:69–75. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Hu CA, Hou Y, Yi D, Qiu Y, Wu G, Kong X
and Yin Y: Autophagy and tight junction proteins in the intestine
and intestinal diseases. Anim Nutr. 1:123–127. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
English DP and Santin AD: Claudins
overexpression in ovarian cancer: Potential targets for clostridium
perfringens enterotoxin (CPE) based diagnosis and therapy. Int J
Mol Sci. 14:10412–10437. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Tabariès S and Siegel PM: The role of
claudins in cancer metastasis. Oncogene. 36:1176–1190. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Ushiku T, Shinozaki-Ushiku A, Maeda D,
Morita S and Fukayama M: Distinct expression pattern of claudin-6,
a primitive phenotypic tight junction molecule, in germ cell
tumours and visceral carcinomas. Histopathology. 61:1043–1056.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Gowrikumar S, Singh AB and Dhawan P: Role
of claudin proteins in regulating cancer stem cells and
chemoresistance-potential implication in disease prognosis and
therapy. Int J Mol Sci. 21:532019. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Kwon MJ: Emerging roles of claudins in
human cancer. Int J Mol Sci. 14:18148–18180. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Singh AB and Dhawan P: Claudins and
cancer: Fall of the soldiers entrusted to protect the gate and keep
the barrier intact. Semin Cell Dev Biol. 42:58–65. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Chen S, Liu X and Luo W: Advances in the
application of claudins to tumor therapy. Sheng Wu Gong Cheng Xue
Bao. 35:931–941. 2019.(In Chinese). PubMed/NCBI
|
|
11
|
Reinhard K, Rengstl B, Oehm P, Michel K,
Billmeier A, Hayduk N, Klein O, Kuna K, Ouchan Y, Wöll S, et al: An
RNA vaccine drives expansion and efficacy of claudin-CAR-T cells
against solid tumors. Science. 367:446–453. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Singh AB, Sharma A and Dhawan P: Claudin
family of proteins and cancer: An overview. J Oncol.
2010:5419572010. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Lin D, Guo Y, Li Y, Ruan Y, Zhang M, Jin
X, Yang M, Lu Y, Song P, Zhao S, et al: Bioinformatic analysis
reveals potential properties of human claudin-6 regulation and
functions. Oncol Rep. 38:875–885. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Anderson WJ, Zhou Q, Alcalde V, Kaneko OF,
Blank LJ, Sherwood RI, Guseh JS, Rajagopal J and Melton DA: Genetic
targeting of the endoderm with claudin-6CreER. Dev Dyn.
237:504–512. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Sugimoto K, Ichikawa-Tomikawa N, Kashiwagi
K, Endo C, Tanaka S, Sawada N, Watabe T, Higashi T and Chiba H:
Cell adhesion signals regulate the nuclear receptor activity. Proc
Natl Acad Sci USA. 116:24600–24609. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Hoevel T, Macek R, Swisshelm K and Kubbies
M: Reexpression of the TJ protein CLDN1 induces apoptosis in breast
tumor spheroids. Int J Cancer. 108:374–383. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Yafang L, Qiong W, Yue R, Xiaoming X, Lina
Y, Mingzi Z, Ting Z, Yulin L and Chengshi Q: Role of estrogen
receptor-α in the regulation of claudin-6 expression in breast
cancer cells. J Breast Cancer. 14:20–27. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Mullin JM: Potential interplay between
luminal growth factors and increased tight junction permeability in
epithelial carcinogenesis. J Exp Zool. 279:484–489. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Stadler CR, Bähr-Mahmud H, Plum LM,
Schmoldt K, Kölsch AC, Türeci Ö and Sahin U: Characterization of
the first-in-class T-cell-engaging bispecific single-chain antibody
for targeted immunotherapy of solid tumors expressing the oncofetal
protein claudin 6. Oncoimmunology. 5:e10915552015. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Ben-David U, Nudel N and Benvenisty N:
Immunologic and chemical targeting of the tight-junction protein
claudin-6 eliminates tumorigenic human pluripotent stem cells. Nat
Commun. 4:19922013. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Wu Q, Liu Y, Ren Y, Xu X, Yu L, Li Y and
Quan C: Tight junction protein, claudin-6, downregulates the
malignant phenotype of breast carcinoma. Eur J Cancer Prev.
