1
|
Lipiński M and Rydzewska G: Immature
granulocytes predict severe acute pancreatitis independently of
systemic inflammatory response syndrome. Prz Gastroenterol.
12:140–144. 2017.
|
2
|
Huang Y, Xiao J, Cai T, Yang L, Shi F,
Wang Y, Li Y, Shi T, Li C, Peng Y, et al: Immature granulocytes: A
novel biomarker of acute respiratory distress syndrome in patients
with acute pancreatitis. J Crit Care. 50:303–308. 2019. View Article : Google Scholar : PubMed/NCBI
|
3
|
Nierhaus A, Klatte S, Linssen J, Eismann
NM, Wichmann D, Hedke J, Braune SA and Kluge S: Revisiting the
white blood cell count: Immature granulocytes count as a diagnostic
marker to discriminate between SIRS and sepsis-a prospective,
observational study. BMC Immunol. 14:82013. View Article : Google Scholar
|
4
|
Ayres LS, Sgnaolin V and Munhoz TP:
Immature granulocytes index as early marker of sepsis. Int J Lab
Hematol. 41:392–396. 2019. View Article : Google Scholar
|
5
|
Ansari-Lari MA, Kickler TS and Borowitz
MJ: Immature granulocyte measurement using the Sysmex XE-2100.
Relationship to infection and sepsis. Am J Clin Pathol.
120:795–799. 2003. View Article : Google Scholar
|
6
|
Daix T, Guérin E, Tavernier E, Marsaud JP,
Hacan A, Gauthier F, Piccardo A, Vignon P, Feuillard J and François
B: Immature granulocytes: A risk factor of infection after cardiac
surgery. Cytometry B Clin Cytom. 94:887–894. 2018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Galani IE and Andreakos E: Neutrophils in
viral infections: Current concepts and caveats. J Leukoc Biol.
98:557–564. 2015. View Article : Google Scholar
|
8
|
Naumenko V, Turk M, Jenne CN and Kim SJ:
Neutrophils in viral infection. Cell Tissue Res. 371:505–516. 2018.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Daher KA, Selsted ME and Lehrer RI: Direct
inactivation of viruses by human granulocyte defensins. J Virol.
60:1068–1074. 1986. View Article : Google Scholar
|
10
|
Bai F, Kong KF, Dai J, Qian F, Zhang L,
Brown CR, Fikrig E and Montgomery RR: A paradoxical role for
neutrophils in the pathogenesis of West Nile virus. J Infect Dis.
202:1804–1812. 2010. View
Article : Google Scholar : PubMed/NCBI
|
11
|
Faden H, Hong JJ and Ogra PL: Interaction
of polymorphonuclear leukocytes and viruses in humans: Adherence of
polymorphonuclear leukocytes to respiratory syncytial
virus-infected cells. J Virol. 52:16–23. 1984. View Article : Google Scholar
|
12
|
Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J,
Wang B, Xiang H, Cheng Z, Xiong Y, et al: Clinical characteristics
of 138 hospitalized patients with 2019 novel coronavirus-infected
pneumonia in Wuhan, China. JAMA. 323:1061–1069. 2020. View Article : Google Scholar : PubMed/NCBI
|
13
|
Hui DS, I Azhar E, Madani TA, Ntoumi F,
Kock R, Dar O, Ippolito G, Mchugh TD, Memish ZA, Drosten C, et al:
The continuing 2019-nCoV epidemic threat of novel coronaviruses to
global health-the latest 2019 novel coronavirus outbreak in Wuhan,
China. Int J Infect Dis. 91:264–266. 2020. View Article : Google Scholar : PubMed/NCBI
|
14
|
Liu Y, Yang Y, Zhang C, Huang F, Wang F,
Yuan J, Wang Z, Li J, Li J, Feng C, et al: Clinical and biochemical
indexes from 2019-nCoV infected patients linked to viral loads and
lung injury. Sci China Life Sci. 63:364–374. 2020. View Article : Google Scholar
|
15
|
Georgakopoulou VE, Lembessis P, Skarlis C,
Gkoufa A, Sipsas NV and Mavragani CP: Hematological abnormalities
in COVID-19 disease association with type I interferon pathway
activation and disease outcomes. Front Med (Lausanne).
9:8504722022. View Article : Google Scholar : PubMed/NCBI
|
16
|
Chen R, Sang L, Jiang M, Yang Z, Jia N, Fu
W, Xie J, Guan W, Liang W, Ni Z, et al: Longitudinal hematologic
and immunologic variations associated with the progression of
COVID-19 patients in China. J Allergy Clin Immunol. 146:89–100.
