|
1
|
Zhang L, Mao Y, Mao Q, Fan W, Xu L, Chen
Y, Xu L and Wang J: FLOT1 promotes tumor development, induces
epithelial-mesenchymal transition, and modulates the cell cycle by
regulating the Erk/Akt signaling pathway in lung adenocarcinoma.
Thorac Cancer. 10:909–917. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Swanwick CC, Shapiro ME, Vicini S and
Wenthold RJ: Flotillin-1 promotes formation of glutamatergic
synapses in hippocampal neurons. Dev Neurobiol. 70:875–883.
2010.PubMed/NCBI
|
|
3
|
Xiong Q, Lin M, Huang W and Rikihisa Y:
Infection by anaplasma phagocytophilum requires recruitment of
low-density lipoprotein cholesterol by flotillins. mBio.
10:e02783–e02718. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Li H, Zhang Y, Chen SW, Li FJ, Zhuang SM,
Wang LP, Zhang J and Song M: Prognostic significance of Flotillin1
expression in clinically N0 tongue squamous cell cancer. Int J Clin
Exp Pathol. 7:996–1003. 2014.PubMed/NCBI
|
|
5
|
Jang D, Kwon H, Choi M, Lee J and Pak Y:
Sumoylation of flotillin-1 promotes EMT in metastatic prostate
cancer by suppressing snail degradation. Oncogene. 38:3248–3260.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Ren K, Gao C, Zhang J, Wang K, Xu Y, Wang
SB, Wang H, Tian C, Shi Q and Dong XP: Flotillin-1 mediates PrPc
endocytosis in the cultured cells during Cu(2)(+) stimulation
through molecular interaction. Mol Neurobiol. 48:631–646. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Park MY, Kim N, Wu LL, Yu GY and Park K:
Role of flotillins in the endocytosis of GPCR in salivary gland
epithelial cells. Biochem Biophys Res Commun. 476:237–244. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Persaud-Sawin DA, Banach L and Harry GJ:
Raft aggregation with specific receptor recruitment is required for
microglial phagocytosis of Abeta42. Glia. 57:320–335. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Lin C, Wu Z, Lin X, Yu C, Shi T, Zeng Y,
Wang X, Li J and Song L: Knockdown of FLOT1 impairs cell
proliferation and tumorigenicity in breast cancer through
upregulation of FOXO3a. Clin Cancer Res. 17:3089–3099. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Flemming JP, Hill BL, Haque MW, Raad J,
Bonder CS, Harshyne LA, Rodeck U, Luginbuhl A, Wahl JK III, Tsai
KY, et al: miRNA- and cytokine-associated extracellular vesicles
mediate squamous cell carcinomas. J Extracell Vesicles.
9:17901592020. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Niu Y, Shao Z, Wang H, Yang J, Zhang F,
Luo Y, Xu L, Ding Y and Zhao L: LASP1-S100A11 axis promotes
colorectal cancer aggressiveness by modulating TGFβ/smad signaling.
Sci Rep. 6:261122016. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Riento K, Frick M, Schafer I and Nichols
BJ: Endocytosis of flotillin-1 and flotillin-2 is regulated by Fyn
kinase. J Cell Sci. 122:912–918. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Kwon H, Choi M, Ahn Y, Jang D and Pak Y:
Flotillin-1 palmitoylation turnover by APT-1 and ZDHHC-19 promotes
cervical cancer progression by suppressing IGF-1 receptor
desensitization and proteostasis. Cancer Gene Ther. 30:302–312.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Yap J, Foo CF, Lee MY, Stanton PG and
Dimitriadis E: Proteomic analysis identifies interleukin 11
regulated plasma membrane proteins in human endometrial epithelial
cells in vitro. Reprod Biol Endocrinol. 9:732011. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Cremona ML, Matthies HJ, Pau K, Bowton E,
Speed N, Lute BJ, Anderson M, Sen N, Robertson SD, Vaughan RA, et
al: Flotillin-1 is essential for PKC-triggered endocytosis and
membrane microdomain localization of DAT. Nat Neurosci. 14:469–477.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Kim JM, Cha SH, Choi YR, Jou I, Joe EH and
Park SM: DJ-1 deficiency impairs glutamate uptake into astrocytes
via the regulation of flotillin-1 and caveolin-1 expression. Sci
Rep. 6:288232016. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Dam DHM, Jelsma SA, Yu JM, Liu H, Kong B
and Paller AS: Flotillin and AP2A1/2 promote IGF-1 receptor
association with clathrin and internalization in primary human
keratinocytes. J Invest Dermatol. 140:1743–1752. e17442020.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Tsui-Pierchala BA, Encinas M, Milbrandt J
and Johnson EM Jr: Lipid rafts in neuronal signaling and function.
