Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
September-2023 Volume 28 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2023 Volume 28 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

Ghrelin promotes cardiomyocyte differentiation of adipose tissue‑derived mesenchymal stem cells by DDX17‑mediated regulation of the SFRP4/Wnt/β‑catenin axis

  • Authors:
    • Gui-Bo Liu
    • Yong-Xia Cheng
    • Hua-Min Li
    • Yong Liu
    • Li-Xin Sun
    • Qi Wu
    • Shang-Fu Guo
    • Ting-Ting Li
    • Chuan-Ling Dong
    • Ge Sun
  • View Affiliations / Copyright

    Affiliations: Department of Anatomy, School of Basic Medical Sciences, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China, Department of Pathology, The First Clinical Medical School of Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China, Department of Pathology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157000, P.R. China, Department of Research Platform, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China, Office of Educational Administration, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China, Department of Pathology, The First Clinical Medical School of Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China, Department of Asset Management, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China, Department of Pathology, School of Basic Medical Sciences, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China, Department of Orthopedics, The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang 157010, P.R. China
    Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 164
    |
    Published online on: July 11, 2023
       https://doi.org/10.3892/mmr.2023.13050
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Adipose tissue‑derived mesenchymal stem cells (ADMSCs) differentiate into cardiomyocytes and may be an ideal cell source for myocardial regenerative medicine. Ghrelin is a gastric‑secreted peptide hormone involved in the multilineage differentiation of MSCs. To the best of our knowledge, however, the role and potential downstream regulatory mechanism of ghrelin in cardiomyocyte differentiation of ADMSCs is still unknown. The mRNA and protein levels were measured by reverse transcription‑quantitative PCR and western blotting. Immunofluorescence staining was used to show the expression and cellular localization of cardiomyocyte markers and β‑catenin. RNA sequencing was used to explore the differentially expressed genes (DEGs) that regulated by ghrelin. The present study found that ghrelin promoted cardiomyocyte differentiation of ADMSCs in a concentration‑dependent manner, as shown by increased levels of cardiomyocyte markers GATA binding protein 4, α‑myosin heavy chain (α‑MHC), ISL LIM homeobox 1, NK2 homeobox 5 and troponin T2, cardiac type. Ghrelin increased β‑catenin accumulation in nucleus and decreased the protein expression of secreted frizzled‑related protein 4 (SFRP4), an inhibitor of Wnt signaling. RNA sequencing was used to determine the DEGs regulated by ghrelin. Functional enrichment showed that DEGs were more enriched in cardiomyocyte differentiation‑associated terms and Wnt pathways. Dead‑box helicase 17 (DDX17), an upregulated DEG, showed enhanced mRNA and protein expression levels following ghrelin addition. Overexpression of DDX17 promoted protein expression of cardiac‑specific markers and β‑catenin and enhanced the fluorescence intensity of α‑MHC and β‑catenin. DDX17 upregulation inhibited protein expression of SFRP4. Rescue assay confirmed that the addition of SFRP4 partially reversed ghrelin‑enhanced protein levels of cardiac‑specific markers and the fluorescence intensity of α‑MHC. In conclusion, ghrelin promoted cardiomyocyte differentiation of ADMSCs by DDX17‑mediated regulation of the SFRP4/Wnt/β‑catenin axis.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

View References

1 

Zhou Z, Chen Y, Zhang H, Min S, Yu B, He B and Jin A: Comparison of mesenchymal stromal cells from human bone marrow and adipose tissue for the treatment of spinal cord injury. Cytotherapy. 15:434–448. 2013. View Article : Google Scholar : PubMed/NCBI

2 

Joo HJ, Kim JH and Hong SJ: Adipose tissue-derived stem cells for myocardial regeneration. Korean Circ J. 47:151–159. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Miyahara Y, Nagaya N, Kataoka M, Yanagawa B, Tanaka K, Hao H, Ishino K, Ishida H, Shimizu T, Kangawa K, et al: Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med. 12:459–465. 2006. View Article : Google Scholar : PubMed/NCBI

