Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
May-2024 Volume 29 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2024 Volume 29 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Apoptosis in glaucoma: A new direction for the treatment of glaucoma (Review)

  • Authors:
    • Qiongrong Xia
    • Dingding Zhang
  • View Affiliations / Copyright

    Affiliations: Department of Medical Laboratory, Xindu District People's Hospital of Chengdu, Chengdu, Sichuan 610500, P.R. China, Sichuan Provincial Key Laboratory for Genetic Disease, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
    Copyright: © Xia et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 82
    |
    Published online on: March 19, 2024
       https://doi.org/10.3892/mmr.2024.13207
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Glaucoma is a group of progressive optic nerve disorders characterized by the loss of retinal ganglion cells, a thinner retinal nerve fibre layer and cupping of the optic disk. Apoptosis is a physiological cell death process regulated by genes and plays a crucial role in maintaining tissue homeostasis, ensuring the natural development and immune defence of organisms. Apoptosis has been associated with glaucoma and inhibiting apoptosis by activating phosphatidylinositol 3-kinase‑protein kinase B or other medicines can rescue pathological changes in glaucoma. Due to the complex crosstalk of apoptosis pathways, the pathophysiological mechanism of apoptosis in glaucoma needs to be fully elucidated. The present review aimed to discuss the mechanism of cell apoptosis in glaucoma, improve the understanding of the pathophysiology of glaucoma, summarize new directions for the treatment of glaucoma and lay the foundation for new treatment strategies for glaucoma.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

GBD 2019 Blindness and Vision Impairment Collaborators: Vision Loss Expert Group of the Global Burden of Disease Study, . Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: The right to sight: An analysis for the global burden of disease study. Lancet Glob Health. 9:e144–e160. 2021. View Article : Google Scholar : PubMed/NCBI

2 

Tham YC, Li X, Wong TY, Quigley HA, Aung T and Cheng CY: Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology. 121:2081–2090. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Kang JM and Tanna AP: Glaucoma. Med Clin North Am. 105:493–510. 2021. View Article : Google Scholar : PubMed/NCBI

4 

Quigley HA: Glaucoma. Lancet. 377:1367–1377. 2011. View Article : Google Scholar : PubMed/NCBI

5 

Burgoyne CF, Downs JC, Bellezza AJ, Suh JK and Hart RT: The optic nerve head as a biomechanical structure: A new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res. 24:39–73. 2005. View Article : Google Scholar : PubMed/NCBI

6 

Weinreb RN, Aung T and Medeiros FA: The pathophysiology and treatment of glaucoma: A review. JAMA. 311:1901–1911. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Li L and Song F: Biomechanical research into lamina cribrosa in glaucoma. Natl Sci Rev. 7:1277–1279. 2020. View Article : Google Scholar : PubMed/NCBI

8 

Marcus MW, de Vries MM, Junoy Montolio FG and Jansonius NM: Myopia as a risk factor for open-angle glaucoma: A systematic review and meta-analysis. Ophthalmology. 118:1989–1994.e2. 2011. View Article : Google Scholar : PubMed/NCBI

9 

Ha A, Kim CY, Shim SR, Chang IB and Kim YK: Degree of myopia and glaucoma risk: A dose-response meta-analysis. Am J Ophthalmol. 236:107–119. 2022. View Article : Google Scholar : PubMed/NCBI

10 

Fong DS, Epstein DL and Allingham RR: Glaucoma and myopia: Are they related? Int Ophthalmol Clin. 30:215–218. 1990. View Article : Google Scholar : PubMed/NCBI

11 

Saw SM, Gazzard G, Shih-Yen EC and Chua WH: Myopia and associated pathological complications. Ophthalmic Physiol Opt. 25:381–391. 2005. View Article : Google Scholar : PubMed/NCBI