Trends Neurosci. 25:412–417. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Estebanez B, Visavadiya NP, de Paz JA,
Whitehurst M, Cuevas MJ, González-Gallego J and Huang CJ:
Resistance training diminishes the expression of exosome CD63
protein without modification of plasma miR-146a-5p and cfDNA in the
elderly. Nutrients. 13:6652021. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Kapahnke M, Banning A and Tikkanen R:
Random splicing of several exons caused by a single base change in
the target exon of CRISPR/Cas9 mediated gene knockout. Cells.
5:452016. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Solis GP, Hoegg M, Munderloh C, Schrock Y,
Malaga-Trillo E, Rivera-Milla E and Stuermer CAO: Reggie/flotillin
proteins are organized into stable tetramers in membrane
microdomains. Biochem J. 403:313–322. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Swanwick CC, Shapiro ME, Yi Z, Chang K and
Wenthold RJ: NMDA receptors interact with flotillin-1 and −2, lipid
raft-associated proteins. FEBS Lett. 583:1226–1230. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Babuke T, Ruonala M, Meister M, Amaddii M,
Genzler C, Esposito A and Tikkanen R: Hetero-oligomerization of
reggie-1/flotillin-2 and reggie-2/flotillin-1 is required for their
endocytosis. Cell Signal. 21:1287–1297. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Yau TY, Sander W, Eidson C and Courey AJ:
SUMO interacting motifs: Structure and function. Cells.
10:28252021. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Mohanraj N, Joshi NS, Poulose R, Patil RR,
Santhoshkumar R, Kumar A, Waghmare GP, Saha AK, Haider SZ,
Markandeya YS, et al: A proteomic study to unveil lead
toxicity-induced memory impairments invoked by synaptic
dysregulation. Toxicol Rep. 9:1501–1513. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Walton JR, Frey HA, Vandre DD, Kwiek JJ,
Ishikawa T, Takizawa T, Robinson JM and Ackerman WE IV: Expression
of flotillins in the human placenta: Potential implications for
placental transcytosis. Histochem Cell Biol. 139:487–500. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Polo S, Pece S and Di Fiore PP:
Endocytosis and cancer. Curr Opin Cell Biol. 16:156–161. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Tomiyama A, Uekita T, Kamata R, Sasaki K,
Takita J, Ohira M, Nakagawara A, Kitanaka C, Mori K, Yamaguchi H
and Sakai R: Flotillin-1 regulates oncogenic signaling in
neuroblastoma cells by regulating ALK membrane association. Cancer
Res. 74:3790–3801. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Chen K, Wu Q, Hu K, Yang C, Wu X, Cheung P
and Williams KJ: Suppression of hepatic FLOT1 (Flotillin-1) by type
2 diabetes mellitus impairs the disposal of remnant lipoproteins
via syndecan-1. Arterioscler Thromb Vasc Biol. 38:102–113. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Kobayashi J, Hasegawa T, Sugeno N, Yoshida
S, Akiyama T, Fujimori K, Hatakeyama H, Miki Y, Tomiyama A, Kawata
Y, et al: Extracellular α-synuclein enters dopaminergic cells by
modulating flotillin-1-assisted dopamine transporter endocytosis.
FASEB J. 33:10240–10256. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Craig AM and Banker G: Neuronal polarity.
Annu Rev Neurosci. 17:267–310. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Swanwick CC, Shapiro ME, Vicini S and
Wenthold RJ: Flotillin-1 mediates neurite branching induced by
synaptic adhesion-like molecule 4 in hippocampal neurons. Mol Cell
Neurosci. 45:213–225. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Stuermer CA: How reggies regulate
regeneration and axon growth. Cell Tissue Res. 349:71–77. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Stuermer CA: The reggie/flotillin
connection to growth. Trends Cell Biol. 20:6–13. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Wehmeyer L, Du Toit A, Lang DM and Hapgood
JP: Lipid raft- and protein kinase C-mediated synergism between
glucocorticoid- and gonadotropin-releasing hormone signaling
results in decreased cell proliferation. J Biol Chem.
