Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
November-2023 Volume 28 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2023 Volume 28 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

The roles of FLOT1 in human diseases (Review)

  • Authors:
    • Ziqing Zhan
    • Meng Ye
    • Xiaofeng Jin
  • View Affiliations / Copyright

    Affiliations: Department of Oncology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, P.R. China
    Copyright: © Zhan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 212
    |
    Published online on: September 22, 2023
       https://doi.org/10.3892/mmr.2023.13099
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

FLOT1, a scaffold protein of lipid rafts, is involved in several biological processes, including lipid raft protein‑­dependent or clathrin‑independent endocytosis, and the formation of hippocampal synapses, amongst others. Increasing evidence has shown that FLOT1 can function as both a cancer promoter and cancer suppressor dependent on the type of cancer. FLOT1 can affect the occurrence and development of several types of cancer by affecting epithelial‑mesenchymal transition, proliferation of cancer cells, and relevant signaling pathways, and is regulated by long intergenic non‑coding RNAs or microRNAs. In the nervous system, overexpression or abnormally low expression of FLOT1 may lead to the occurrence of neurological diseases, such as Alzheimer's disease, Parkinson's disease, major depressive disorder and other diseases. Additionally, it is also associated with dilated cardiomyopathy, pathogenic microbial infection, diabetes‑related diseases, and gynecological diseases, amongst other diseases. In the present review, the structure and localization of FLOT1, as well as the physiological processes it is involved in are reviewed, and then the upstream and downstream regulation of FLOT1 in human disease, particularly in different types of cancer and neurological diseases are discussed, with a focus on potentially targeting FLOT1 for the clinical treatment of several diseases.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Zhang L, Mao Y, Mao Q, Fan W, Xu L, Chen Y, Xu L and Wang J: FLOT1 promotes tumor development, induces epithelial-mesenchymal transition, and modulates the cell cycle by regulating the Erk/Akt signaling pathway in lung adenocarcinoma. Thorac Cancer. 10:909–917. 2019. View Article : Google Scholar : PubMed/NCBI

2 

Swanwick CC, Shapiro ME, Vicini S and Wenthold RJ: Flotillin-1 promotes formation of glutamatergic synapses in hippocampal neurons. Dev Neurobiol. 70:875–883. 2010.PubMed/NCBI

3 

Xiong Q, Lin M, Huang W and Rikihisa Y: Infection by anaplasma phagocytophilum requires recruitment of low-density lipoprotein cholesterol by flotillins. mBio. 10:e02783–e02718. 2019. View Article : Google Scholar : PubMed/NCBI

4 

Li H, Zhang Y, Chen SW, Li FJ, Zhuang SM, Wang LP, Zhang J and Song M: Prognostic significance of Flotillin1 expression in clinically N0 tongue squamous cell cancer. Int J Clin Exp Pathol. 7:996–1003. 2014.PubMed/NCBI

5 

Jang D, Kwon H, Choi M, Lee J and Pak Y: Sumoylation of flotillin-1 promotes EMT in metastatic prostate cancer by suppressing snail degradation. Oncogene. 38:3248–3260. 2019. View Article : Google Scholar : PubMed/NCBI

6 

Ren K, Gao C, Zhang J, Wang K, Xu Y, Wang SB, Wang H, Tian C, Shi Q and Dong XP: Flotillin-1 mediates PrPc endocytosis in the cultured cells during Cu(2)(+) stimulation through molecular interaction. Mol Neurobiol. 48:631–646. 2013. View Article : Google Scholar : PubMed/NCBI

7 

Park MY, Kim N, Wu LL, Yu GY and Park K: Role of flotillins in the endocytosis of GPCR in salivary gland epithelial cells. Biochem Biophys Res Commun. 476:237–244. 2016. View Article : Google Scholar : PubMed/NCBI

8 

Persaud-Sawin DA, Banach L and Harry GJ: Raft aggregation with specific receptor recruitment is required for microglial phagocytosis of Abeta42. Glia. 57:320–335. 2009. View Article : Google Scholar : PubMed/NCBI

9 

Lin C, Wu Z, Lin X, Yu C, Shi T, Zeng Y, Wang X, Li J and Song L: Knockdown of FLOT1 impairs cell proliferation and tumorigenicity in breast cancer through upregulation of FOXO3a. Clin Cancer Res. 17:3089–3099. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Flemming JP, Hill BL, Haque MW, Raad J, Bonder CS, Harshyne LA, Rodeck U, Luginbuhl A, Wahl JK III, Tsai KY, et al: miRNA- and cytokine-associated extracellular vesicles mediate squamous cell carcinomas. J Extracell Vesicles. 9:17901592020. View Article : Google Scholar : PubMed/NCBI