4 

Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H and Kangawa K: Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 402:656–660. 1999. View Article : Google Scholar : PubMed/NCBI

5 

Yuan MJ, Li W and Zhong P: Research progress of ghrelin on cardiovascular disease. Biosci Rep. 41:BSR202033872021. View Article : Google Scholar : PubMed/NCBI

6 

Khatib MN, Shankar A, Kirubakaran R, Agho K, Simkhada P, Gaidhane S, Saxena D B U, Gode D, Gaidhane A and Zahiruddin SQ: Effect of ghrelin on mortality and cardiovascular outcomes in experimental rat and mice models of heart failure: A systematic review and meta-analysis. PLoS One. 10:e01266972015. View Article : Google Scholar : PubMed/NCBI

7 

Tokudome T, Otani K, Miyazato M and Kangawa K: Ghrelin and the heart. Peptides. 111:42–46. 2019. View Article : Google Scholar : PubMed/NCBI

8 

Tokudome T and Kangawa K: Physiological significance of ghrelin in the cardiovascular system. Proc Jpn Acad Ser B Phys Biol Sci. 95:459–467. 2019. View Article : Google Scholar : PubMed/NCBI

9 

Liu GB, Pan YM, Liu YS, Hu JH, Zhang XD, Zhang DW, Wang Y, Feng YK, Yu JB and Cheng YX: Ghrelin promotes neural differentiation of adipose tissue-derived mesenchymal stem cell via AKT/mTOR and β-catenin signaling pathways. Kaohsiung J Med Sci. 36:405–416. 2020. View Article : Google Scholar : PubMed/NCBI

10 

Eid RA, Alkhateeb MA, Al-Shraim M, Eleawa SM, Shatoor AS, El-Kott AF, Zaki MSA, Shatoor KA, Bin-Jaliah I and Al-Hashem FH: Ghrelin prevents cardiac cell apoptosis during cardiac remodelling post experimentally induced myocardial infarction in rats via activation of Raf-MEK1/2-ERK1/2 signalling. Arch Physiol Biochem. 125:93–103. 2019. View Article : Google Scholar : PubMed/NCBI

11 

Eid RA, Alkhateeb MA, Eleawa S, Al-Hashem FH, Al-Shraim M, El-Kott AF, Zaki MSA, Dallak MA and Aldera H: Cardioprotective effect of ghrelin against myocardial infarction-induced left ventricular injury via inhibition of SOCS3 and activation of JAK2/STAT3 signaling. Basic Res Cardiol. 113:132018. View Article : Google Scholar : PubMed/NCBI

12 

Sun L and Zhang W: Preconditioning of mesenchymal stem cells with ghrelin exerts superior cardioprotection in aged heart through boosting mitochondrial function and autophagy flux. Eur J Pharmacol. 903:1741422021. View Article : Google Scholar : PubMed/NCBI

13 

Gao M, Yang J, Wei R, Liu G, Zhang L, Wang H, Wang G, Gao H, Chen G and Hong T: Ghrelin induces cardiac lineage differentiation of human embryonic stem cells through ERK1/2 pathway. Int J Cardiol. 167:2724–2733. 2013. View Article : Google Scholar : PubMed/NCBI

14 

Yang J, Liu GQ, Wei R, Hou WF, Gao MJ, Zhu MX, Wang HN, Chen GA and Hong TP: Ghrelin promotes differentiation of human embryonic stem cells into cardiomyocytes. Acta Pharmacol Sin. 32:1239–1245. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Jiang M, Liu T, Zhang J, Gao S, Tao B, Cao R, Qiu Y, Liu J, Li Y, Wang Y and Cao F: Rapamycin promotes cardiomyocyte differentiation of human induced pluripotent stem cells in a stage-dependent manner. Stem Cells Dev. 29:1229–1239. 2020. View Article : Google Scholar : PubMed/NCBI

16 

Ueno S, Weidinger G, Osugi T, Kohn AD, Golob JL, Pabon L, Reinecke H, Moon RT and Murry CE: Biphasic role for Wnt/beta-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proc Natl Acad Sci USA. 104:9685–9690. 2007. View Article : Google Scholar : PubMed/NCBI