289:10235–10251. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Hada N, Okayasu M, Ito J, Nakayachi M,
Hayashida C, Kaneda T, Uchida N, Muramatsu T, Koike C, Masuhara M,
et al: Receptor activator of NF-kappaB ligand-dependent expression
of caveolin-1 in osteoclast precursors, and high dependency of
osteoclastogenesis on exogenous lipoprotein. Bone. 50:226–236.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Ficht X, Ruef N, Stolp B, Samson GPB,
Moalli F, Page N, Merkler D, Nichols BJ, Diz-Muñoz A, Legler DF, et
al: In vivo function of the lipid raft protein flotillin-1 during
CD8(+) T cell-mediated host surveillance. J Immunol. 203:2377–2387.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Wang X, Guan H, Liu W, Li H, Ding J, Feng
Y and Chen Z: Identification of immune markers in dilated
cardiomyopathies with heart failure by integrated weighted gene
coexpression network analysis. Genes (Basel). 13:3932022.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Korhonen JT, Puolakkainen M, Häivälä R,
Penttilä T, Haveri A, Markkula E and Lahesmaa R: Flotillin-1
(Reggie-2) contributes to Chlamydia pneumoniae growth and is
associated with bacterial inclusion. Infect Immun. 80:1072–1078.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Ji H, Greening DW, Barnes TW, Lim JW,
Tauro BJ, Rai A, Xu R, Adda C, Mathivanan S, Zhao W, et al:
Proteome profiling of exosomes derived from human primary and
metastatic colorectal cancer cells reveal differential expression
of key metastatic factors and signal transduction components.
Proteomics. 13:1672–1686. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Reutgen H, Eckert H and Christ R: The
Kveim test in the diagnosis of sarcoidosis. Z Erkr Atmungsorgane.
170:306–313. 1988.(In German). PubMed/NCBI
|
|
42
|
Liu C, Shang Z, Ma Y, Ma J and Song J:
HOTAIR/miR-214-3p/FLOT1 axis plays an essential role in the
proliferation, migration, and invasion of hepatocellular carcinoma.
Int J Clin Exp Pathol. 12:50–63. 2019.PubMed/NCBI
|
|
43
|
Kan XQ, Li YB, He B, Cheng S, Wei Y and
Sun J: MiR-1294 acts as a tumor inhibitor in cervical cancer by
regulating FLOT1 expression. J Biol Regul Homeost Agents.
34:10.23812/20–10A. 2020.
|
|
44
|
Cai S, Zhou Y, Pan Y, Liu P, Yu K and Chen
S: Long non-coding RNA A1BG-AS1 promotes tumorigenesis in breast
cancer by sponging microRNA-485-5p and consequently increasing
expression of FLOT1 expression. Hum Cell. 34:1517–1531. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Lv D, Xiang Y, Yang Q, Yao J and Dong Q:
Long non-coding RNA TUG1 promotes cell proliferation and inhibits
cell apoptosis, autophagy in clear cell renal cell carcinoma via
MiR-31-5p/FLOT1 axis. Onco Targets Ther. 13:5857–5868. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Song L, Gong H, Lin C, Wang C, Liu L, Wu
J, Li M and Li J: Flotillin-1 promotes tumor necrosis factor-alpha
receptor signaling and activation of NF-κB in esophageal squamous
cell carcinoma cells. Gastroenterology. 143:995–1005. e10122012.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Li H, Wang RM, Liu SG, Zhang JP, Luo JY,
Zhang BJ and Zhang XG: Abnormal expression of FLOT1 correlates with
tumor progression and poor survival in patients with non-small cell
lung cancer. Tumour Biol. 35:3311–3315. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Li J, Zuo X, Shi J, Zhang J, Duan X and Xu
G: Flotillin 1 is differentially expressed in human epithelial
ovarian tumors. Neoplasma. 65:561–571. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Guan Y, Song H, Zhang G and Ai X:
Overexpression of flotillin-1 is involved in proliferation and
recurrence of bladder transitional cell carcinoma. Oncol Rep.
