The roles of FLOT1 in human diseases (Review)
- Authors:
- Ziqing Zhan
- Meng Ye
- Xiaofeng Jin
-
Affiliations: Department of Oncology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, P.R. China - Published online on: September 22, 2023 https://doi.org/10.3892/mmr.2023.13099
- Article Number: 212
-
Copyright: © Zhan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Zhang L, Mao Y, Mao Q, Fan W, Xu L, Chen Y, Xu L and Wang J: FLOT1 promotes tumor development, induces epithelial-mesenchymal transition, and modulates the cell cycle by regulating the Erk/Akt signaling pathway in lung adenocarcinoma. Thorac Cancer. 10:909–917. 2019. View Article : Google Scholar : PubMed/NCBI | |
Swanwick CC, Shapiro ME, Vicini S and Wenthold RJ: Flotillin-1 promotes formation of glutamatergic synapses in hippocampal neurons. Dev Neurobiol. 70:875–883. 2010.PubMed/NCBI | |
Xiong Q, Lin M, Huang W and Rikihisa Y: Infection by anaplasma phagocytophilum requires recruitment of low-density lipoprotein cholesterol by flotillins. mBio. 10:e02783–e02718. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li H, Zhang Y, Chen SW, Li FJ, Zhuang SM, Wang LP, Zhang J and Song M: Prognostic significance of Flotillin1 expression in clinically N0 tongue squamous cell cancer. Int J Clin Exp Pathol. 7:996–1003. 2014.PubMed/NCBI | |
Jang D, Kwon H, Choi M, Lee J and Pak Y: Sumoylation of flotillin-1 promotes EMT in metastatic prostate cancer by suppressing snail degradation. Oncogene. 38:3248–3260. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ren K, Gao C, Zhang J, Wang K, Xu Y, Wang SB, Wang H, Tian C, Shi Q and Dong XP: Flotillin-1 mediates PrPc endocytosis in the cultured cells during Cu(2)(+) stimulation through molecular interaction. Mol Neurobiol. 48:631–646. 2013. View Article : Google Scholar : PubMed/NCBI | |
Park MY, Kim N, Wu LL, Yu GY and Park K: Role of flotillins in the endocytosis of GPCR in salivary gland epithelial cells. Biochem Biophys Res Commun. 476:237–244. 2016. View Article : Google Scholar : PubMed/NCBI | |
Persaud-Sawin DA, Banach L and Harry GJ: Raft aggregation with specific receptor recruitment is required for microglial phagocytosis of Abeta42. Glia. 57:320–335. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lin C, Wu Z, Lin X, Yu C, Shi T, Zeng Y, Wang X, Li J and Song L: Knockdown of FLOT1 impairs cell proliferation and tumorigenicity in breast cancer through upregulation of FOXO3a. Clin Cancer Res. 17:3089–3099. 2011. View Article : Google Scholar : PubMed/NCBI | |
Flemming JP, Hill BL, Haque MW, Raad J, Bonder CS, Harshyne LA, Rodeck U, Luginbuhl A, Wahl JK III, Tsai KY, et al: miRNA- and cytokine-associated extracellular vesicles mediate squamous cell carcinomas. J Extracell Vesicles. 9:17901592020. View Article : Google Scholar : PubMed/NCBI | |
Niu Y, Shao Z, Wang H, Yang J, Zhang F, Luo Y, Xu L, Ding Y and Zhao L: LASP1-S100A11 axis promotes colorectal cancer aggressiveness by modulating TGFβ/smad signaling. Sci Rep. 6:261122016. View Article : Google Scholar : PubMed/NCBI | |
Riento K, Frick M, Schafer I and Nichols BJ: Endocytosis of flotillin-1 and flotillin-2 is regulated by Fyn kinase. J Cell Sci. 122:912–918. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kwon H, Choi M, Ahn Y, Jang D and Pak Y: Flotillin-1 palmitoylation turnover by APT-1 and ZDHHC-19 promotes cervical cancer progression by suppressing IGF-1 receptor desensitization and proteostasis. Cancer Gene Ther. 30:302–312. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yap J, Foo CF, Lee MY, Stanton PG and Dimitriadis E: Proteomic analysis identifies interleukin 11 regulated plasma membrane proteins in human endometrial epithelial cells in vitro. Reprod Biol Endocrinol. 9:732011. View Article : Google Scholar : PubMed/NCBI | |