17 

Li B, Zeng M, He W, Huang X, Luo L, Zhang H and Deng DY: Ghrelin protects alveolar macrophages against lipopolysaccharide-induced apoptosis through growth hormone secretagogue receptor 1a-dependent c-Jun N-terminal kinase and Wnt/β-catenin signaling and suppresses lung inflammation. Endocrinology. 156:203–217. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Gay D, Ghinatti G, Guerrero-Juarez CF, Ferrer RA, Ferri F, Lim CH, Murakami S, Gault N, Barroca V, Rombeau I, et al: Phagocytosis of Wnt inhibitor SFRP4 by late wound macrophages drives chronic Wnt activity for fibrotic skin healing. Sci Adv. 6:eaay37042020. View Article : Google Scholar : PubMed/NCBI

19 

Zhang Y, Guan H, Fu Y, Wang X, Bai L, Zhao S and Liu E: Effects of SFRP4 overexpression on the production of adipokines in transgenic mice. Adipocyte. 9:374–383. 2020. View Article : Google Scholar : PubMed/NCBI

20 

Visweswaran M, Schiefer L, Arfuso F, Dilley RJ, Newsholme P and Dharmarajan A: Wnt antagonist secreted frizzled-related protein 4 upregulates adipogenic differentiation in human adipose tissue-derived mesenchymal stem cells. PLoS One. 10:e01180052015. View Article : Google Scholar : PubMed/NCBI

21 

Yamada A, Iwata T, Yamato M, Okano T and Izumi Y: Diverse functions of secreted frizzled-related proteins in the osteoblastogenesis of human multipotent mesenchymal stromal cells. Biomaterials. 34:3270–3278. 2013. View Article : Google Scholar : PubMed/NCBI

22 

Tian Y, Wang W, Lu Q, Chen P, Ma K, Jia Z and Zhou C: Cross-talk of SFRP4, integrin α1β1, and Notch1 inhibits cardiac differentiation of P19CL6 cells. Cell Signal. 28:1806–1815. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Qazi RE, Naeem N, Khan I, Qadeer Q, Shaheen F and Salim A: Effect of a dianthin G analogue in the differentiation of rat bone marrow mesenchymal stem cells into cardiomyocytes. Mol Cell Biochem. 475:27–39. 2020. View Article : Google Scholar : PubMed/NCBI

24 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

25 

Zhao X, Jiang C, Xu R, Liu Q, Liu G and Zhang Y: TRIP6 enhances stemness property of breast cancer cells through activation of Wnt/β-catenin. Cancer Cell Int. 20:512020. View Article : Google Scholar : PubMed/NCBI

26 

Gou H, Liang JQ, Zhang L, Chen H, Zhang Y, Li R, Wang X, Ji J, Tong JH, To KF, et al: TTPAL promotes colorectal tumorigenesis by stabilizing TRIP6 to activate Wnt/β-catenin signaling. Cancer Res. 79:3332–3346. 2019. View Article : Google Scholar : PubMed/NCBI

27 

Han F, Liu WB, Shi XY, Yang JT, Zhang X, Li ZM, Jiang X, Yin L, Li JJ, Huang CS, et al: SOX30 inhibits tumor metastasis through attenuating Wnt-signaling via transcriptional and posttranslational regulation of β-catenin in lung cancer. EBioMedicine. 31:253–266. 2018. View Article : Google Scholar : PubMed/NCBI

28 

Fu Q, Sun Z, Yang F, Mao T, Gao Y and Wang H: SOX30, a target gene of miR-653-5p, represses the proliferation and invasion of prostate cancer cells through inhibition of Wnt/β-catenin signaling. Cell Mol Biol Lett. 24:712019. View Article : Google Scholar : PubMed/NCBI

29 

Tong Q, Yi M, Kong P, Xu L, Huang W, Niu Y, Gan X, Zhan H, Tian R and Yan D: TRIM36 inhibits tumorigenesis through the Wnt/β-catenin pathway and promotes caspase-dependent apoptosis in hepatocellular carcinoma. Cancer Cell Int. 22:2782022. View Article : Google Scholar : PubMed/NCBI