32:748–754. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zhao L, Li J, Liu Y, Zhou W, Shan Y, Fan
X, Zhou X, Shan B, Song Y and Zhan Q: Flotillin1 promotes EMT of
human small cell lung cancer via TGF-β signaling pathway. Cancer
Biol Med. 15:400–414. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Baig N, Li Z, Lu J, Chen H, Yu S, Li T,
Niu Z and Niu J: Clinical significance and comparison of flotillin
1 expression in left and right colon cancer. Oncol Lett.
18:997–1004. 2019.PubMed/NCBI
|
|
52
|
Cao S, Cui Y, Xiao H, Mai M, Wang C, Xie
S, Yang J, Wu S, Li J, Song L, et al: Upregulation of flotillin-1
promotes invasion and metastasis by activating TGF-beta signaling
in nasopharyngeal carcinoma. Oncotarget. 7:4252–4264. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Wang R, Chen Z, Zhang Y, Ziao S, Zhang W,
Hu X, Xiao Q, Liu Q and Wang X: Flotillin-1 is a prognostic
biomarker for glioblastoma and promotes cancer development through
enhancing invasion and altering tumour microenvironment. J Cell Mol
Med. 27:392–402. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Iorio MV and Croce CM: microRNA
involvement in human cancer. Carcinogenesis. 33:1126–1133. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Butz H, Szabo PM, Khella HW, Nofech-Mozes
R, Patocs A and Yousef GM: miRNA-target network reveals miR-124as a
key miRNA contributing to clear cell renal cell carcinoma
aggressive behaviour by targeting CAV1 and FLOT1. Oncotarget.
6:12543–12557. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Yang FQ, Zhang HM, Chen SJ, Yan Y and
Zheng JH: MiR-506 is down-regulated in clear cell renal cell
carcinoma and inhibits cell growth and metastasis via targeting
FLOT1. PLoS One. 10:e01202582015. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Zhang B, Zhang M, Yang Y, Li Q, Yu J, Zhu
S, Niu Y and Shang Z: Targeting KDM4A-AS1 represses AR/AR-Vs
deubiquitination and enhances enzalutamide response in CRPC.
Oncogene. 41:387–399. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhang Y, Cheng X, Liang H and Jin Z: Long
non-coding RNA HOTAIR and STAT3 synergistically regulate the
cervical cancer cell migration and invasion. Chem Biol Interact.
286:106–110. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Wang Y, Wang Z, Cheng K and Hao Q: FAM201A
promotes cervical cancer progression and metastasis through
miR-1271-5p/Flotillin-1 axis targeting-induced Wnt/β-catenin
pathway. J Oncol. 2022:11238392022. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Li X, Zhang F, Ma J, Ruan X, Liu X, Zheng
J, Liu Y, Cao S, Shen S, Shao L, et al: NCBP3/SNHG6 inhibits GBX2
transcription in a histone modification manner to facilitate the
malignant biological behaviour of glioma cells. RNA Biol. 18:47–63.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Yang PW, Lu ZY, Pan Q, Chen TT, Feng XJ,
Wang SM, Pan YC, Zhu MH and Zhang SH: MicroRNA-6809-5p mediates
luteolin-induced anticancer effects against hepatoma by targeting
flotillin 1. Phytomedicine. 57:18–29. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Li L, Luo J, Wang B, Wang D, Xie X, Yuan
L, Guo J, Xi S, Gao J, Lin X, et al: Microrna-124 targets
flotillin-1 to regulate proliferation and migration in breast
cancer. Mol Cancer. 12:1632013. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Gong H, Song L, Lin C, Liu A, Lin X, Wu J,
Li M and Li J: Downregulation of miR-138 sustains NF-κB activation
and promotes lipid raft formation in esophageal squamous cell
carcinoma. Clin Cancer Res. 19:1083–1093. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Pastushenko I and Blanpain C: EMT
transition states during tumor progression and metastasis. Trends
Cell Biol. 29:212–226. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Nachiyappan A, Gupta N and Taneja R:
EHMT1/EHMT2 in EMT, cancer stemness and drug resistance: Emerging
evidence and mechanisms. FEBS J. 289:1329–1351. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Peng L, Wen L, Shi QF, Gao F, Huang B,
Meng J, Hu CP and Wang CM: Scutellarin ameliorates pulmonary
fibrosis through inhibiting NF-κB/NLRP3-mediated
epithelial-mesenchymal transition and inflammation. Cell Death Dis.