19:186–194. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Jia H, Chai X, Li S, Wu D and Fan Z:
Identification of claudin-2, −6, −11 and −14 as prognostic markers
in human breast carcinoma. Int J Clin Exp Pathol. 12:2195–2204.
2019.PubMed/NCBI
|
|
23
|
Wu Q, Liu YF, Ren Y, Xu XM, Yu LN, Li YL
and Quan CS: Effects of stable up-regulation of tight junction
protein claudin-6 upon biological phenotypes of breast cancer cell
MCF-7. Zhonghua Yi Xue Za Zhi. 90:407–412. 2010.(In Chinese).
PubMed/NCBI
|
|
24
|
Heerma van Voss MR, van Diest PJ, Smolders
YH, Bart J, van der Wall E and van der Groep P: Distinct claudin
expression characterizes BRCA1-related breast cancer.
Histopathology. 65:814–827. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Xu X, Jin H, Liu Y, Liu L, Wu Q, Guo Y, Yu
L, Liu Z, Zhang T, Zhang X, et al: The expression patterns and
correlations of claudin-6, methy-CpG binding protein 2, DNA
methyltransferase 1, histone deacetylase 1, acetyl-histone H3 and
acetyl-histone H4 and their clinicopathological significance in
breast invasive ductal carcinomas. Diagn Pathol. 7:332012.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Lu Y, Wang L, Li H, Li Y, Ruan Y, Lin D,
Yang M, Jin X, Guo Y, Zhang X and Quan C: SMAD2 inactivation
inhibits CLDN6 methylation to suppress migration and invasion of
breast cancer cells. Int J Mol Sci. 18:18632017. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Li Q, Zhu F and Chen P: miR-7 and miR-218
epigenetically control tumor suppressor genes RASSF1A and claudin-6
by targeting HoxB3 in breast cancer. Biochem Biophys Res Commun.
424:28–33. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Liu Y, Jin X, Li Y, Ruan Y, Lu Y, Yang M,
Lin D, Song P, Guo Y, Zhao S, et al: DNA methylation of claudin-6
promotes breast cancer cell migration and invasion by recruiting
MeCP2 and deacetylating H3Ac and H4Ac. J Exp Clin Cancer Res.
35:1202016. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Ren Y, Wu Q, Liu Y, Xu X and Quan C: Gene
silencing of claudin-6 enhances cell proliferation and migration
accompanied with increased MMP-2 activity via p38 MAPK signaling
pathway in human breast epithelium cell line HBL 100. Mol Med Rep.
8:1505–1510. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Jia Y, Guo Y, Jin Q, Qu H, Qi D, Song P,
Zhang X, Wang X, Xu W, Dong Y, et al: A SUMOylation-dependent
HIF-1α/CLDN6 negative feedback mitigates hypoxia-induced breast
cancer metastasis. J Exp Clin Cancer Res. 39:422020. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Guo Y, Xu X, Liu Z, Zhang T, Zhang X, Wang
L, Wang M, Liu Y, Lu Y, Liu Y and Quan C: Apoptosis
signal-regulating kinase 1 is associated with the effect of
claudin-6 in breast cancer. Diagn Pathol. 7:1112012. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Guo Y, Lin D, Zhang M, Zhang X, Li Y, Yang
R, Lu Y, Jin X, Yang M, Wang M, et al: CLDN6-induced apoptosis via
regulating ASK1-p38/JNK signaling in breast cancer MCF-7 cells. Int
J Oncol. 48:2435–2444. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Song P, Li Y, Dong Y, Liang Y, Qu H, Qi D,
Lu Y, Jin X, Guo Y, Jia Y, et al: Estrogen receptor β inhibits
breast cancer cells migration and invasion through CLDN6-mediated
autophagy. J Exp Clin Cancer Res. 38:3542019. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Figueiredo NB, Cestari SH, Conde SJ,
Luvizotto RA, De Sibio MT, Perone D, Katayama ML, Carraro DM,
Brentani HP, Brentani MM and Nogueira CR: Estrogen-responsive genes
overlap with triiodothyronine-responsive genes in a breast
carcinoma cell line. ScientificWorldJournal. 2014:9694042014.