Cremona ML, Matthies HJ, Pau K, Bowton E, Speed N, Lute BJ, Anderson M, Sen N, Robertson SD, Vaughan RA, et al: Flotillin-1 is essential for PKC-triggered endocytosis and membrane microdomain localization of DAT. Nat Neurosci. 14:469–477. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kim JM, Cha SH, Choi YR, Jou I, Joe EH and Park SM: DJ-1 deficiency impairs glutamate uptake into astrocytes via the regulation of flotillin-1 and caveolin-1 expression. Sci Rep. 6:288232016. View Article : Google Scholar : PubMed/NCBI | |
Dam DHM, Jelsma SA, Yu JM, Liu H, Kong B and Paller AS: Flotillin and AP2A1/2 promote IGF-1 receptor association with clathrin and internalization in primary human keratinocytes. J Invest Dermatol. 140:1743–1752. e17442020. View Article : Google Scholar : PubMed/NCBI | |
Tsui-Pierchala BA, Encinas M, Milbrandt J and Johnson EM Jr: Lipid rafts in neuronal signaling and function. Trends Neurosci. 25:412–417. 2002. View Article : Google Scholar : PubMed/NCBI | |
Estebanez B, Visavadiya NP, de Paz JA, Whitehurst M, Cuevas MJ, González-Gallego J and Huang CJ: Resistance training diminishes the expression of exosome CD63 protein without modification of plasma miR-146a-5p and cfDNA in the elderly. Nutrients. 13:6652021. View Article : Google Scholar : PubMed/NCBI | |
Kapahnke M, Banning A and Tikkanen R: Random splicing of several exons caused by a single base change in the target exon of CRISPR/Cas9 mediated gene knockout. Cells. 5:452016. View Article : Google Scholar : PubMed/NCBI | |
Solis GP, Hoegg M, Munderloh C, Schrock Y, Malaga-Trillo E, Rivera-Milla E and Stuermer CAO: Reggie/flotillin proteins are organized into stable tetramers in membrane microdomains. Biochem J. 403:313–322. 2007. View Article : Google Scholar : PubMed/NCBI | |
Swanwick CC, Shapiro ME, Yi Z, Chang K and Wenthold RJ: NMDA receptors interact with flotillin-1 and −2, lipid raft-associated proteins. FEBS Lett. 583:1226–1230. 2009. View Article : Google Scholar : PubMed/NCBI | |
Babuke T, Ruonala M, Meister M, Amaddii M, Genzler C, Esposito A and Tikkanen R: Hetero-oligomerization of reggie-1/flotillin-2 and reggie-2/flotillin-1 is required for their endocytosis. Cell Signal. 21:1287–1297. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yau TY, Sander W, Eidson C and Courey AJ: SUMO interacting motifs: Structure and function. Cells. 10:28252021. View Article : Google Scholar : PubMed/NCBI | |
Mohanraj N, Joshi NS, Poulose R, Patil RR, Santhoshkumar R, Kumar A, Waghmare GP, Saha AK, Haider SZ, Markandeya YS, et al: A proteomic study to unveil lead toxicity-induced memory impairments invoked by synaptic dysregulation. Toxicol Rep. 9:1501–1513. 2022. View Article : Google Scholar : PubMed/NCBI | |
Walton JR, Frey HA, Vandre DD, Kwiek JJ, Ishikawa T, Takizawa T, Robinson JM and Ackerman WE IV: Expression of flotillins in the human placenta: Potential implications for placental transcytosis. Histochem Cell Biol. 139:487–500. 2013. View Article : Google Scholar : PubMed/NCBI | |
Polo S, Pece S and Di Fiore PP: Endocytosis and cancer. Curr Opin Cell Biol. 16:156–161. 2004. View Article : Google Scholar : PubMed/NCBI | |