11 

Niu Y, Shao Z, Wang H, Yang J, Zhang F, Luo Y, Xu L, Ding Y and Zhao L: LASP1-S100A11 axis promotes colorectal cancer aggressiveness by modulating TGFβ/smad signaling. Sci Rep. 6:261122016. View Article : Google Scholar : PubMed/NCBI

12 

Riento K, Frick M, Schafer I and Nichols BJ: Endocytosis of flotillin-1 and flotillin-2 is regulated by Fyn kinase. J Cell Sci. 122:912–918. 2009. View Article : Google Scholar : PubMed/NCBI

13 

Kwon H, Choi M, Ahn Y, Jang D and Pak Y: Flotillin-1 palmitoylation turnover by APT-1 and ZDHHC-19 promotes cervical cancer progression by suppressing IGF-1 receptor desensitization and proteostasis. Cancer Gene Ther. 30:302–312. 2022. View Article : Google Scholar : PubMed/NCBI

14 

Yap J, Foo CF, Lee MY, Stanton PG and Dimitriadis E: Proteomic analysis identifies interleukin 11 regulated plasma membrane proteins in human endometrial epithelial cells in vitro. Reprod Biol Endocrinol. 9:732011. View Article : Google Scholar : PubMed/NCBI

15 

Cremona ML, Matthies HJ, Pau K, Bowton E, Speed N, Lute BJ, Anderson M, Sen N, Robertson SD, Vaughan RA, et al: Flotillin-1 is essential for PKC-triggered endocytosis and membrane microdomain localization of DAT. Nat Neurosci. 14:469–477. 2011. View Article : Google Scholar : PubMed/NCBI

16 

Kim JM, Cha SH, Choi YR, Jou I, Joe EH and Park SM: DJ-1 deficiency impairs glutamate uptake into astrocytes via the regulation of flotillin-1 and caveolin-1 expression. Sci Rep. 6:288232016. View Article : Google Scholar : PubMed/NCBI

17 

Dam DHM, Jelsma SA, Yu JM, Liu H, Kong B and Paller AS: Flotillin and AP2A1/2 promote IGF-1 receptor association with clathrin and internalization in primary human keratinocytes. J Invest Dermatol. 140:1743–1752. e17442020. View Article : Google Scholar : PubMed/NCBI

18 

Tsui-Pierchala BA, Encinas M, Milbrandt J and Johnson EM Jr: Lipid rafts in neuronal signaling and function. Trends Neurosci. 25:412–417. 2002. View Article : Google Scholar : PubMed/NCBI

19 

Estebanez B, Visavadiya NP, de Paz JA, Whitehurst M, Cuevas MJ, González-Gallego J and Huang CJ: Resistance training diminishes the expression of exosome CD63 protein without modification of plasma miR-146a-5p and cfDNA in the elderly. Nutrients. 13:6652021. View Article : Google Scholar : PubMed/NCBI

20 

Kapahnke M, Banning A and Tikkanen R: Random splicing of several exons caused by a single base change in the target exon of CRISPR/Cas9 mediated gene knockout. Cells. 5:452016. View Article : Google Scholar : PubMed/NCBI

21 

Solis GP, Hoegg M, Munderloh C, Schrock Y, Malaga-Trillo E, Rivera-Milla E and Stuermer CAO: Reggie/flotillin proteins are organized into stable tetramers in membrane microdomains. Biochem J. 403:313–322. 2007. View Article : Google Scholar : PubMed/NCBI

22 

Swanwick CC, Shapiro ME, Yi Z, Chang K and Wenthold RJ: NMDA receptors interact with flotillin-1 and −2, lipid raft-associated proteins. FEBS Lett. 583:1226–1230. 2009. View Article : Google Scholar : PubMed/NCBI

23 

Babuke T, Ruonala M, Meister M, Amaddii M, Genzler C, Esposito A and Tikkanen R: Hetero-oligomerization of reggie-1/flotillin-2 and reggie-2/flotillin-1 is required for their endocytosis. Cell Signal. 21:1287–1297. 2009. View Article : Google Scholar : PubMed/NCBI

24 

Yau TY, Sander W, Eidson C and Courey AJ: SUMO interacting motifs: Structure and function. Cells. 10:28252021. View Article : Google Scholar : PubMed/NCBI

25 

Mohanraj N, Joshi NS, Poulose R, Patil RR, Santhoshkumar R, Kumar A, Waghmare GP, Saha AK, Haider SZ, Markandeya YS, et al: A proteomic study to unveil lead toxicity-induced memory impairments invoked by synaptic dysregulation. Toxicol Rep. 9:1501–1513. 2022. View Article : Google Scholar : PubMed/NCBI

26 

Walton JR, Frey HA, Vandre DD, Kwiek JJ, Ishikawa T, Takizawa T, Robinson JM and Ackerman WE IV: Expression of flotillins in the human placenta: Potential implications for placental transcytosis. Histochem Cell Biol. 139:487–500. 2013. View Article : Google Scholar : PubMed/NCBI