View Article : Google Scholar : PubMed/NCBIPubMed/NCBIPubMed/NCBI
|
|
35
|
Wu Q, Liu X, Liu YF, Lu Y, Wang LP, Zhang
XW, Li YL and Quan CS: Inhibition of p38 activity reverses
claudin-6 induced cell apoptosis, invasion, and migration. Chin Med
J (Engl). 126:3539–3544. 2013.PubMed/NCBI
|
|
36
|
Lin Z, Zhang X, Liu Z, Liu Q, Wang L, Lu
Y, Liu Y, Wang M, Yang M, Jin X and Quan C: The distinct expression
patterns of claudin-2, −6, and −11 between human gastric neoplasms
and adjacent non-neoplastic tissues. Diagn Pathol. 8:1332013.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Zavala-Zendejas VE, Torres-Martinez AC,
Salas-Morales B, Fortoul TI, Montaño LF and Rendon-Huerta EP:
Claudin-6, 7, or 9 overexpression in the human gastric
adenocarcinoma cell line AGS increases its invasiveness, migration,
and proliferation rate. Cancer Invest. 29:1–11. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Kohmoto T, Masuda K, Shoda K, Takahashi R,
Ujiro S, Tange S, Ichikawa D, Otsuji E and Imoto I: Claudin-6 is a
single prognostic marker and functions as a tumor-promoting gene in
a subgroup of intestinal type gastric cancer. Gastric Cancer.
23:403–417. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Gao F, Li M, Xiang R, Zhou X, Zhu L and
Zhai Y: Expression of CLDN6 in tissues of gastric cancer patients:
Association with clinical pathology and prognosis. Oncol Lett.
17:4621–4625. 2019.PubMed/NCBI
|
|
40
|
Rendón-Huerta E, Teresa F, Teresa GM,
Xochitl GS, Georgina AF, Veronica ZZ and Montaño LF: Distribution
and expression pattern of claudins 6, 7, and 9 in diffuse- and
intestinal-type gastric adenocarcinomas. J Gastrointest Cancer.
41:52–59. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Lu YZ, Li Y, Zhang T and Han ST: Claudin-6
is down-regulated in gastric cancer and its potential pathway.
Cancer Biomark. 28:329–340. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Resnick MB, Gavilanez M, Newton E, Konkin
T, Bhattacharya B, Britt DE, Sabo E and Moss SF: Claudin expression
in gastric adenocarcinomas: A tissue microarray study with
prognostic correlation. Hum Pathol. 36:886–892. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Yu S, Zhang Y, Li Q, Zhang Z, Zhao G and
Xu J: CLDN6 promotes tumor progression through the YAP1-snail1 axis
in gastric cancer. Cell Death Dis. 10:9492019. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Torres-Martínez AC, Gallardo-Vera JF,
Lara-Holguin AN, Montaño LF and Rendón-Huerta EP: Claudin-6
enhances cell invasiveness through claudin-1 in AGS human
adenocarcinoma gastric cancer cells. Exp Cell Res. 350:226–235.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Chavarría-Velázquez CO, Torres-Martínez
AC, Montaño LF and Rendón-Huerta EP: TLR2 activation induced by
H. pylori LPS promotes the differential expression of
claudin-4, −6, −7 and −9 via either STAT3 and ERK1/2 in AGS cells.
Immunobiology. 223:38–48. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Zhu ZX, Huang JW, Liao MH and Zeng Y:
Treatment strategy for hepatocellular carcinoma in China:
Radiofrequency ablation versus liver resection. Jpn J Clin Oncol.