Tomiyama A, Uekita T, Kamata R, Sasaki K, Takita J, Ohira M, Nakagawara A, Kitanaka C, Mori K, Yamaguchi H and Sakai R: Flotillin-1 regulates oncogenic signaling in neuroblastoma cells by regulating ALK membrane association. Cancer Res. 74:3790–3801. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen K, Wu Q, Hu K, Yang C, Wu X, Cheung P and Williams KJ: Suppression of hepatic FLOT1 (Flotillin-1) by type 2 diabetes mellitus impairs the disposal of remnant lipoproteins via syndecan-1. Arterioscler Thromb Vasc Biol. 38:102–113. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi J, Hasegawa T, Sugeno N, Yoshida S, Akiyama T, Fujimori K, Hatakeyama H, Miki Y, Tomiyama A, Kawata Y, et al: Extracellular α-synuclein enters dopaminergic cells by modulating flotillin-1-assisted dopamine transporter endocytosis. FASEB J. 33:10240–10256. 2019. View Article : Google Scholar : PubMed/NCBI | |
Craig AM and Banker G: Neuronal polarity. Annu Rev Neurosci. 17:267–310. 1994. View Article : Google Scholar : PubMed/NCBI | |
Swanwick CC, Shapiro ME, Vicini S and Wenthold RJ: Flotillin-1 mediates neurite branching induced by synaptic adhesion-like molecule 4 in hippocampal neurons. Mol Cell Neurosci. 45:213–225. 2010. View Article : Google Scholar : PubMed/NCBI | |
Stuermer CA: How reggies regulate regeneration and axon growth. Cell Tissue Res. 349:71–77. 2012. View Article : Google Scholar : PubMed/NCBI | |
Stuermer CA: The reggie/flotillin connection to growth. Trends Cell Biol. 20:6–13. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wehmeyer L, Du Toit A, Lang DM and Hapgood JP: Lipid raft- and protein kinase C-mediated synergism between glucocorticoid- and gonadotropin-releasing hormone signaling results in decreased cell proliferation. J Biol Chem. 289:10235–10251. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hada N, Okayasu M, Ito J, Nakayachi M, Hayashida C, Kaneda T, Uchida N, Muramatsu T, Koike C, Masuhara M, et al: Receptor activator of NF-kappaB ligand-dependent expression of caveolin-1 in osteoclast precursors, and high dependency of osteoclastogenesis on exogenous lipoprotein. Bone. 50:226–236. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ficht X, Ruef N, Stolp B, Samson GPB, Moalli F, Page N, Merkler D, Nichols BJ, Diz-Muñoz A, Legler DF, et al: In vivo function of the lipid raft protein flotillin-1 during CD8(+) T cell-mediated host surveillance. J Immunol. 203:2377–2387. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Guan H, Liu W, Li H, Ding J, Feng Y and Chen Z: Identification of immune markers in dilated cardiomyopathies with heart failure by integrated weighted gene coexpression network analysis. Genes (Basel). 13:3932022. View Article : Google Scholar : PubMed/NCBI | |
Korhonen JT, Puolakkainen M, Häivälä R, Penttilä T, Haveri A, Markkula E and Lahesmaa R: Flotillin-1 (Reggie-2) contributes to Chlamydia pneumoniae growth and is associated with bacterial inclusion. Infect Immun. 80:1072–1078. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ji H, Greening DW, Barnes TW, Lim JW, Tauro BJ, Rai A, Xu R, Adda C, Mathivanan S, Zhao W, et al: Proteome profiling of exosomes derived from human primary and metastatic colorectal cancer cells reveal differential expression of key metastatic factors and signal transduction components. Proteomics. 13:1672–1686. 2013. View Article : Google Scholar : PubMed/NCBI | |
Reutgen H, Eckert H and Christ R: The Kveim test in the diagnosis of sarcoidosis. Z Erkr Atmungsorgane. 170:306–313. 1988.(In German). PubMed/NCBI | |
Liu C, Shang Z, Ma Y, Ma J and Song J: HOTAIR/miR-214-3p/FLOT1 axis plays an essential role in the proliferation, migration, and invasion of hepatocellular carcinoma. Int J Clin Exp Pathol. 12:50–63. 2019.PubMed/NCBI | |