12 

Juliano J, Burkemper B, Lee J, Nelson A, LeTran V, Chu Z, Zhou G, Jiang X, Wang RK, Varma R and Richter GM: Longer axial length potentiates relationship of intraocular pressure and peripapillary vessel density in glaucoma patients. Invest Ophthalmol Vis Sci. 62:372021. View Article : Google Scholar : PubMed/NCBI

13 

Ren R, Wang N, Li B, Li L, Gao F, Xu X and Jonas JB: Lamina cribrosa and peripapillary sclera histomorphometry in normal and advanced glaucomatous Chinese eyes with various axial length. Invest Ophthalmol Vis Sci. 50:2175–2184. 2009. View Article : Google Scholar : PubMed/NCBI

14 

Kim KE and Park KH: Update on the prevalence, etiology, diagnosis, and monitoring of normal-tension glaucoma. Asia Pac J Ophthalmol (Phila). 5:23–31. 2016. View Article : Google Scholar : PubMed/NCBI

15 

Killer HE and Pircher A: Normal tension glaucoma: Review of current understanding and mechanisms of the pathogenesis. Eye (Lond). 32:924–930. 2018. View Article : Google Scholar : PubMed/NCBI

16 

Mi XS, Yuan TF and So KF: The current research status of normal tension glaucoma. Clin Interv Aging. 9:1563–1571. 2014.PubMed/NCBI

17 

Chitranshi N, Rajput R, Godinez A, Pushpitha K, Mirzaei M, Basavarajappa D, Gupta V, Sharma S, You Y, Galliciotti G, et al: Neuroserpin gene therapy inhibits retinal ganglion cell apoptosis and promotes functional preservation in glaucoma. Mol Ther. 31:2056–2076. 2023. View Article : Google Scholar : PubMed/NCBI

18 

Miglior S, Torri V, Zeyen T, Pfeiffer N, Vaz JC and Adamsons I; EGPS Group, : Intercurrent factors associated with the development of open-angle glaucoma in the European glaucoma prevention study. Am J Ophthalmol. 144:266–275. 2007. View Article : Google Scholar : PubMed/NCBI

19 

Suzuki Y, Iwase A, Araie M, Yamamoto T, Abe H, Shirato S, Kuwayama Y, Mishima HK, Shimizu H, Tomita G, et al: Risk factors for open-angle glaucoma in a Japanese population: The Tajimi study. Ophthalmology. 113:1613–1617. 2006. View Article : Google Scholar : PubMed/NCBI

20 

Saccà SC and Izzotti A: Oxidative stress and glaucoma: Injury in the anterior segment of the eye. Prog Brain Res. 173:385–407. 2008. View Article : Google Scholar : PubMed/NCBI

21 

Flammer J and Mozaffarieh M: What is the present pathogenetic concept of glaucomatous optic neuropathy? Surv Ophthalmol. 52 (Suppl 2):S162–S173. 2007. View Article : Google Scholar : PubMed/NCBI

22 

Shen WC, Huang BQ and Yang J: Regulatory mechanisms of retinal ganglion cell death in normal tension glaucoma and potential therapies. Neural Regen Res. 18:87–93. 2023. View Article : Google Scholar : PubMed/NCBI

23 

Kerr JF, Wyllie AH and Currie AR: Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 26:239–257. 1972. View Article : Google Scholar : PubMed/NCBI

24 

Fleisher TA: Apoptosis. Ann Allergy Asthma Immunol. 78:245–250. 1997. View Article : Google Scholar : PubMed/NCBI

25 

Elmore S: Apoptosis: A review of programmed cell death. Toxicol Pathol. 35:495–516. 2007. View Article : Google Scholar : PubMed/NCBI

26 

Li C, Liu W, Wang F, Hayashi T, Mizuno K, Hattori S, Fujisaki H and Ikejima T: DNA damage-triggered activation of cGAS-STING pathway induces apoptosis in human keratinocyte HaCaT cells. Mol Immunol. 131:180–190. 2021. View Article : Google Scholar : PubMed/NCBI