11:9782020. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Wang W, Dong L, Zhao B, Lu J and Zhao Y:
E-cadherin is downregulated by microenvironmental changes in
pancreatic cancer and induces EMT. Oncol Rep. 40:1641–1649.
2018.PubMed/NCBI
|
|
68
|
Miyazono K: Transforming growth
factor-beta signaling in epithelial-mesenchymal transition and
progression of cancer. Proc Jpn Acad Ser B Phys Biol Sci.
85:314–323. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Roshan MK, Soltani A, Soleimani A,
Kahkhaie KR, Afshari AR and Soukhtanloo M: Role of AKT and mTOR
signaling pathways in the induction of epithelial-mesenchymal
transition (EMT) process. Biochimie. 165:229–234. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Wang Y, Shi J, Chai K, Ying X and Zhou BP:
The role of snail in EMT and tumorigenesis. Curr Cancer Drug
Targets. 13:963–972. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Liang Z, Wang X, Xu X, Xie B, Ji A, Meng
S, Li S, Zhu Y, Wu J, Hu Z, et al: MicroRNA-608 inhibits
proliferation of bladder cancer via AKT/FOXO3a signaling pathway.
Mol Cancer. 16:962017. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Xu X, Wu J, Li S, Hu Z, Xu X, Zhu Y, Liang
Z, Wang X, Lin Y, Mao Y, et al: Downregulation of microRNA-182-5p
contributes to renal cell carcinoma proliferation via activating
the AKT/FOXO3a signaling pathway. Mol Cancer. 13:1092014.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Ye DM, Ye SC, Yu SQ, Shu FF, Xu SS, Chen
QQ, Wang YL, Tang ZT and Pan C: Drug-resistance reversal in
colorectal cancer cells by destruction of flotillins, the key lipid
rafts proteins. Neoplasma. 66:576–583. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Shui HA, Hsia CW, Chen HM, Chang TC and
Wang CY: Proteomics and bioinformatics analysis of
lovastatin-induced differentiation in ARO cells. J Proteomics.
75:1170–1180. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Arkhipova KA, Sheyderman AN, Laktionov KK,
Mochalnikova VV and Zborovskaya IB: Simultaneous expression of
flotillin-1, flotillin-2, stomatin and caveolin-1 in non-small cell
lung cancer and soft tissue sarcomas. BMC Cancer. 14:1002014.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Gu H, Chen C, Hao X, Wang C, Zhang X, Li
Z, Shao H, Zeng H, Yu Z, Xie L, et al: Sorting protein VPS33B
regulates exosomal autocrine signaling to mediate hematopoiesis and
leukemogenesis. J Clin Invest. 126:4537–4553. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Fountzilas E, Kotoula V, Angouridakis N,
Karasmanis I, Wirtz RM, Eleftheraki AG, Veltrup E, Markou K,
Nikolaou A, Pectasides D and Fountzilas G: Identification and
validation of a multigene predictor of recurrence in primary
laryngeal cancer. PLoS One. 8:e704292013. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Dai S, Xu S, Ye Y and Ding K:
Identification of an immune-related gene signature to improve
prognosis prediction in colorectal cancer patients. Front Genet.
11:6070092020. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Zhang Y, Li J, Song Y, Chen F, Pei Y and
Yao F: Flotillin-1 expression in human clear-cell renal cell
carcinoma is associated with cancer progression and poor patient
survival. Mol Med Rep. 10:860–866. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Peters FS, Peeters AMA, Mandaviya PR, van
Meurs JBJ, Hofland LJ, van de Wetering J, Betjes MGH, Baan CC and
Boer K: Differentially methylated regions in T cells identify
kidney transplant patients at risk for de novo skin cancer. Clin
Epigenetics. 10:812018. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Zafar A, Wang W, Liu G, Wang X, Xian W,
McKeon F, Foster J, Zhou J and Zhang R: Molecular targeting
therapies for neuroblastoma: Progress and challenges. Med Res Rev.
41:961–1021. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Messiha BAS, Ali MRA, Khattab MM and
Abo-Youssef AM: Perindopril ameliorates experimental Alzheimer's
disease progression: Role of amyloid β degradation, central
estrogen receptor and hyperlipidemic-lipid raft signaling.