Kan XQ, Li YB, He B, Cheng S, Wei Y and Sun J: MiR-1294 acts as a tumor inhibitor in cervical cancer by regulating FLOT1 expression. J Biol Regul Homeost Agents. 34:10.23812/20–10A. 2020. | |
Cai S, Zhou Y, Pan Y, Liu P, Yu K and Chen S: Long non-coding RNA A1BG-AS1 promotes tumorigenesis in breast cancer by sponging microRNA-485-5p and consequently increasing expression of FLOT1 expression. Hum Cell. 34:1517–1531. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lv D, Xiang Y, Yang Q, Yao J and Dong Q: Long non-coding RNA TUG1 promotes cell proliferation and inhibits cell apoptosis, autophagy in clear cell renal cell carcinoma via MiR-31-5p/FLOT1 axis. Onco Targets Ther. 13:5857–5868. 2020. View Article : Google Scholar : PubMed/NCBI | |
Song L, Gong H, Lin C, Wang C, Liu L, Wu J, Li M and Li J: Flotillin-1 promotes tumor necrosis factor-alpha receptor signaling and activation of NF-κB in esophageal squamous cell carcinoma cells. Gastroenterology. 143:995–1005. e10122012. View Article : Google Scholar : PubMed/NCBI | |
Li H, Wang RM, Liu SG, Zhang JP, Luo JY, Zhang BJ and Zhang XG: Abnormal expression of FLOT1 correlates with tumor progression and poor survival in patients with non-small cell lung cancer. Tumour Biol. 35:3311–3315. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li J, Zuo X, Shi J, Zhang J, Duan X and Xu G: Flotillin 1 is differentially expressed in human epithelial ovarian tumors. Neoplasma. 65:561–571. 2018. View Article : Google Scholar : PubMed/NCBI | |
Guan Y, Song H, Zhang G and Ai X: Overexpression of flotillin-1 is involved in proliferation and recurrence of bladder transitional cell carcinoma. Oncol Rep. 32:748–754. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Li J, Liu Y, Zhou W, Shan Y, Fan X, Zhou X, Shan B, Song Y and Zhan Q: Flotillin1 promotes EMT of human small cell lung cancer via TGF-β signaling pathway. Cancer Biol Med. 15:400–414. 2018. View Article : Google Scholar : PubMed/NCBI | |
Baig N, Li Z, Lu J, Chen H, Yu S, Li T, Niu Z and Niu J: Clinical significance and comparison of flotillin 1 expression in left and right colon cancer. Oncol Lett. 18:997–1004. 2019.PubMed/NCBI | |
Cao S, Cui Y, Xiao H, Mai M, Wang C, Xie S, Yang J, Wu S, Li J, Song L, et al: Upregulation of flotillin-1 promotes invasion and metastasis by activating TGF-beta signaling in nasopharyngeal carcinoma. Oncotarget. 7:4252–4264. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang R, Chen Z, Zhang Y, Ziao S, Zhang W, Hu X, Xiao Q, Liu Q and Wang X: Flotillin-1 is a prognostic biomarker for glioblastoma and promotes cancer development through enhancing invasion and altering tumour microenvironment. J Cell Mol Med. 27:392–402. 2023. View Article : Google Scholar : PubMed/NCBI | |
Iorio MV and Croce CM: microRNA involvement in human cancer. Carcinogenesis. 33:1126–1133. 2012. View Article : Google Scholar : PubMed/NCBI | |
Butz H, Szabo PM, Khella HW, Nofech-Mozes R, Patocs A and Yousef GM: miRNA-target network reveals miR-124as a key miRNA contributing to clear cell renal cell carcinoma aggressive behaviour by targeting CAV1 and FLOT1. Oncotarget. 6:12543–12557. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yang FQ, Zhang HM, Chen SJ, Yan Y and Zheng JH: MiR-506 is down-regulated in clear cell renal cell carcinoma and inhibits cell growth and metastasis via targeting FLOT1. PLoS One. 10:e01202582015. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Zhang M, Yang Y, Li Q, Yu J, Zhu S, Niu Y and Shang Z: Targeting KDM4A-AS1 represses AR/AR-Vs deubiquitination and enhances enzalutamide response in CRPC. Oncogene. 41:387–399. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Cheng X, Liang H and Jin Z: Long non-coding RNA HOTAIR and STAT3 synergistically regulate the cervical cancer cell migration and invasion. Chem Biol Interact. 286:106–110. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Wang Z, Cheng K and Hao Q: FAM201A promotes cervical cancer progression and metastasis through miR-1271-5p/Flotillin-1 axis targeting-induced Wnt/β-catenin pathway. J Oncol. 2022:11238392022. View Article : Google Scholar : PubMed/NCBI | |