27 

Polo S, Pece S and Di Fiore PP: Endocytosis and cancer. Curr Opin Cell Biol. 16:156–161. 2004. View Article : Google Scholar : PubMed/NCBI

28 

Tomiyama A, Uekita T, Kamata R, Sasaki K, Takita J, Ohira M, Nakagawara A, Kitanaka C, Mori K, Yamaguchi H and Sakai R: Flotillin-1 regulates oncogenic signaling in neuroblastoma cells by regulating ALK membrane association. Cancer Res. 74:3790–3801. 2014. View Article : Google Scholar : PubMed/NCBI

29 

Chen K, Wu Q, Hu K, Yang C, Wu X, Cheung P and Williams KJ: Suppression of hepatic FLOT1 (Flotillin-1) by type 2 diabetes mellitus impairs the disposal of remnant lipoproteins via syndecan-1. Arterioscler Thromb Vasc Biol. 38:102–113. 2018. View Article : Google Scholar : PubMed/NCBI

30 

Kobayashi J, Hasegawa T, Sugeno N, Yoshida S, Akiyama T, Fujimori K, Hatakeyama H, Miki Y, Tomiyama A, Kawata Y, et al: Extracellular α-synuclein enters dopaminergic cells by modulating flotillin-1-assisted dopamine transporter endocytosis. FASEB J. 33:10240–10256. 2019. View Article : Google Scholar : PubMed/NCBI

31 

Craig AM and Banker G: Neuronal polarity. Annu Rev Neurosci. 17:267–310. 1994. View Article : Google Scholar : PubMed/NCBI

32 

Swanwick CC, Shapiro ME, Vicini S and Wenthold RJ: Flotillin-1 mediates neurite branching induced by synaptic adhesion-like molecule 4 in hippocampal neurons. Mol Cell Neurosci. 45:213–225. 2010. View Article : Google Scholar : PubMed/NCBI

33 

Stuermer CA: How reggies regulate regeneration and axon growth. Cell Tissue Res. 349:71–77. 2012. View Article : Google Scholar : PubMed/NCBI

34 

Stuermer CA: The reggie/flotillin connection to growth. Trends Cell Biol. 20:6–13. 2010. View Article : Google Scholar : PubMed/NCBI

35 

Wehmeyer L, Du Toit A, Lang DM and Hapgood JP: Lipid raft- and protein kinase C-mediated synergism between glucocorticoid- and gonadotropin-releasing hormone signaling results in decreased cell proliferation. J Biol Chem. 289:10235–10251. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Hada N, Okayasu M, Ito J, Nakayachi M, Hayashida C, Kaneda T, Uchida N, Muramatsu T, Koike C, Masuhara M, et al: Receptor activator of NF-kappaB ligand-dependent expression of caveolin-1 in osteoclast precursors, and high dependency of osteoclastogenesis on exogenous lipoprotein. Bone. 50:226–236. 2012. View Article : Google Scholar : PubMed/NCBI

37 

Ficht X, Ruef N, Stolp B, Samson GPB, Moalli F, Page N, Merkler D, Nichols BJ, Diz-Muñoz A, Legler DF, et al: In vivo function of the lipid raft protein flotillin-1 during CD8(+) T cell-mediated host surveillance. J Immunol. 203:2377–2387. 2019. View Article : Google Scholar : PubMed/NCBI

38 

Wang X, Guan H, Liu W, Li H, Ding J, Feng Y and Chen Z: Identification of immune markers in dilated cardiomyopathies with heart failure by integrated weighted gene coexpression network analysis. Genes (Basel). 13:3932022. View Article : Google Scholar : PubMed/NCBI

39 

Korhonen JT, Puolakkainen M, Häivälä R, Penttilä T, Haveri A, Markkula E and Lahesmaa R: Flotillin-1 (Reggie-2) contributes to Chlamydia pneumoniae growth and is associated with bacterial inclusion. Infect Immun. 80:1072–1078. 2012. View Article : Google Scholar : PubMed/NCBI

40 

Ji H, Greening DW, Barnes TW, Lim JW, Tauro BJ, Rai A, Xu R, Adda C, Mathivanan S, Zhao W, et al: Proteome profiling of exosomes derived from human primary and metastatic colorectal cancer cells reveal differential expression of key metastatic factors and signal transduction components. Proteomics. 13:1672–1686. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Reutgen H, Eckert H and Christ R: The Kveim test in the diagnosis of sarcoidosis. Z Erkr Atmungsorgane. 170:306–313. 1988.(In German). PubMed/NCBI

42 

Liu C, Shang Z, Ma Y, Ma J and Song J: HOTAIR/miR-214-3p/FLOT1 axis plays an essential role in the proliferation, migration, and invasion of hepatocellular carcinoma. Int J Clin Exp Pathol. 12:50–63. 2019.PubMed/NCBI

43 

Kan XQ, Li YB, He B, Cheng S, Wei Y and Sun J: MiR-1294 acts as a tumor inhibitor in cervical cancer by regulating FLOT1 expression. J Biol Regul Homeost Agents. 34:10.23812/20–10A. 2020.