30 

Zhao B, Qiao G, Li J, Wang Y, Li X, Zhang H and Zhang L: TRIM36 suppresses cell growth and promotes apoptosis in human esophageal squamous cell carcinoma cells by inhibiting Wnt/β-catenin signaling pathway. Hum Cell. 35:1487–1498. 2022. View Article : Google Scholar : PubMed/NCBI

31 

Li K, Mo C, Gong D, Chen Y, Huang Z, Li Y, Zhang J, Huang L, Li Y, Fuller-Pace FV, et al: DDX17 nucleocytoplasmic shuttling promotes acquired gefitinib resistance in non-small cell lung cancer cells via activation of β-catenin. Cancer Lett. 400:194–202. 2017. View Article : Google Scholar : PubMed/NCBI

32 

Shin S, Rossow KL, Grande JP and Janknecht R: Involvement of RNA helicases p68 and p72 in colon cancer. Cancer Res. 67:7572–7578. 2007. View Article : Google Scholar : PubMed/NCBI

33 

Germann S, Gratadou L, Zonta E, Dardenne E, Gaudineau B, Fougère M, Samaan S, Dutertre M, Jauliac S and Auboeuf D: Dual role of the ddx5/ddx17 RNA helicases in the control of the pro-migratory NFAT5 transcription factor. Oncogene. 31:4536–4549. 2012. View Article : Google Scholar : PubMed/NCBI

34 

Serysheva E, Berhane H, Grumolato L, Demir K, Balmer S, Bodak M, Boutros M, Aaronson S, Mlodzik M and Jenny A: Wnk kinases are positive regulators of canonical Wnt/β-catenin signalling. EMBO Rep. 14:718–725. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Sato A, Shimizu M, Goto T, Masuno H, Kagechika H, Tanaka N and Shibuya H: WNK regulates Wnt signalling and β-Catenin levels by interfering with the interaction between β-Catenin and GID. Commun Biol. 3:6662020. View Article : Google Scholar : PubMed/NCBI

36 

Kuwahara A, Sakai H, Xu Y, Itoh Y, Hirabayashi Y and Gotoh Y: Tcf3 represses Wnt-β-catenin signaling and maintains neural stem cell population during neocortical development. PLoS One. 9:e944082014. View Article : Google Scholar : PubMed/NCBI

37 

Yang Y, Qi Q, Wang Y, Shi Y, Yang W, Cen Y, Zhu E, Li X, Chen D and Wang B: Cysteine-rich protein 61 regulates adipocyte differentiation from mesenchymal stem cells through mammalian target of rapamycin complex 1 and canonical Wnt signaling. FASEB J. 32:3096–3107. 2018. View Article : Google Scholar : PubMed/NCBI

38 

Caretti G, Schiltz RL, Dilworth FJ, Di Padova M, Zhao P, Ogryzko V, Fuller-Pace FV, Hoffman EP, Tapscott SJ and Sartorelli V: The RNA helicases p68/p72 and the noncoding RNA SRA are coregulators of MyoD and skeletal muscle differentiation. Dev Cell. 11:547–560. 2006. View Article : Google Scholar : PubMed/NCBI

39 

Choi YH, Kurtz A and Stamm C: Mesenchymal stem cells for cardiac cell therapy. Hum Gene Ther. 22:3–17. 2011. View Article : Google Scholar : PubMed/NCBI

40 

Gupta S, Sharma A S A and Verma RS: Mesenchymal stem cells for cardiac regeneration: From differentiation to cell delivery. Stem Cell Rev Rep. 17:1666–1694. 2021. View Article : Google Scholar : PubMed/NCBI

41 

Neshati V, Mollazadeh S, Fazly Bazzaz BS, de Vries AA, Mojarrad M, Naderi-Meshkin H, Neshati Z and Kerachian MA: Cardiomyogenic differentiation of human adipose-derived mesenchymal stem cells transduced with Tbx20-encoding lentiviral vectors. J Cell Biochem. 119:6146–6153. 2018. View Article : Google Scholar : PubMed/NCBI