Li X, Zhang F, Ma J, Ruan X, Liu X, Zheng J, Liu Y, Cao S, Shen S, Shao L, et al: NCBP3/SNHG6 inhibits GBX2 transcription in a histone modification manner to facilitate the malignant biological behaviour of glioma cells. RNA Biol. 18:47–63. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang PW, Lu ZY, Pan Q, Chen TT, Feng XJ, Wang SM, Pan YC, Zhu MH and Zhang SH: MicroRNA-6809-5p mediates luteolin-induced anticancer effects against hepatoma by targeting flotillin 1. Phytomedicine. 57:18–29. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li L, Luo J, Wang B, Wang D, Xie X, Yuan L, Guo J, Xi S, Gao J, Lin X, et al: Microrna-124 targets flotillin-1 to regulate proliferation and migration in breast cancer. Mol Cancer. 12:1632013. View Article : Google Scholar : PubMed/NCBI | |
Gong H, Song L, Lin C, Liu A, Lin X, Wu J, Li M and Li J: Downregulation of miR-138 sustains NF-κB activation and promotes lipid raft formation in esophageal squamous cell carcinoma. Clin Cancer Res. 19:1083–1093. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pastushenko I and Blanpain C: EMT transition states during tumor progression and metastasis. Trends Cell Biol. 29:212–226. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nachiyappan A, Gupta N and Taneja R: EHMT1/EHMT2 in EMT, cancer stemness and drug resistance: Emerging evidence and mechanisms. FEBS J. 289:1329–1351. 2022. View Article : Google Scholar : PubMed/NCBI | |
Peng L, Wen L, Shi QF, Gao F, Huang B, Meng J, Hu CP and Wang CM: Scutellarin ameliorates pulmonary fibrosis through inhibiting NF-κB/NLRP3-mediated epithelial-mesenchymal transition and inflammation. Cell Death Dis. 11:9782020. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Dong L, Zhao B, Lu J and Zhao Y: E-cadherin is downregulated by microenvironmental changes in pancreatic cancer and induces EMT. Oncol Rep. 40:1641–1649. 2018.PubMed/NCBI | |
Miyazono K: Transforming growth factor-beta signaling in epithelial-mesenchymal transition and progression of cancer. Proc Jpn Acad Ser B Phys Biol Sci. 85:314–323. 2009. View Article : Google Scholar : PubMed/NCBI | |
Roshan MK, Soltani A, Soleimani A, Kahkhaie KR, Afshari AR and Soukhtanloo M: Role of AKT and mTOR signaling pathways in the induction of epithelial-mesenchymal transition (EMT) process. Biochimie. 165:229–234. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Shi J, Chai K, Ying X and Zhou BP: The role of snail in EMT and tumorigenesis. Curr Cancer Drug Targets. 13:963–972. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liang Z, Wang X, Xu X, Xie B, Ji A, Meng S, Li S, Zhu Y, Wu J, Hu Z, et al: MicroRNA-608 inhibits proliferation of bladder cancer via AKT/FOXO3a signaling pathway. Mol Cancer. 16:962017. View Article : Google Scholar : PubMed/NCBI | |
Xu X, Wu J, Li S, Hu Z, Xu X, Zhu Y, Liang Z, Wang X, Lin Y, Mao Y, et al: Downregulation of microRNA-182-5p contributes to renal cell carcinoma proliferation via activating the AKT/FOXO3a signaling pathway. Mol Cancer. 13:1092014. View Article : Google Scholar : PubMed/NCBI | |