2020. View Article : Google Scholar
|
17
|
National Institutes of Health, . COVID-19
treatment guidelines panel: Coronavirus disease 2019 (COVID-19)
treatment guidelines. https://www.covid19treatmentguidelines.nih.gov/October
20–2021
|
18
|
Scapini P, Marini O, Tecchio C and
Cassatella MA: Human neutrophils in the saga of cellular
heterogeneity: Insights and open questions. Immunol Rev. 273:48–60.
2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Manz MG and Boettcher S: Emergency
granulopoiesis. Nat Rev Immunol. 14:302–314. 2014. View Article : Google Scholar
|
20
|
De Santo C, Salio M, Masri SH, Lee LY,
Dong T, Speak AO, Porubsky S, Booth S, Veerapen N, Besra GS, et al:
Invariant NKT cells reduce the immunosuppressive activity of
influenza A virus-induced myeloid-derived suppressor cells in mice
and humans. J Clin Invest. 118:4036–4048. 2008. View Article : Google Scholar
|
21
|
Reusch N, De Domenico E, Bonaguro L,
Schulte-Schrepping J, Baßler K, Schultze JL and Aschenbrenner AC:
Neutrophils in COVID-19. Front Immunol. 12:6524702021. View Article : Google Scholar
|
22
|
Myari A, Papapetrou E and Tsaousi C:
Diagnostic value of white blood cell parameters for COVID-19: Is
there a role for HFLC and IG? Int J Lab Hematol. 44:104–111. 2022.
View Article : Google Scholar
|
23
|
Georgakopoulou VE, Garmpis N, Damaskos C,
Valsami S, Dimitroulis D, Diamantis E, Farmaki P, Papageorgiou CV,
Makrodimitri S, Gravvanis N, et al: The impact of peripheral
eosinophil counts and eosinophil to lymphocyte ratio (ELR) in the
clinical course of COVID-19 patients: A retrospective study. In
Vivo. 35:641–648. 2021. View Article : Google Scholar : PubMed/NCBI
|
24
|
Carissimo G, Xu W, Kwok I, Abdad MY, Chan
YH, Fong SW, Puan KJ, Lee CY, Yeo NK, Amrun SN, et al: Whole blood
immunophenotyping uncovers immature neutrophil-to-VD2 T-cell ratio
as an early marker for severe COVID-19. Nat Commun. 11:52432020.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Nahm CH, Choi JW and Lee J: Delta
neutrophil index in automated immature granulocyte counts for
assessing disease severity of patients with sepsis. Ann Clin Lab
Sci. 38:241–246. 2008.
|
26
|
Kuri-Cervantes L, Pampena MB, Meng W,
Rosenfeld AM, Ittner CAG, Weisman AR, Agyekum RS, Mathew D, Baxter
AE, Vella LA, et al: Comprehensive mapping of immune perturbations
associated with severe COVID-19. Sci Immunol. 5:eabd71142020.
View Article : Google Scholar
|
27
|
Schulte-Schrepping J, Reusch N, Paclik D,
Baßler K, Schlickeiser S, Zhang B, Krämer B, Krammer T, Brumhard S,
Bonaguro L, et al: Severe COVID-19 is marked by a dysregulated
myeloid cell compartment. Cell. 182:1419–1440.e23. 2020. View Article : Google Scholar
|
28
|
Combadière B, Adam L, Guillou N, Quentric
P, Rosenbaum P, Dorgham K, Bonduelle O, Parizot C, Sauce D, Mayaux
J, et al: LOX-1-expressing immature neutrophils identify
critically-Ill COVID-19 patients at risk of thrombotic
complications. Front Immunol. 12:7526122021. View Article : Google Scholar
|
29
|
Birben B, Birben OD, Akın T, Akkurt G,
Surel AA, Yakısık E and Erdem D: Efficacy of the delta neutrophil
index in predicting 30-day mortality in COVID-19 patients requiring
intensive care. Int J Clin Pract. 75:e139702021. View Article : Google Scholar
|
30
|
Karagol C, Tehci AK, Gungor A, Ekici Tekin
Z, Çelikel E, Aydın F, Kurt T, Sezer M, Tekgöz N, Coşkun S, et al:
Delta neutrophil index and C-reactive protein: A potential
diagnostic marker of multisystem inflammatory syndrome in children
(MIS-C) with COVID-19. Eur J Pediatr. 181:775–781. 2022. View Article : Google Scholar : PubMed/NCBI
|
31
|
Daix T, Jeannet R, Hernandez Padilla AC,
Vignon P, Feuillard J and François B: Immature granulocytes can
help the diagnosis of pulmonary bacterial infections in patients
with severe COVID-19 pneumonia. J Intensive Care. 9:582021.
View Article : Google Scholar : PubMed/NCBI
|