44 

Cai S, Zhou Y, Pan Y, Liu P, Yu K and Chen S: Long non-coding RNA A1BG-AS1 promotes tumorigenesis in breast cancer by sponging microRNA-485-5p and consequently increasing expression of FLOT1 expression. Hum Cell. 34:1517–1531. 2021. View Article : Google Scholar : PubMed/NCBI

45 

Lv D, Xiang Y, Yang Q, Yao J and Dong Q: Long non-coding RNA TUG1 promotes cell proliferation and inhibits cell apoptosis, autophagy in clear cell renal cell carcinoma via MiR-31-5p/FLOT1 axis. Onco Targets Ther. 13:5857–5868. 2020. View Article : Google Scholar : PubMed/NCBI

46 

Song L, Gong H, Lin C, Wang C, Liu L, Wu J, Li M and Li J: Flotillin-1 promotes tumor necrosis factor-alpha receptor signaling and activation of NF-κB in esophageal squamous cell carcinoma cells. Gastroenterology. 143:995–1005. e10122012. View Article : Google Scholar : PubMed/NCBI

47 

Li H, Wang RM, Liu SG, Zhang JP, Luo JY, Zhang BJ and Zhang XG: Abnormal expression of FLOT1 correlates with tumor progression and poor survival in patients with non-small cell lung cancer. Tumour Biol. 35:3311–3315. 2014. View Article : Google Scholar : PubMed/NCBI

48 

Li J, Zuo X, Shi J, Zhang J, Duan X and Xu G: Flotillin 1 is differentially expressed in human epithelial ovarian tumors. Neoplasma. 65:561–571. 2018. View Article : Google Scholar : PubMed/NCBI

49 

Guan Y, Song H, Zhang G and Ai X: Overexpression of flotillin-1 is involved in proliferation and recurrence of bladder transitional cell carcinoma. Oncol Rep. 32:748–754. 2014. View Article : Google Scholar : PubMed/NCBI

50 

Zhao L, Li J, Liu Y, Zhou W, Shan Y, Fan X, Zhou X, Shan B, Song Y and Zhan Q: Flotillin1 promotes EMT of human small cell lung cancer via TGF-β signaling pathway. Cancer Biol Med. 15:400–414. 2018. View Article : Google Scholar : PubMed/NCBI

51 

Baig N, Li Z, Lu J, Chen H, Yu S, Li T, Niu Z and Niu J: Clinical significance and comparison of flotillin 1 expression in left and right colon cancer. Oncol Lett. 18:997–1004. 2019.PubMed/NCBI

52 

Cao S, Cui Y, Xiao H, Mai M, Wang C, Xie S, Yang J, Wu S, Li J, Song L, et al: Upregulation of flotillin-1 promotes invasion and metastasis by activating TGF-beta signaling in nasopharyngeal carcinoma. Oncotarget. 7:4252–4264. 2016. View Article : Google Scholar : PubMed/NCBI

53 

Wang R, Chen Z, Zhang Y, Ziao S, Zhang W, Hu X, Xiao Q, Liu Q and Wang X: Flotillin-1 is a prognostic biomarker for glioblastoma and promotes cancer development through enhancing invasion and altering tumour microenvironment. J Cell Mol Med. 27:392–402. 2023. View Article : Google Scholar : PubMed/NCBI

54 

Iorio MV and Croce CM: microRNA involvement in human cancer. Carcinogenesis. 33:1126–1133. 2012. View Article : Google Scholar : PubMed/NCBI

55 

Butz H, Szabo PM, Khella HW, Nofech-Mozes R, Patocs A and Yousef GM: miRNA-target network reveals miR-124as a key miRNA contributing to clear cell renal cell carcinoma aggressive behaviour by targeting CAV1 and FLOT1. Oncotarget. 6:12543–12557. 2015. View Article : Google Scholar : PubMed/NCBI

56 

Yang FQ, Zhang HM, Chen SJ, Yan Y and Zheng JH: MiR-506 is down-regulated in clear cell renal cell carcinoma and inhibits cell growth and metastasis via targeting FLOT1. PLoS One. 10:e01202582015. View Article : Google Scholar : PubMed/NCBI

57 

Zhang B, Zhang M, Yang Y, Li Q, Yu J, Zhu S, Niu Y and Shang Z: Targeting KDM4A-AS1 represses AR/AR-Vs deubiquitination and enhances enzalutamide response in CRPC. Oncogene. 41:387–399. 2022. View Article : Google Scholar : PubMed/NCBI