Ye DM, Ye SC, Yu SQ, Shu FF, Xu SS, Chen QQ, Wang YL, Tang ZT and Pan C: Drug-resistance reversal in colorectal cancer cells by destruction of flotillins, the key lipid rafts proteins. Neoplasma. 66:576–583. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shui HA, Hsia CW, Chen HM, Chang TC and Wang CY: Proteomics and bioinformatics analysis of lovastatin-induced differentiation in ARO cells. J Proteomics. 75:1170–1180. 2012. View Article : Google Scholar : PubMed/NCBI | |
Arkhipova KA, Sheyderman AN, Laktionov KK, Mochalnikova VV and Zborovskaya IB: Simultaneous expression of flotillin-1, flotillin-2, stomatin and caveolin-1 in non-small cell lung cancer and soft tissue sarcomas. BMC Cancer. 14:1002014. View Article : Google Scholar : PubMed/NCBI | |
Gu H, Chen C, Hao X, Wang C, Zhang X, Li Z, Shao H, Zeng H, Yu Z, Xie L, et al: Sorting protein VPS33B regulates exosomal autocrine signaling to mediate hematopoiesis and leukemogenesis. J Clin Invest. 126:4537–4553. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fountzilas E, Kotoula V, Angouridakis N, Karasmanis I, Wirtz RM, Eleftheraki AG, Veltrup E, Markou K, Nikolaou A, Pectasides D and Fountzilas G: Identification and validation of a multigene predictor of recurrence in primary laryngeal cancer. PLoS One. 8:e704292013. View Article : Google Scholar : PubMed/NCBI | |
Dai S, Xu S, Ye Y and Ding K: Identification of an immune-related gene signature to improve prognosis prediction in colorectal cancer patients. Front Genet. 11:6070092020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Li J, Song Y, Chen F, Pei Y and Yao F: Flotillin-1 expression in human clear-cell renal cell carcinoma is associated with cancer progression and poor patient survival. Mol Med Rep. 10:860–866. 2014. View Article : Google Scholar : PubMed/NCBI | |
Peters FS, Peeters AMA, Mandaviya PR, van Meurs JBJ, Hofland LJ, van de Wetering J, Betjes MGH, Baan CC and Boer K: Differentially methylated regions in T cells identify kidney transplant patients at risk for de novo skin cancer. Clin Epigenetics. 10:812018. View Article : Google Scholar : PubMed/NCBI | |
Zafar A, Wang W, Liu G, Wang X, Xian W, McKeon F, Foster J, Zhou J and Zhang R: Molecular targeting therapies for neuroblastoma: Progress and challenges. Med Res Rev. 41:961–1021. 2021. View Article : Google Scholar : PubMed/NCBI | |
Messiha BAS, Ali MRA, Khattab MM and Abo-Youssef AM: Perindopril ameliorates experimental Alzheimer's disease progression: Role of amyloid β degradation, central estrogen receptor and hyperlipidemic-lipid raft signaling. Inflammopharmacology. 28:1343–1364. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hattori C, Asai M, Onishi H, Sasagawa N, Hashimoto Y, Saido TC, Maruyama K, Mizutani S and Ishiura S: BACE1 interacts with lipid raft proteins. J Neurosci Res. 84:912–917. 2006. View Article : Google Scholar : PubMed/NCBI | |
Krance SH, Wu CY, Chan ACY, Kwong S, Song BX, Xiong LY, Ouk M, Chen MH, Zhang J, Yung A, et al: Endosomal-lysosomal and autophagy pathway in alzheimer's disease: A systematic review and meta-analysis. J Alzheimers Dis. 88:1279–1292. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cabreira V and Massano J: Parkinson's disease: Clinical review and update. Acta Med Port. 32:661–670. 2019.(In Portuguese). View Article : Google Scholar : PubMed/NCBI | |