Inflammopharmacology. 28:1343–1364. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Hattori C, Asai M, Onishi H, Sasagawa N,
Hashimoto Y, Saido TC, Maruyama K, Mizutani S and Ishiura S: BACE1
interacts with lipid raft proteins. J Neurosci Res. 84:912–917.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Krance SH, Wu CY, Chan ACY, Kwong S, Song
BX, Xiong LY, Ouk M, Chen MH, Zhang J, Yung A, et al:
Endosomal-lysosomal and autophagy pathway in alzheimer's disease: A
systematic review and meta-analysis. J Alzheimers Dis.
88:1279–1292. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Cabreira V and Massano J: Parkinson's
disease: Clinical review and update. Acta Med Port. 32:661–670.
2019.(In Portuguese). View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Schrader JM, Stanisavljevic A, Xu F and
Van Nostrand WE: Distinct brain proteomic signatures in cerebral
small vessel disease rat models of hypertension and cerebral
amyloid angiopathy. J Neuropathol Exp Neurol. 81:731–745. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Cheng Y, Sun D, Zhu B, Zhou W, Lv C, Kou F
and Wei H: Integrative metabolic and proteomic profiling of the
brainstem in spontaneously hypertensive rats. J Proteome Res.
19:4114–4124. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Zhao H, Li ST, Zhu J, Hua XM and Wan L:
Analysis of peripheral blood cells' transcriptome in patients with
subarachnoid hemorrhage from ruptured aneurysm reveals potential
biomarkers. World Neurosurg. 129:e16–e22. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Quinlan MA, Robson MJ, Ye R, Rose KL,
Schey KL and Blakely RD: Ex vivo quantitative proteomic analysis of
serotonin transporter interactome: Network impact of the SERT Ala56
coding variant. Front Mol Neurosci. 13:892020. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Zhong J, Li S, Zeng W, Li X, Gu C, Liu J
and Luo XJ: Integration of GWAS and brain eQTL identifies FLOT1 as
a risk gene for major depressive disorder. Neuropsychopharmacology.
44:1542–1551. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Liu W, Li W, Cai X, Yang Z, Li H, Su X,
Song M, Zhou DS, Li X, Zhang C, et al: Identification of a
functional human-unique 351-bp Alu insertion polymorphism
associated with major depressive disorder in the 1p31.1 GWAS risk
loci. Neuropsychopharmacology. 45:1196–1206. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Reisinger SN, Kong E, Molz B, Humberg T,
Sideromenos S, Cicvaric A, Steinkellner T, Yang JW, Cabatic M,
Monje FJ, et al: Flotillin-1 interacts with the serotonin
transporter and modulates chronic corticosterone response. Genes
Brain Behav. 18:e124822019. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Roura S, Galvez-Monton C, Pujal JM, Casani
L, Fernández MA, Astier L, Gastelurrutia P, Domingo M, Prat-Vidal
C, Soler-Botija C, et al: New insights into lipid raft function
regulating myocardial vascularization competency in human
idiopathic dilated cardiomyopathy. Atherosclerosis. 230:354–364.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Kerr JR, Kaushik N, Fear D, Baldwin DA,
Nuwaysir EF and Adcock IM: Single-nucleotide polymorphisms
associated with symptomatic infection and differential human gene
expression in healthy seropositive persons each implicate the
cytoskeleton, integrin signaling, and oncosuppression in the
pathogenesis of human parvovirus B19 infection. J Infect Dis.
192:276–286. 2005. View
Article : Google Scholar : PubMed/NCBI
|
|
95
|
Lim WC and Chow VT: Gene expression
profiles of U937 human macrophages exposed to Chlamydophila
pneumoniae and/or low density lipoprotein in five study models
using differential display and real-time RT-PCR. Biochimie.
88:367–377. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Douadi C, Vazeille E, Chambon C, Hébraud
M, Fargeas M, Dodel M, Coban D, Pereira B, Birer A, Sauvanet P, et
al: Anti-TNF agents restrict adherent-invasive escherichia coli
replication within macrophages through modulation of chitinase
3-like 1 in patients with Crohn's Disease. J Crohns Colitis.