27 

Yu J, Sun W, Song Y, Liu J, Xue F, Gong K, Yang X and Kang Q: SIRT6 protects retinal ganglion cells against hydrogen peroxide-induced apoptosis and oxidative stress by promoting Nrf2/ARE signaling via inhibition of Bach1. Chem Biol Interact. 300:151–158. 2019. View Article : Google Scholar : PubMed/NCBI

28 

Wang Y, Osakue D, Yang E, Zhou Y, Gong H, Xia X and Du Y: Endoplasmic reticulum stress response of trabecular meshwork stem cells and trabecular meshwork cells and protective effects of activated PERK pathway. Invest Ophthalmol Vis Sci. 60:265–273. 2019. View Article : Google Scholar : PubMed/NCBI

29 

Wang M, Tan J, Miao Y, Li M and Zhang Q: Role of Ca2+ and ion channels in the regulation of apoptosis under hypoxia. Histol Histopathol. 33:237–246. 2018.PubMed/NCBI

30 

Liu Z, Fu G and Liu A: The relationship between inflammatory mediator expression in the aqueous humor and secondary glaucoma incidence after silicone oil tamponade. Exp Ther Med. 14:5833–5836. 2017.PubMed/NCBI

31 

Saraste A and Pulkki K: Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res. 45:528–537. 2000. View Article : Google Scholar : PubMed/NCBI

32 

Geske FJ and Gerschenson LE: The biology of apoptosis. Hum Pathol. 32:1029–1038. 2001. View Article : Google Scholar : PubMed/NCBI

33 

Baleriola J, García-Feijoo J, Martínez-de-la-Casa JM, Fernández-Cruz A, de la Rosa EJ and Fernández-Durango R: Apoptosis in the trabecular meshwork of glaucomatous patients. Mol Vis. 14:1513–1516. 2008.PubMed/NCBI

34 

Galvao J, Davis BM and Cordeiro MF: In vivo imaging of retinal ganglion cell apoptosis. Curr Opin Pharmacol. 13:123–127. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Krishnan A, Kocab AJ, Zacks DN, Marshak-Rothstein A and Gregory-Ksander M: A small peptide antagonist of the Fas receptor inhibits neuroinflammation and prevents axon degeneration and retinal ganglion cell death in an inducible mouse model of glaucoma. J Neuroinflammation. 16:1842019. View Article : Google Scholar : PubMed/NCBI

36 

Chen X, Lei F, Zhou C, Chodosh J, Wang L, Huang Y, Dohlman CH and Paschalis EI: Glaucoma after ocular surgery or trauma: The role of infiltrating monocytes and their response to cytokine inhibitors. Am J Pathol. 190:2056–2066. 2020. View Article : Google Scholar : PubMed/NCBI

37 

Dohlman CH, Zhou C, Lei F, Cade F, Regatieri CV, Črnej A, Dohlman JG, Shen LQ and Paschalis EI: Glaucoma after corneal trauma or surgery-A rapid, inflammatory, IOP-independent pathway. Cornea. 38:1589–1594. 2019. View Article : Google Scholar : PubMed/NCBI

38 

Rasmussen CA, Kaufman PL and Kiland JA: Benzalkonium chloride and glaucoma. J Ocul Pharmacol Ther. 30:163–169. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Almasieh M, Wilson AM, Morquette B, Cueva Vargas JL and Di Polo A: The molecular basis of retinal ganglion cell death in glaucoma. Prog Retin Eye Res. 31:152–181. 2012. View Article : Google Scholar : PubMed/NCBI

40 

Wu A, Khawaja AP, Pasquale LR and Stein JD: A review of systemic medications that may modulate the risk of glaucoma. Eye (Lond). 34:12–28. 2020. View Article : Google Scholar : PubMed/NCBI