Schrader JM, Stanisavljevic A, Xu F and Van Nostrand WE: Distinct brain proteomic signatures in cerebral small vessel disease rat models of hypertension and cerebral amyloid angiopathy. J Neuropathol Exp Neurol. 81:731–745. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cheng Y, Sun D, Zhu B, Zhou W, Lv C, Kou F and Wei H: Integrative metabolic and proteomic profiling of the brainstem in spontaneously hypertensive rats. J Proteome Res. 19:4114–4124. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Li ST, Zhu J, Hua XM and Wan L: Analysis of peripheral blood cells' transcriptome in patients with subarachnoid hemorrhage from ruptured aneurysm reveals potential biomarkers. World Neurosurg. 129:e16–e22. 2019. View Article : Google Scholar : PubMed/NCBI | |
Quinlan MA, Robson MJ, Ye R, Rose KL, Schey KL and Blakely RD: Ex vivo quantitative proteomic analysis of serotonin transporter interactome: Network impact of the SERT Ala56 coding variant. Front Mol Neurosci. 13:892020. View Article : Google Scholar : PubMed/NCBI | |
Zhong J, Li S, Zeng W, Li X, Gu C, Liu J and Luo XJ: Integration of GWAS and brain eQTL identifies FLOT1 as a risk gene for major depressive disorder. Neuropsychopharmacology. 44:1542–1551. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Li W, Cai X, Yang Z, Li H, Su X, Song M, Zhou DS, Li X, Zhang C, et al: Identification of a functional human-unique 351-bp Alu insertion polymorphism associated with major depressive disorder in the 1p31.1 GWAS risk loci. Neuropsychopharmacology. 45:1196–1206. 2020. View Article : Google Scholar : PubMed/NCBI | |
Reisinger SN, Kong E, Molz B, Humberg T, Sideromenos S, Cicvaric A, Steinkellner T, Yang JW, Cabatic M, Monje FJ, et al: Flotillin-1 interacts with the serotonin transporter and modulates chronic corticosterone response. Genes Brain Behav. 18:e124822019. View Article : Google Scholar : PubMed/NCBI | |
Roura S, Galvez-Monton C, Pujal JM, Casani L, Fernández MA, Astier L, Gastelurrutia P, Domingo M, Prat-Vidal C, Soler-Botija C, et al: New insights into lipid raft function regulating myocardial vascularization competency in human idiopathic dilated cardiomyopathy. Atherosclerosis. 230:354–364. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kerr JR, Kaushik N, Fear D, Baldwin DA, Nuwaysir EF and Adcock IM: Single-nucleotide polymorphisms associated with symptomatic infection and differential human gene expression in healthy seropositive persons each implicate the cytoskeleton, integrin signaling, and oncosuppression in the pathogenesis of human parvovirus B19 infection. J Infect Dis. 192:276–286. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lim WC and Chow VT: Gene expression profiles of U937 human macrophages exposed to Chlamydophila pneumoniae and/or low density lipoprotein in five study models using differential display and real-time RT-PCR. Biochimie. 88:367–377. 2006. View Article : Google Scholar : PubMed/NCBI | |
Douadi C, Vazeille E, Chambon C, Hébraud M, Fargeas M, Dodel M, Coban D, Pereira B, Birer A, Sauvanet P, et al: Anti-TNF agents restrict adherent-invasive escherichia coli replication within macrophages through modulation of chitinase 3-like 1 in patients with Crohn's Disease. J Crohns Colitis. 16:1140–1150. 2022. View Article : Google Scholar : PubMed/NCBI | |
Schmidt F, Thywissen A, Goldmann M, Cunha C, Cseresnyés Z, Schmidt H, Rafiq M, Galiani S, Gräler MH, Chamilos G, et al: Flotillin-dependent membrane microdomains are required for functional phagolysosomes against fungal infections. Cell Rep. 32:1080172020. View Article : Google Scholar : PubMed/NCBI | |
Salazar J, Angarita L, Morillo V, Navarro C, Martínez MS, Chacín M, Torres W, Rajotia A, Rojas M, Cano C, et al: Microbiota and diabetes mellitus: Role of lipid mediators. Nutrients. 12:30392020. View Article : Google Scholar : PubMed/NCBI | |