58 

Zhang Y, Cheng X, Liang H and Jin Z: Long non-coding RNA HOTAIR and STAT3 synergistically regulate the cervical cancer cell migration and invasion. Chem Biol Interact. 286:106–110. 2018. View Article : Google Scholar : PubMed/NCBI

59 

Wang Y, Wang Z, Cheng K and Hao Q: FAM201A promotes cervical cancer progression and metastasis through miR-1271-5p/Flotillin-1 axis targeting-induced Wnt/β-catenin pathway. J Oncol. 2022:11238392022. View Article : Google Scholar : PubMed/NCBI

60 

Li X, Zhang F, Ma J, Ruan X, Liu X, Zheng J, Liu Y, Cao S, Shen S, Shao L, et al: NCBP3/SNHG6 inhibits GBX2 transcription in a histone modification manner to facilitate the malignant biological behaviour of glioma cells. RNA Biol. 18:47–63. 2021. View Article : Google Scholar : PubMed/NCBI

61 

Yang PW, Lu ZY, Pan Q, Chen TT, Feng XJ, Wang SM, Pan YC, Zhu MH and Zhang SH: MicroRNA-6809-5p mediates luteolin-induced anticancer effects against hepatoma by targeting flotillin 1. Phytomedicine. 57:18–29. 2019. View Article : Google Scholar : PubMed/NCBI

62 

Li L, Luo J, Wang B, Wang D, Xie X, Yuan L, Guo J, Xi S, Gao J, Lin X, et al: Microrna-124 targets flotillin-1 to regulate proliferation and migration in breast cancer. Mol Cancer. 12:1632013. View Article : Google Scholar : PubMed/NCBI

63 

Gong H, Song L, Lin C, Liu A, Lin X, Wu J, Li M and Li J: Downregulation of miR-138 sustains NF-κB activation and promotes lipid raft formation in esophageal squamous cell carcinoma. Clin Cancer Res. 19:1083–1093. 2013. View Article : Google Scholar : PubMed/NCBI

64 

Pastushenko I and Blanpain C: EMT transition states during tumor progression and metastasis. Trends Cell Biol. 29:212–226. 2019. View Article : Google Scholar : PubMed/NCBI

65 

Nachiyappan A, Gupta N and Taneja R: EHMT1/EHMT2 in EMT, cancer stemness and drug resistance: Emerging evidence and mechanisms. FEBS J. 289:1329–1351. 2022. View Article : Google Scholar : PubMed/NCBI

66 

Peng L, Wen L, Shi QF, Gao F, Huang B, Meng J, Hu CP and Wang CM: Scutellarin ameliorates pulmonary fibrosis through inhibiting NF-κB/NLRP3-mediated epithelial-mesenchymal transition and inflammation. Cell Death Dis. 11:9782020. View Article : Google Scholar : PubMed/NCBI

67 

Wang W, Dong L, Zhao B, Lu J and Zhao Y: E-cadherin is downregulated by microenvironmental changes in pancreatic cancer and induces EMT. Oncol Rep. 40:1641–1649. 2018.PubMed/NCBI

68 

Miyazono K: Transforming growth factor-beta signaling in epithelial-mesenchymal transition and progression of cancer. Proc Jpn Acad Ser B Phys Biol Sci. 85:314–323. 2009. View Article : Google Scholar : PubMed/NCBI

69 

Roshan MK, Soltani A, Soleimani A, Kahkhaie KR, Afshari AR and Soukhtanloo M: Role of AKT and mTOR signaling pathways in the induction of epithelial-mesenchymal transition (EMT) process. Biochimie. 165:229–234. 2019. View Article : Google Scholar : PubMed/NCBI

70 

Wang Y, Shi J, Chai K, Ying X and Zhou BP: The role of snail in EMT and tumorigenesis. Curr Cancer Drug Targets. 13:963–972. 2013. View Article : Google Scholar : PubMed/NCBI

71 

Liang Z, Wang X, Xu X, Xie B, Ji A, Meng S, Li S, Zhu Y, Wu J, Hu Z, et al: MicroRNA-608 inhibits proliferation of bladder cancer via AKT/FOXO3a signaling pathway. Mol Cancer. 16:962017. View Article : Google Scholar : PubMed/NCBI

72 

Xu X, Wu J, Li S, Hu Z, Xu X, Zhu Y, Liang Z, Wang X, Lin Y, Mao Y, et al: Downregulation of microRNA-182-5p contributes to renal cell carcinoma proliferation via activating the AKT/FOXO3a signaling pathway. Mol Cancer. 13:1092014. View Article : Google Scholar : PubMed/NCBI

73 

Ye DM, Ye SC, Yu SQ, Shu FF, Xu SS, Chen QQ, Wang YL, Tang ZT and Pan C: Drug-resistance reversal in colorectal cancer cells by destruction of flotillins, the key lipid rafts proteins. Neoplasma. 66:576–583. 2019. View Article : Google Scholar : PubMed/NCBI