41 

Hamard P, Blondin C, Debbasch C, Warnet JM, Baudouin C and Brignole F: In vitro effects of preserved and unpreserved antiglaucoma drugs on apoptotic marker expression by human trabecular cells. Graefes Arch Clin Exp Ophthalmol. 241:1037–1043. 2003. View Article : Google Scholar : PubMed/NCBI

42 

Gedde SJ, Schiffman JC, Feuer WJ, Herndon LW, Brandt JD and Budenz DL; Tube versus Trabeculectomy Study Group, : Treatment outcomes in the tube versus trabeculectomy (TVT) study after five years of follow-up. Am J Ophthalmol. 153:789–803.e2. 2012. View Article : Google Scholar : PubMed/NCBI

43 

Javaid U, Ali MH, Jamal S and Butt NH: Pathophysiology, diagnosis, and management of glaucoma associated with Sturge-Weber syndrome. Int Ophthalmol. 38:409–416. 2018.PubMed/NCBI

44 

Yoon PS and Singh K: Update on antifibrotic use in glaucoma surgery, including use in trabeculectomy and glaucoma drainage implants and combined cataract and glaucoma surgery. Curr Opin Ophthalmol. 15:141–146. 2004. View Article : Google Scholar : PubMed/NCBI

45 

Paschalis EI, Lei F, Zhou C, Chen XN, Kapoulea V, Hui PC, Dana R, Chodosh J, Vavvas DG and Dohlman CH: Microglia regulate neuroglia remodeling in various ocular and retinal injuries. J Immunol. 202:539–549. 2019. View Article : Google Scholar : PubMed/NCBI

46 

Cade F, Paschalis EI, Regatieri CV, Vavvas DG, Dana R and Dohlman CH: Alkali burn to the eye: Protection using TNF-α inhibition. Cornea. 33:382–389. 2014. View Article : Google Scholar : PubMed/NCBI

47 

Ju KR, Kim HS, Kim JH, Lee NY and Park CK: Retinal glial cell responses and Fas/FasL activation in rats with chronic ocular hypertension. Brain Res. 1122:209–221. 2006. View Article : Google Scholar : PubMed/NCBI

48 

Quigley HA, Nickells RW, Kerrigan LA, Pease ME, Thibault DJ and Zack DJ: Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol Vis Sci. 36:774–786. 1995.PubMed/NCBI

49 

Libby RT, Li Y, Savinova OV, Barter J, Smith RS, Nickells RW and John SW: Susceptibility to neurodegeneration in a glaucoma is modified by Bax gene dosage. PLoS Genet. 1:17–26. 2005. View Article : Google Scholar : PubMed/NCBI

50 

Kerrigan LA, Zack DJ, Quigley HA, Smith SD and Pease ME: TUNEL-positive ganglion cells in human primary open-angle glaucoma. Arch Ophthalmol. 115:1031–1035. 1997. View Article : Google Scholar : PubMed/NCBI

51 

Tök L, Nazıroğlu M, Uğuz AC and Tök O: Elevated hydrostatic pressures induce apoptosis and oxidative stress through mitochondrial membrane depolarization in PC12 neuronal cells: A cell culture model of glaucomaz: A cell culture model of glaucoma. J Recept Signal Transduct Res. 34:410–416. 2014. View Article : Google Scholar : PubMed/NCBI

52 

Erisgin Z, Ozer MA, Tosun M, Ozen S and Takir S: The effects of intravitreal H2 S application on apoptosis in the retina and cornea in experimental glaucoma model. Int J Exp Pathol. 100:330–336. 2019. View Article : Google Scholar : PubMed/NCBI

53 

Ying Y, Xue R, Yang Y, Zhang SX, Xiao H, Zhu H, Li J, Chen G, Ye Y, Yu M, et al: Activation of ATF4 triggers trabecular meshwork cell dysfunction and apoptosis in POAG. Aging (Albany NY). 13:8628–8642. 2021. View Article : Google Scholar : PubMed/NCBI