46:1075–1080. 2016.PubMed/NCBI
|
|
47
|
Zheng A, Yuan F, Li Y, Zhu F, Hou P, Li J,
Song X, Ding M and Deng H: Claudin-6 and claudin-9 function as
additional coreceptors for hepatitis C virus. J Virol.
81:12465–12471. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Osanai M, Takasawa A, Murata M and Sawada
N: Claudins in cancer: Bench to bedside. Pflugers Arch. 469:55–67.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Huang L, Zhao C, Sun K, Yang D, Yan L, Luo
D, He J, Hu X, Wang R, Shen X, et al: Downregulation of CLDN6
inhibits cell proliferation, migration, and invasion via regulating
EGFR/AKT/mTOR signalling pathway in hepatocellular carcinoma. Cell
Biochem Funct. 38:541–548. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zhang X, Ruan Y, Li Y, Lin D and Quan C:
Tight junction protein claudin-6 inhibits growth and induces the
apoptosis of cervical carcinoma cells in vitro and in vivo. Med
Oncol. 32:1482015. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Zhang X, Ruan Y, Li Y, Lin D, Liu Z and
Quan C: Expression of apoptosis signal-regulating kinase 1 is
associated with tight junction protein claudin-6 in cervical
carcinoma. Int J Clin Exp Pathol. 8:5535–5541. 2015.PubMed/NCBI
|
|
52
|
Micke P, Mattsson JS, Edlund K, Lohr M,
Jirström K, Berglund A, Botling J, Rahnenfuehrer J, Marincevic M,
Pontén F, et al: Aberrantly activated claudin 6 and 18.2 as
potential therapy targets in non-small-cell lung cancer. Int J
Cancer. 135:2206–2214. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Wang Q, Zhang Y, Zhang T, Han ZG and Shan
L: Low claudin-6 expression correlates with poor prognosis in
patients with non-small cell lung cancer. Onco Targets Ther.
8:1971–1977. 2015.PubMed/NCBI
|
|
54
|
Wang L, Jin X, Lin D, Liu Z, Zhang X, Lu
Y, Liu Y, Wang M, Yang M, Li J and Quan C: Clinicopathologic
significance of claudin-6, occludin, and matrix
metalloproteinases-2 expression in ovarian carcinoma. Diagn Pathol.
8:1902013. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Cao X and He GZ: Knockdown of CLDN6
inhibits cell proliferation and migration via PI3K/AKT/mTOR
signaling pathway in endometrial carcinoma cell line HEC-1-B. Onco
Targets Ther. 11:6351–6360. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Birks DK, Kleinschmidt-DeMasters BK,
Donson AM, Barton VN, McNatt SA, Foreman NK and Handler MH: Claudin
6 is a positive marker for atypical teratoid/rhabdoid tumors. Brain
Pathol. 20:140–150. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Sullivan LM, Yankovich T, Le P, Martinez
D, Santi M, Biegel JA, Pawel BR and Judkins AR: Claudin-6 is a
nonspecific marker for malignant rhabdoid and other pediatric
tumors. Am J Surg Pathol. 36:73–80. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Antonelli M, Hasselblatt M, Haberler C, Di
Giannatale A, Garrè ML, Donofrio V, Lauriola L, Ridola V, Arcella
A, Frühwald M and Giangaspero F: Claudin-6 is of limited
sensitivity and specificity for the diagnosis of atypical
teratoid/rhabdoid tumors. Brain Pathol. 21:558–563. 2011.PubMed/NCBI
|
|
59
|
Tsunoda S, Smith E, De Young NJ, Wang X,
Tian ZQ, Liu JF, Jamieson GG and Drew PA: Methylation of CLDN6,
FBN2, RBP1, RBP4, TFPI2, and TMEFF2 in esophageal squamous cell
carcinoma. Oncol Rep. 21:1067–1073. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Phi LTH, Sari IN, Yang YG, Lee SH, Jun N,
Kim KS, Lee YK and Kwon HY: Cancer stem cells (CSCs) in drug
resistance and their therapeutic implications in cancer treatment.