42 

Shafei AE, Ali MA, Ghanem HG, Shehata AI, Abdelgawad AA, Handal HR, Talaat KA, Ashaal AE and El-Shal AS: Mesenchymal stem cell therapy: A promising cell-based therapy for treatment of myocardial infarction. J Gene Med. 19:2017. View Article : Google Scholar : PubMed/NCBI

43 

Casteilla L, Planat-Benard V, Laharrague P and Cousin B: Adipose-derived stromal cells: Their identity and uses in clinical trials, an update. World J Stem Cells. 3:25–33. 2011. View Article : Google Scholar : PubMed/NCBI

44 

Fraser JK, Wulur I, Alfonso Z and Hedrick MH: Fat tissue: An underappreciated source of stem cells for biotechnology. Trends Biotechnol. 24:150–154. 2006. View Article : Google Scholar : PubMed/NCBI

45 

Otto Beitnes J, Oie E, Shahdadfar A, Karlsen T, Müller RM, Aakhus S, Reinholt FP and Brinchmann JE: Intramyocardial injections of human mesenchymal stem cells following acute myocardial infarction modulate scar formation and improve left ventricular function. Cell Transplant. 21:1697–1709. 2012. View Article : Google Scholar : PubMed/NCBI

46 

Irion CI, Martins EL, Christie MLA, de Andrade CBV, de Moraes ACN, Ferreira RP, Pimentel CF, Suhett GD, de Carvalho ACC, Lindoso RS, et al: Acute myocardial infarction reduces respiration in rat cardiac fibers, despite adipose tissue mesenchymal stromal cell transplant. Stem Cells Int. 2020:43279652020. View Article : Google Scholar : PubMed/NCBI

47 

Davy PM, Lye KD, Mathews J, Owens JB, Chow AY, Wong L, Moisyadi S and Allsopp RC: Human adipose stem cell and ASC-derived cardiac progenitor cellular therapy improves outcomes in a murine model of myocardial infarction. Stem Cells Cloning. 8:135–148. 2015.PubMed/NCBI

48 

Cai L, Johnstone BH, Cook TG, Tan J, Fishbein MC, Chen PS and March KL: IFATS collection: Human adipose tissue-derived stem cells induce angiogenesis and nerve sprouting following myocardial infarction, in conjunction with potent preservation of cardiac function. Stem Cells. 27:230–237. 2009. View Article : Google Scholar : PubMed/NCBI

49 

Cho JW, Seo MS, Kang KK and Sung SE: Effect of human thymus adipose tissue-derived mesenchymal stem cells on myocardial infarction in rat model. Regen Ther. 11:192–198. 2019. View Article : Google Scholar : PubMed/NCBI

50 

Kuraitis D, Ruel M and Suuronen EJ: Mesenchymal stem cells for cardiovascular regeneration. Cardiovasc Drugs Ther. 25:349–362. 2011. View Article : Google Scholar : PubMed/NCBI

51 

Penicka M, Widimsky P, Kobylka P, Kozak T and Lang O: Images in cardiovascular medicine. Early tissue distribution of bone marrow mononuclear cells after transcoronary transplantation in a patient with acute myocardial infarction. Circulation. 112:e63–e65. 2005. View Article : Google Scholar : PubMed/NCBI

52 

Müller-Ehmsen J, Krausgrill B, Burst V, Schenk K, Neisen UC, Fries JW, Fleischmann BK, Hescheler J and Schwinger RH: Effective engraftment but poor mid-term persistence of mononuclear and mesenchymal bone marrow cells in acute and chronic rat myocardial infarction. J Mol Cell Cardiol. 41:876–884. 2006. View Article : Google Scholar : PubMed/NCBI

53 

Russo C, Mannino G, Patanè M, Parrinello NL, Pellitteri R, Stanzani S, Giuffrida R, Lo Furno D and Russo A: Ghrelin peptide improves glial conditioned medium effects on neuronal differentiation of human adipose mesenchymal stem cells. Histochem Cell Biol. 156:35–46. 2021. View Article : Google Scholar : PubMed/NCBI