54 

Saccà SC, Pulliero A and Izzotti A: The dysfunction of the trabecular meshwork during glaucoma course. J Cell Physiol. 230:510–525. 2015. View Article : Google Scholar : PubMed/NCBI

55 

Saccà SC, Gandolfi S, Bagnis A, Manni G, Damonte G, Traverso CE and Izzotti A: From DNA damage to functional changes of the trabecular meshwork in aging and glaucoma. Ageing Res Rev. 29:26–41. 2016. View Article : Google Scholar : PubMed/NCBI

56 

Ammar DA and Kahook MY: Effects of benzalkonium chloride- or polyquad-preserved fixed combination glaucoma medications on human trabecular meshwork cells. Mol Vis. 17:1806–1813. 2011.PubMed/NCBI

57 

Goldstein MH, Silva FQ, Blender N, Tran T and Vantipalli S: Ocular benzalkonium chloride exposure: Problems and solutions. Eye (Lond). 36:361–368. 2022. View Article : Google Scholar : PubMed/NCBI

58 

Baudouin C, Kolko M, Melik-Parsadaniantz S and Messmer EM: Inflammation in glaucoma: From the back to the front of the eye, and beyond. Prog Retin Eye Res. 83:1009162021. View Article : Google Scholar : PubMed/NCBI

59 

Liton PB and Gonzalez P: Stress response of the trabecular meshwork. J Glaucoma. 17:378–385. 2008. View Article : Google Scholar : PubMed/NCBI

60 

Rohen JW, Lütjen-Drecoll E, Flügel C, Meyer M and Grierson I: Ultrastructure of the trabecular meshwork in untreated cases of primary open-angle glaucoma (POAG). Exp Eye Res. 56:683–692. 1993. View Article : Google Scholar : PubMed/NCBI

61 

Stamer WD and Acott TS: Current understanding of conventional outflow dysfunction in glaucoma. Curr Opin Ophthalmol. 23:135–143. 2012. View Article : Google Scholar : PubMed/NCBI

62 

Yan X, Wu S, Liu Q, Li Y, Zhu W and Zhang J: Accumulation of Asn450Tyr mutant myocilin in ER promotes apoptosis of human trabecular meshwork cells. Mol Vis. 26:563–573. 2020.PubMed/NCBI

63 

Agarwal R, Talati M, Lambert W, Clark AF, Wilson SE, Agarwal N and Wordinger RJ: Fas-activated apoptosis and apoptosis mediators in human trabecular meshwork cells. Exp Eye Res. 68:583–590. 1999. View Article : Google Scholar : PubMed/NCBI

64 

Suri F, Yazdani S and Elahi E: LTBP2 knockdown and oxidative stress affect glaucoma features including TGFβ pathways, ECM genes expression and apoptosis in trabecular meshwork cells. Gene. 673:70–81. 2018. View Article : Google Scholar : PubMed/NCBI

65 

Oritani K, Aoyama K, Tomiyama Y, Kincade PW and Matsuzawa Y: Stromal cell CD9 and the differentiation of hematopoietic stem/progenitor cells. Leuk Lymphoma. 38:147–152. 2000. View Article : Google Scholar : PubMed/NCBI

66 

Jiang X, Teng M, Ji R, Zhang D, Zhang Z, Lv Y, Zhang Q, Zhang J and Huang Y: CD9 regulates keratinocyte differentiation and motility by recruiting E-cadherin to the plasma membrane and activating the PI3K/Akt pathway. Biochim Biophys Acta Mol Cell Res. 1867:1185742020. View Article : Google Scholar : PubMed/NCBI

67 

Yan J, Yang X, Jiao X, Yang X, Guo M, Chen Y, Zhan L and Chen W: Integrative transcriptomic and proteomic analysis reveals CD9/ITGA4/PI3K-Akt axis mediates trabecular meshwork cell apoptosis in human glaucoma. J Cell Mol Med. 24:814–829. 2020. View Article : Google Scholar : PubMed/NCBI