74 

Shui HA, Hsia CW, Chen HM, Chang TC and Wang CY: Proteomics and bioinformatics analysis of lovastatin-induced differentiation in ARO cells. J Proteomics. 75:1170–1180. 2012. View Article : Google Scholar : PubMed/NCBI

75 

Arkhipova KA, Sheyderman AN, Laktionov KK, Mochalnikova VV and Zborovskaya IB: Simultaneous expression of flotillin-1, flotillin-2, stomatin and caveolin-1 in non-small cell lung cancer and soft tissue sarcomas. BMC Cancer. 14:1002014. View Article : Google Scholar : PubMed/NCBI

76 

Gu H, Chen C, Hao X, Wang C, Zhang X, Li Z, Shao H, Zeng H, Yu Z, Xie L, et al: Sorting protein VPS33B regulates exosomal autocrine signaling to mediate hematopoiesis and leukemogenesis. J Clin Invest. 126:4537–4553. 2016. View Article : Google Scholar : PubMed/NCBI

77 

Fountzilas E, Kotoula V, Angouridakis N, Karasmanis I, Wirtz RM, Eleftheraki AG, Veltrup E, Markou K, Nikolaou A, Pectasides D and Fountzilas G: Identification and validation of a multigene predictor of recurrence in primary laryngeal cancer. PLoS One. 8:e704292013. View Article : Google Scholar : PubMed/NCBI

78 

Dai S, Xu S, Ye Y and Ding K: Identification of an immune-related gene signature to improve prognosis prediction in colorectal cancer patients. Front Genet. 11:6070092020. View Article : Google Scholar : PubMed/NCBI

79 

Zhang Y, Li J, Song Y, Chen F, Pei Y and Yao F: Flotillin-1 expression in human clear-cell renal cell carcinoma is associated with cancer progression and poor patient survival. Mol Med Rep. 10:860–866. 2014. View Article : Google Scholar : PubMed/NCBI

80 

Peters FS, Peeters AMA, Mandaviya PR, van Meurs JBJ, Hofland LJ, van de Wetering J, Betjes MGH, Baan CC and Boer K: Differentially methylated regions in T cells identify kidney transplant patients at risk for de novo skin cancer. Clin Epigenetics. 10:812018. View Article : Google Scholar : PubMed/NCBI

81 

Zafar A, Wang W, Liu G, Wang X, Xian W, McKeon F, Foster J, Zhou J and Zhang R: Molecular targeting therapies for neuroblastoma: Progress and challenges. Med Res Rev. 41:961–1021. 2021. View Article : Google Scholar : PubMed/NCBI

82 

Messiha BAS, Ali MRA, Khattab MM and Abo-Youssef AM: Perindopril ameliorates experimental Alzheimer's disease progression: Role of amyloid β degradation, central estrogen receptor and hyperlipidemic-lipid raft signaling. Inflammopharmacology. 28:1343–1364. 2020. View Article : Google Scholar : PubMed/NCBI

83 

Hattori C, Asai M, Onishi H, Sasagawa N, Hashimoto Y, Saido TC, Maruyama K, Mizutani S and Ishiura S: BACE1 interacts with lipid raft proteins. J Neurosci Res. 84:912–917. 2006. View Article : Google Scholar : PubMed/NCBI

84 

Krance SH, Wu CY, Chan ACY, Kwong S, Song BX, Xiong LY, Ouk M, Chen MH, Zhang J, Yung A, et al: Endosomal-lysosomal and autophagy pathway in alzheimer's disease: A systematic review and meta-analysis. J Alzheimers Dis. 88:1279–1292. 2022. View Article : Google Scholar : PubMed/NCBI

85 

Cabreira V and Massano J: Parkinson's disease: Clinical review and update. Acta Med Port. 32:661–670. 2019.(In Portuguese). View Article : Google Scholar : PubMed/NCBI

86 

Schrader JM, Stanisavljevic A, Xu F and Van Nostrand WE: Distinct brain proteomic signatures in cerebral small vessel disease rat models of hypertension and cerebral amyloid angiopathy. J Neuropathol Exp Neurol. 81:731–745. 2022. View Article : Google Scholar : PubMed/NCBI

87 

Cheng Y, Sun D, Zhu B, Zhou W, Lv C, Kou F and Wei H: Integrative metabolic and proteomic profiling of the brainstem in spontaneously hypertensive rats. J Proteome Res. 19:4114–4124. 2020. View Article : Google Scholar : PubMed/NCBI

88 

Zhao H, Li ST, Zhu J, Hua XM and Wan L: Analysis of peripheral blood cells' transcriptome in patients with subarachnoid hemorrhage from ruptured aneurysm reveals potential biomarkers. World Neurosurg. 129:e16–e22. 2019. View Article : Google Scholar : PubMed/NCBI