54 

Li K, Fan L, Lin J, Heng BC, Deng Z, Zheng Q, Zhang J, Jiang Y and Ge Z: Nanosecond pulsed electric fields prime mesenchymal stem cells to peptide ghrelin and enhance chondrogenesis and osteochondral defect repair in vivo. Sci China Life Sci. 65:927–939. 2022. View Article : Google Scholar : PubMed/NCBI

55 

Ge S, He W, Zhang L, Lin S, Luo Y, Chen Q and Zeng M: Ghrelin pretreatment enhanced the protective effect of bone marrow-derived mesenchymal stem cell-conditioned medium on lipopolysaccharide-induced endothelial cell injury. Mol Cell Endocrinol. 548:1116122022. View Article : Google Scholar : PubMed/NCBI

56 

Han D, Huang W, Ma S, Chen J, Gao L, Liu T, Zhang R, Li X, Li C, Fan M, et al: Ghrelin improves functional survival of engrafted adipose-derived mesenchymal stem cells in ischemic heart through PI3K/Akt signaling pathway. Biomed Res Int. 2015:8583492015. View Article : Google Scholar : PubMed/NCBI

57 

Lian X, Zhang J, Azarin SM, Zhu K, Hazeltine LB, Bao X, Hsiao C, Kamp TJ and Palecek SP: Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat Protoc. 8:162–175. 2013. View Article : Google Scholar : PubMed/NCBI

58 

Lian X, Hsiao C, Wilson G, Zhu K, Hazeltine LB, Azarin SM, Raval KK, Zhang J, Kamp TJ and Palecek SP: Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci USA. 109:E1848–E1857. 2012. View Article : Google Scholar : PubMed/NCBI

59 

Klaus A, Müller M, Schulz H, Saga Y, Martin JF and Birchmeier W: Wnt/β-catenin and Bmp signals control distinct sets of transcription factors in cardiac progenitor cells. Proc Natl Acad Sci USA. 109:10921–10926. 2012. View Article : Google Scholar : PubMed/NCBI

60 

Gong B, Jiao L, Du X, Li Y, Bi M, Jiao Q and Jiang H: Ghrelin promotes midbrain neural stem cells differentiation to dopaminergic neurons through Wnt/β-catenin pathway. J Cell Physiol. 235:8558–8570. 2020. View Article : Google Scholar : PubMed/NCBI

61 

Liu X, Chen D, Wu Z, Li J, Li J, Zhao H and Liu T: Ghrelin inhibits high glucose-induced 16HBE cells apoptosis by regulating Wnt/β-catenin pathway. Biochem Biophys Res Commun. 477:902–907. 2016. View Article : Google Scholar : PubMed/NCBI

62 

Qu R, Chen X, Yuan Y, Wang W, Qiu C, Liu L, Li P, Zhang Z, Vasilev K, Liu L, et al: Ghrelin fights against Titanium particle-induced inflammatory osteolysis through activation of β-catenin signaling pathway. Inflammation. 42:1652–1665. 2019. View Article : Google Scholar : PubMed/NCBI

63 

Zeng W, Cao Y, Jiang W, Kang G, Huang J and Xie S: Knockdown of Sfrp4 attenuates apoptosis to protect against myocardial ischemia/reperfusion injury. J Pharmacol Sci. 140:14–19. 2019. View Article : Google Scholar : PubMed/NCBI

64 

Lin B, Wang F, Wang J, Xu C, Zhao H, Cheng Z and Feng D: The protective role of p72 in doxorubicin-induced cardiomyocytes injury in vitro. Mol Med Rep. 14:3376–3380. 2016. View Article : Google Scholar : PubMed/NCBI

65 

Wang MK, Sun HQ, Xiang YC, Jiang F, Su YP and Zou ZM: Different roles of TGF-β in the multi-lineage differentiation of stem cells. World J Stem Cells. 4:28–34. 2012. View Article : Google Scholar : PubMed/NCBI