Stem Cells Int. 2018:54169232018. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Abdullah LN and Chow EK: Mechanisms of
chemoresistance in cancer stem cells. Clin Transl Med. 2:32013.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Wang L, Xue Y, Shen Y, Li W, Cheng Y, Yan
X, Shi W, Wang J, Gong Z, Yang G, et al: Claudin 6: A novel surface
marker for characterizing mouse pluripotent stem cells. Cell Res.
22:1082–1085. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Turksen K and Troy TC: Claudin-6: A novel
tight junction molecule is developmentally regulated in mouse
embryonic epithelium. Dev Dyn. 222:292–300. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Gonzalez-Angulo AM, Morales-Vasquez F and
Hortobagyi GN: Overview of resistance to systemic therapy in
patients with breast cancer. Adv Exp Med Biol. 608:1–22. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Yang M, Li Y, Shen X, Ruan Y, Lu Y, Jin X,
Song P, Guo Y, Zhang X, Qu H, et al: CLDN6 promotes chemoresistance
through GSTP1 in human breast cancer. J Exp Clin Cancer Res.
36:1572017. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Yang M, Li Y, Ruan Y, Lu Y, Lin D, Xie Y,
Dong B, Dang Q and Quan C: CLDN6 enhances chemoresistance to ADM
via AF-6/ERKs pathway in TNBC cell line MDAMB231. Mol Cell Biochem.
443:169–180. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Chieffi P, De Martino M and Esposito F:
New anti-cancer strategies in testicular germ cell tumors. Recent
Pat Anticancer Drug Discov. 14:53–59. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Thomas A, Teicher BA and Hassan R:
Antibody-drug conjugates for cancer therapy. Lancet Oncol.
17:e254–e262. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Birrer MJ, Moore KN, Betella I and Bates
RC: Antibody-drug conjugate-based therapeutics: State of the
science. J Natl Cancer Inst. 111:538–549. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Tsuchikama K and An Z: Antibody-drug
conjugates: Recent advances in conjugation and linker chemistries.
Protein Cell. 9:33–46. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Gudkov SV, Shilyagina NY, Vodeneev VA and
Zvyagin AV: Targeted radionuclide therapy of human tumors. Int J
Mol Sci. 17:332015. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Gill MR, Falzone N, Du Y and Vallis KA:
Targeted radionuclide therapy in combined-modality regimens. Lancet
Oncol. 18:e414–e423. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Schneider IC, Hartmann J, Braun G, Stitz
J, Klamp T, Bihi M, Sahin U and Buchholz CJ: Displaying
tetra-membrane spanning claudins on enveloped virus-like particles
for cancer immunotherapy. Biotechnol J. 13:e17003452018. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Hutzler S, Erbar S, Jabulowsky RA, Hanauer
JRH, Schnotz JH, Beissert T, Bodmer BS, Eberle R, Boller K, Klamp
T, et al: Antigen-specific oncolytic MV-based tumor vaccines
through presentation of selected tumor-associated antigens on
infected cells or virus-like particles. Sci Rep. 7:168922017.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Kolokytha P, Yiannou P, Keramopoulos D,
Kolokythas A, Nonni A, Patsouris E and Pavlakis K: Claudin-3 and
claudin-4: Distinct prognostic significance in triple-negative and
luminal breast cancer. Appl Immunohistochem Mol Morphol.
22:125–131. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Wu Z, Shi J, Song Y, Zhao J, Sun J, Chen
X, Gao P and Wang Z: Claudin-7 (CLDN7) is overexpressed in gastric
cancer and promotes gastric cancer cell proliferation, invasion and
maintains mesenchymal state. Neoplasma. 65:349–359. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Danilova NV, Anikina KA, Oleynikova NA,
Vychuzhanin DV and Malkov PG: Claudin-3 expression in gastric
cancer. Arkh Patol. 82:5–11. 2020.(In Russian). View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Liu JX, Wei ZY, Chen JS, Lu HC, Hao L and
Li WJ: Prognostic and clinical significance of claudin-4 in gastric
cancer: A meta-analysis. World J Surg Oncol. 13:2072015. View Article : Google Scholar : PubMed/NCBI
|