Rojas-Carranza CA, Bustos-Cruz RH, Pino-Pinzon CJ, Ariza-Marquez YV, Gomez-Bello RM and Canadas-Garre M: Diabetes-related neurological implications and pharmacogenomics. Curr Pharm Des. 24:1695–1710. 2018. View Article : Google Scholar : PubMed/NCBI | |
Abu-Farha M, Abubaker J and Tuomilehto J: ANGPTL8 (betatrophin) role in diabetes and metabolic diseases. Diabetes Metab Res Rev. 33:10.1002/dmrr.29. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao Z, Deng X, Jia J, Zhao L, Wang C, Cai Z, Guo C, Yang L, Wang D, Ma S, et al: Angiopoietin-like protein 8 (betatrophin) inhibits hepatic gluconeogenesis through PI3K/Akt signaling pathway in diabetic mice. Metabolism. 126:1549212022. View Article : Google Scholar : PubMed/NCBI | |
Siddiqa A, Cirillo E, Tareen SHK, Ali A, Kutmon M, Eijssen LMT, Ahmad J, Evelo CT and Coort SL: Biological pathways leading from ANGPTL8 to diabetes mellitus-a co-expression network based analysis. Front Physiol. 9:18412018. View Article : Google Scholar : PubMed/NCBI | |
Hansen JS, Zhao X, Irmler M, Liu X, Hoene M, Scheler M, Li Y, Beckers J, de Angelis MH, Häring HU, et al: Type 2 diabetes alters metabolic and transcriptional signatures of glucose and amino acid metabolism during exercise and recovery. Diabetologia. 58:1845–1854. 2015. View Article : Google Scholar : PubMed/NCBI | |
Spitzel M, Wagner E, Breyer M, Henniger D, Bayin M, Hofmann L, Mauceri D, Sommer C and Üçeyler N: Dysregulation of immune response mediators and pain-related ion channels is associated with pain-like behavior in the GLA KO mouse model of fabry disease. Cells. 11:17302022. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Cui Y, Ding X, Liu S, Han B, Duan X, Zhang H and Sun T: Analysis of mRNAlncRNA and mRNAlncRNA-pathway coexpression networks based on WGCNA in developing pediatric sepsis. Bioengineered. 12:1457–1470. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mo XB, Sun YH, Zhang YH and Lei SF: Integrative analysis highlighted susceptibility genes for rheumatoid arthritis. Int Immunopharmacol. 86:1067162020. View Article : Google Scholar : PubMed/NCBI | |
Zhu H, Xia W, Mo XB, Lin X, Qiu YH, Yi NJ, Zhang YH, Deng FY and Lei SF: Gene-based genome-wide association analysis in european and asian populations identified novel genes for rheumatoid arthritis. PLoS One. 11:e01672122016. View Article : Google Scholar : PubMed/NCBI | |
Dai H, Zhou J and Zhu B: Gene co-expression network analysis identifies the hub genes associated with immune functions for nocturnal hemodialysis in patients with end-stage renal disease. Medicine (Baltimore). 97:e120182018. View Article : Google Scholar : PubMed/NCBI | |
Prates L, Lemes RB, Hunemeier T and Leonardi F: Population-based change-point detection for the identification of homozygosity islands. Bioinformatics. 39:btad1702023. View Article : Google Scholar : PubMed/NCBI | |
McDermaid A, Monier B, Zhao J, Liu B and Ma Q: Interpretation of differential gene expression results of RNA-seq data: Review and integration. Brief Bioinform. 20:2044–2054. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yu G, Wang LG, Han Y and He QY: clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS. 16:284–287. 2012. View Article : Google Scholar : PubMed/NCBI | |
Guo AY, Liang XJ, Liu RJ, Li XX, Bi W, Zhou LY, Tang CE, Yan A, Chen ZC and Zhang PF: Flotilin-1 promotes the tumorigenicity and progression of malignant phenotype in human lung adenocarcinoma. Cancer Biol Ther. 18:715–722. 2017. View Article : Google Scholar : PubMed/NCBI |