66 

MacGrogan D, Münch J and de la Pompa JL: Notch and interacting signalling pathways in cardiac development, disease, and regeneration. Nat Rev Cardiol. 15:685–704. 2018. View Article : Google Scholar : PubMed/NCBI

67 

Fang X, Miao S, Yu Y, Ding F, Han X, Wu H, Zhao ZA, Wang Y, Hu S and Lei W: MIR148A family regulates cardiomyocyte differentiation of human embryonic stem cells by inhibiting the DLL1-mediated NOTCH signaling pathway. J Mol Cell Cardiol. 134:1–12. 2019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Liu G, Cheng Y, Li H, Liu Y, Sun L, Wu Q, Guo S, Li T, Dong C, Sun G, Sun G, et al: Ghrelin promotes cardiomyocyte differentiation of adipose tissue‑derived mesenchymal stem cells by DDX17‑mediated regulation of the SFRP4/Wnt/β‑catenin axis. Mol Med Rep 28: 164, 2023.
APA
Liu, G., Cheng, Y., Li, H., Liu, Y., Sun, L., Wu, Q. ... Sun, G. (2023). Ghrelin promotes cardiomyocyte differentiation of adipose tissue‑derived mesenchymal stem cells by DDX17‑mediated regulation of the SFRP4/Wnt/β‑catenin axis. Molecular Medicine Reports, 28, 164. https://doi.org/10.3892/mmr.2023.13050
MLA
Liu, G., Cheng, Y., Li, H., Liu, Y., Sun, L., Wu, Q., Guo, S., Li, T., Dong, C., Sun, G."Ghrelin promotes cardiomyocyte differentiation of adipose tissue‑derived mesenchymal stem cells by DDX17‑mediated regulation of the SFRP4/Wnt/β‑catenin axis". Molecular Medicine Reports 28.3 (2023): 164.
Chicago
Liu, G., Cheng, Y., Li, H., Liu, Y., Sun, L., Wu, Q., Guo, S., Li, T., Dong, C., Sun, G."Ghrelin promotes cardiomyocyte differentiation of adipose tissue‑derived mesenchymal stem cells by DDX17‑mediated regulation of the SFRP4/Wnt/β‑catenin axis". Molecular Medicine Reports 28, no. 3 (2023): 164. https://doi.org/10.3892/mmr.2023.13050
Copy and paste a formatted citation
x
Spandidos Publications style
Liu G, Cheng Y, Li H, Liu Y, Sun L, Wu Q, Guo S, Li T, Dong C, Sun G, Sun G, et al: Ghrelin promotes cardiomyocyte differentiation of adipose tissue‑derived mesenchymal stem cells by DDX17‑mediated regulation of the SFRP4/Wnt/β‑catenin axis. Mol Med Rep 28: 164, 2023.
APA
Liu, G., Cheng, Y., Li, H., Liu, Y., Sun, L., Wu, Q. ... Sun, G. (2023). Ghrelin promotes cardiomyocyte differentiation of adipose tissue‑derived mesenchymal stem cells by DDX17‑mediated regulation of the SFRP4/Wnt/β‑catenin axis. Molecular Medicine Reports, 28, 164. https://doi.org/10.3892/mmr.2023.13050
MLA
Liu, G., Cheng, Y., Li, H., Liu, Y., Sun, L., Wu, Q., Guo, S., Li, T., Dong, C., Sun, G."Ghrelin promotes cardiomyocyte differentiation of adipose tissue‑derived mesenchymal stem cells by DDX17‑mediated regulation of the SFRP4/Wnt/β‑catenin axis". Molecular Medicine Reports 28.3 (2023): 164.
Chicago
Liu, G., Cheng, Y., Li, H., Liu, Y., Sun, L., Wu, Q., Guo, S., Li, T., Dong, C., Sun, G."Ghrelin promotes cardiomyocyte differentiation of adipose tissue‑derived mesenchymal stem cells by DDX17‑mediated regulation of the SFRP4/Wnt/β‑catenin axis". Molecular Medicine Reports 28, no. 3 (2023): 164. https://doi.org/10.3892/mmr.2023.13050
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team