16:1140–1150. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Schmidt F, Thywissen A, Goldmann M, Cunha
C, Cseresnyés Z, Schmidt H, Rafiq M, Galiani S, Gräler MH, Chamilos
G, et al: Flotillin-dependent membrane microdomains are required
for functional phagolysosomes against fungal infections. Cell Rep.
32:1080172020. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Salazar J, Angarita L, Morillo V, Navarro
C, Martínez MS, Chacín M, Torres W, Rajotia A, Rojas M, Cano C, et
al: Microbiota and diabetes mellitus: Role of lipid mediators.
Nutrients. 12:30392020. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Rojas-Carranza CA, Bustos-Cruz RH,
Pino-Pinzon CJ, Ariza-Marquez YV, Gomez-Bello RM and Canadas-Garre
M: Diabetes-related neurological implications and pharmacogenomics.
Curr Pharm Des. 24:1695–1710. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Abu-Farha M, Abubaker J and Tuomilehto J:
ANGPTL8 (betatrophin) role in diabetes and metabolic diseases.
Diabetes Metab Res Rev. 33:10.1002/dmrr.29. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Zhao Z, Deng X, Jia J, Zhao L, Wang C, Cai
Z, Guo C, Yang L, Wang D, Ma S, et al: Angiopoietin-like protein 8
(betatrophin) inhibits hepatic gluconeogenesis through PI3K/Akt
signaling pathway in diabetic mice. Metabolism. 126:1549212022.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Siddiqa A, Cirillo E, Tareen SHK, Ali A,
Kutmon M, Eijssen LMT, Ahmad J, Evelo CT and Coort SL: Biological
pathways leading from ANGPTL8 to diabetes mellitus-a co-expression
network based analysis. Front Physiol. 9:18412018. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Hansen JS, Zhao X, Irmler M, Liu X, Hoene
M, Scheler M, Li Y, Beckers J, de Angelis MH, Häring HU, et al:
Type 2 diabetes alters metabolic and transcriptional signatures of
glucose and amino acid metabolism during exercise and recovery.
Diabetologia. 58:1845–1854. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Spitzel M, Wagner E, Breyer M, Henniger D,
Bayin M, Hofmann L, Mauceri D, Sommer C and Üçeyler N:
Dysregulation of immune response mediators and pain-related ion
channels is associated with pain-like behavior in the GLA KO mouse
model of fabry disease. Cells. 11:17302022. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Zhang X, Cui Y, Ding X, Liu S, Han B, Duan
X, Zhang H and Sun T: Analysis of mRNAlncRNA and mRNAlncRNA-pathway
coexpression networks based on WGCNA in developing pediatric
sepsis. Bioengineered. 12:1457–1470. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Mo XB, Sun YH, Zhang YH and Lei SF:
Integrative analysis highlighted susceptibility genes for
rheumatoid arthritis. Int Immunopharmacol. 86:1067162020.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Zhu H, Xia W, Mo XB, Lin X, Qiu YH, Yi NJ,
Zhang YH, Deng FY and Lei SF: Gene-based genome-wide association
analysis in european and asian populations identified novel genes
for rheumatoid arthritis. PLoS One. 11:e01672122016. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Dai H, Zhou J and Zhu B: Gene
co-expression network analysis identifies the hub genes associated
with immune functions for nocturnal hemodialysis in patients with
end-stage renal disease. Medicine (Baltimore). 97:e120182018.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Prates L, Lemes RB, Hunemeier T and
Leonardi F: Population-based change-point detection for the
identification of homozygosity islands. Bioinformatics.
39:btad1702023. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
McDermaid A, Monier B, Zhao J, Liu B and
Ma Q: Interpretation of differential gene expression results of
RNA-seq data: Review and integration. Brief Bioinform.
20:2044–2054. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Yu G, Wang LG, Han Y and He QY:
clusterProfiler: An R package for comparing biological themes among
gene clusters. OMICS. 16:284–287. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Guo AY, Liang XJ, Liu RJ, Li XX, Bi W,
Zhou LY, Tang CE, Yan A, Chen ZC and Zhang PF: Flotilin-1 promotes
the tumorigenicity and progression of malignant phenotype in human
lung adenocarcinoma. Cancer Biol Ther. 18:715–722. 2017. View Article : Google Scholar : PubMed/NCBI
|