89 

Quinlan MA, Robson MJ, Ye R, Rose KL, Schey KL and Blakely RD: Ex vivo quantitative proteomic analysis of serotonin transporter interactome: Network impact of the SERT Ala56 coding variant. Front Mol Neurosci. 13:892020. View Article : Google Scholar : PubMed/NCBI

90 

Zhong J, Li S, Zeng W, Li X, Gu C, Liu J and Luo XJ: Integration of GWAS and brain eQTL identifies FLOT1 as a risk gene for major depressive disorder. Neuropsychopharmacology. 44:1542–1551. 2019. View Article : Google Scholar : PubMed/NCBI

91 

Liu W, Li W, Cai X, Yang Z, Li H, Su X, Song M, Zhou DS, Li X, Zhang C, et al: Identification of a functional human-unique 351-bp Alu insertion polymorphism associated with major depressive disorder in the 1p31.1 GWAS risk loci. Neuropsychopharmacology. 45:1196–1206. 2020. View Article : Google Scholar : PubMed/NCBI

92 

Reisinger SN, Kong E, Molz B, Humberg T, Sideromenos S, Cicvaric A, Steinkellner T, Yang JW, Cabatic M, Monje FJ, et al: Flotillin-1 interacts with the serotonin transporter and modulates chronic corticosterone response. Genes Brain Behav. 18:e124822019. View Article : Google Scholar : PubMed/NCBI

93 

Roura S, Galvez-Monton C, Pujal JM, Casani L, Fernández MA, Astier L, Gastelurrutia P, Domingo M, Prat-Vidal C, Soler-Botija C, et al: New insights into lipid raft function regulating myocardial vascularization competency in human idiopathic dilated cardiomyopathy. Atherosclerosis. 230:354–364. 2013. View Article : Google Scholar : PubMed/NCBI

94 

Kerr JR, Kaushik N, Fear D, Baldwin DA, Nuwaysir EF and Adcock IM: Single-nucleotide polymorphisms associated with symptomatic infection and differential human gene expression in healthy seropositive persons each implicate the cytoskeleton, integrin signaling, and oncosuppression in the pathogenesis of human parvovirus B19 infection. J Infect Dis. 192:276–286. 2005. View Article : Google Scholar : PubMed/NCBI

95 

Lim WC and Chow VT: Gene expression profiles of U937 human macrophages exposed to Chlamydophila pneumoniae and/or low density lipoprotein in five study models using differential display and real-time RT-PCR. Biochimie. 88:367–377. 2006. View Article : Google Scholar : PubMed/NCBI

96 

Douadi C, Vazeille E, Chambon C, Hébraud M, Fargeas M, Dodel M, Coban D, Pereira B, Birer A, Sauvanet P, et al: Anti-TNF agents restrict adherent-invasive escherichia coli replication within macrophages through modulation of chitinase 3-like 1 in patients with Crohn's Disease. J Crohns Colitis. 16:1140–1150. 2022. View Article : Google Scholar : PubMed/NCBI

97 

Schmidt F, Thywissen A, Goldmann M, Cunha C, Cseresnyés Z, Schmidt H, Rafiq M, Galiani S, Gräler MH, Chamilos G, et al: Flotillin-dependent membrane microdomains are required for functional phagolysosomes against fungal infections. Cell Rep. 32:1080172020. View Article : Google Scholar : PubMed/NCBI

98 

Salazar J, Angarita L, Morillo V, Navarro C, Martínez MS, Chacín M, Torres W, Rajotia A, Rojas M, Cano C, et al: Microbiota and diabetes mellitus: Role of lipid mediators. Nutrients. 12:30392020. View Article : Google Scholar : PubMed/NCBI

99 

Rojas-Carranza CA, Bustos-Cruz RH, Pino-Pinzon CJ, Ariza-Marquez YV, Gomez-Bello RM and Canadas-Garre M: Diabetes-related neurological implications and pharmacogenomics. Curr Pharm Des. 24:1695–1710. 2018. View Article : Google Scholar : PubMed/NCBI

100 

Abu-Farha M, Abubaker J and Tuomilehto J: ANGPTL8 (betatrophin) role in diabetes and metabolic diseases. Diabetes Metab Res Rev. 33:10.1002/dmrr.29. 2017. View Article : Google Scholar : PubMed/NCBI

101 

Zhao Z, Deng X, Jia J, Zhao L, Wang C, Cai Z, Guo C, Yang L, Wang D, Ma S, et al: Angiopoietin-like protein 8 (betatrophin) inhibits hepatic gluconeogenesis through PI3K/Akt signaling pathway in diabetic mice. Metabolism. 126:1549212022. View Article : Google Scholar : PubMed/NCBI

102 

Siddiqa A, Cirillo E, Tareen SHK, Ali A, Kutmon M, Eijssen LMT, Ahmad J, Evelo CT and Coort SL: Biological pathways leading from ANGPTL8 to diabetes mellitus-a co-expression network based analysis. Front Physiol. 9:18412018. View Article : Google Scholar : PubMed/NCBI

103 

Hansen JS, Zhao X, Irmler M, Liu X, Hoene M, Scheler M, Li Y, Beckers J, de Angelis MH, Häring HU, et al: Type 2 diabetes alters metabolic and transcriptional signatures of glucose and amino acid metabolism during exercise and recovery. Diabetologia. 58:1845–1854. 2015. View Article : Google Scholar : PubMed/NCBI

104 

Spitzel M, Wagner E, Breyer M, Henniger D, Bayin M, Hofmann L, Mauceri D, Sommer C and Üçeyler N: Dysregulation of immune response mediators and pain-related ion channels is associated with pain-like behavior in the GLA KO mouse model of fabry disease. Cells. 11:17302022. View Article : Google Scholar : PubMed/NCBI

105 

Zhang X, Cui Y, Ding X, Liu S, Han B, Duan X, Zhang H and Sun T: Analysis of mRNAlncRNA and mRNAlncRNA-pathway coexpression networks based on WGCNA in developing pediatric sepsis. Bioengineered. 12:1457–1470. 2021. View Article : Google Scholar : PubMed/NCBI

106 

Mo XB, Sun YH, Zhang YH and Lei SF: Integrative analysis highlighted susceptibility genes for rheumatoid arthritis. Int Immunopharmacol. 86:1067162020. View Article : Google Scholar : PubMed/NCBI

107 

Zhu H, Xia W, Mo XB, Lin X, Qiu YH, Yi NJ, Zhang YH, Deng FY and Lei SF: Gene-based genome-wide association analysis in european and asian populations identified novel genes for rheumatoid arthritis. PLoS One. 11:e01672122016. View Article : Google Scholar : PubMed/NCBI

108 

Dai H, Zhou J and Zhu B: Gene co-expression network analysis identifies the hub genes associated with immune functions for nocturnal hemodialysis in patients with end-stage renal disease. Medicine (Baltimore). 97:e120182018. View Article : Google Scholar : PubMed/NCBI

109 

Prates L, Lemes RB, Hunemeier T and Leonardi F: Population-based change-point detection for the identification of homozygosity islands. Bioinformatics. 39:btad1702023. View Article : Google Scholar : PubMed/NCBI

110 

McDermaid A, Monier B, Zhao J, Liu B and Ma Q: Interpretation of differential gene expression results of RNA-seq data: Review and integration. Brief Bioinform. 20:2044–2054. 2019. View Article : Google Scholar : PubMed/NCBI

111 

Yu G, Wang LG, Han Y and He QY: clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS. 16:284–287. 2012. View Article : Google Scholar : PubMed/NCBI

112 

Guo AY, Liang XJ, Liu RJ, Li XX, Bi W, Zhou LY, Tang CE, Yan A, Chen ZC and Zhang PF: Flotilin-1 promotes the tumorigenicity and progression of malignant phenotype in human lung adenocarcinoma. Cancer Biol Ther. 18:715–722. 2017. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhan Z, Ye M and Jin X: The roles of FLOT1 in human diseases (Review). Mol Med Rep 28: 212, 2023.
APA
Zhan, Z., Ye, M., & Jin, X. (2023). The roles of FLOT1 in human diseases (Review). Molecular Medicine Reports, 28, 212. https://doi.org/10.3892/mmr.2023.13099
MLA
Zhan, Z., Ye, M., Jin, X."The roles of FLOT1 in human diseases (Review)". Molecular Medicine Reports 28.5 (2023): 212.
Chicago
Zhan, Z., Ye, M., Jin, X."The roles of FLOT1 in human diseases (Review)". Molecular Medicine Reports 28, no. 5 (2023): 212. https://doi.org/10.3892/mmr.2023.13099
Copy and paste a formatted citation
x
Spandidos Publications style
Zhan Z, Ye M and Jin X: The roles of FLOT1 in human diseases (Review). Mol Med Rep 28: 212, 2023.
APA
Zhan, Z., Ye, M., & Jin, X. (2023). The roles of FLOT1 in human diseases (Review). Molecular Medicine Reports, 28, 212. https://doi.org/10.3892/mmr.2023.13099
MLA
Zhan, Z., Ye, M., Jin, X."The roles of FLOT1 in human diseases (Review)". Molecular Medicine Reports 28.5 (2023): 212.
Chicago
Zhan, Z., Ye, M., Jin, X."The roles of FLOT1 in human diseases (Review)". Molecular Medicine Reports 28, no. 5 (2023): 212. https://doi.org/10.3892/mmr.2023.13099
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team