68 

Wang Y, Li F and Wang S: MicroRNA-93 is overexpressed and induces apoptosis in glaucoma trabecular meshwork cells. Mol Med Rep. 14:5746–5750. 2016. View Article : Google Scholar : PubMed/NCBI

69 

Shen Y, Zhu Y and Rong F: miR-200c-3p regulates the proliferation and apoptosis of human trabecular meshwork cells by targeting PTEN. Mol Med Rep. 22:1605–1612. 2020. View Article : Google Scholar : PubMed/NCBI

70 

Wang X, Li Z, Bai J, Song W and Zhang F: miR-17-5p regulates the proliferation and apoptosis of human trabecular meshwork cells by targeting phosphatase and tensin homolog. Mol Med Rep. 19:3132–3138. 2019.PubMed/NCBI

71 

Wang Y, Zhou H, Liu X, Han Y, Pan S and Wang Y: MiR-181a inhibits human trabecular meshwork cell apoptosis induced by H2O2 through the suppression of NF-κB and JNK pathways. Adv Clin Exp Med. 27:577–582. 2018. View Article : Google Scholar : PubMed/NCBI

72 

Wang K, Read AT, Sulchek T and Ethier CR: Trabecular meshwork stiffness in glaucoma. Exp Eye Res. 158:3–12. 2017. View Article : Google Scholar : PubMed/NCBI

73 

Fuchshofer R and Tamm ER: The role of TGF-β in the pathogenesis of primary open-angle glaucoma. Cell Tissue Res. 347:279–290. 2012. View Article : Google Scholar : PubMed/NCBI

74 

Wang J, Liu X and Zhong Y: Rho/Rho-associated kinase pathway in glaucoma (review). Int J Oncol. 43:1357–1367. 2013. View Article : Google Scholar : PubMed/NCBI

75 

Vernazza S, Tirendi S, Passalacqua M, Piacente F, Scarfì S, Oddone F and Bassi AM: An innovative in vitro open-angle glaucoma model (IVOM) shows changes induced by increased ocular pressure and oxidative stress. Int J Mol Sci. 22:121292021. View Article : Google Scholar : PubMed/NCBI

76 

Soto I and Howell GR: The complex role of neuroinflammation in glaucoma. Cold Spring Harb Perspect Med. 4:a0172692014. View Article : Google Scholar : PubMed/NCBI

77 

Ebneter A, Casson RJ, Wood JP and Chidlow G: Microglial activation in the visual pathway in experimental glaucoma: Spatiotemporal characterization and correlation with axonal injury. Invest Ophthalmol Vis Sci. 51:6448–6460. 2010. View Article : Google Scholar : PubMed/NCBI

78 

Bordone MP, González Fleitas MF, Pasquini LA, Bosco A, Sande PH, Rosenstein RE and Dorfman D: Involvement of microglia in early axoglial alterations of the optic nerve induced by experimental glaucoma. J Neurochem. 142:323–337. 2017. View Article : Google Scholar : PubMed/NCBI

79 

Guo L, Moss SE, Alexander RA, Ali RR, Fitzke FW and Cordeiro MF: Retinal ganglion cell apoptosis in glaucoma is related to intraocular pressure and IOP-induced effects on extracellular matrix. Invest Ophthalmol Vis Sci. 46:175–182. 2005. View Article : Google Scholar : PubMed/NCBI

80 

Bosco A, Steele MR and Vetter ML: Early microglia activation in a mouse model of chronic glaucoma. J Comp Neurol. 519:599–620. 2011. View Article : Google Scholar : PubMed/NCBI

81 

Bosco A, Romero CO, Breen KT, Chagovetz AA, Steele MR, Ambati BK and Vetter ML: Neurodegeneration severity can be predicted from early microglia alterations monitored in vivo in a mouse model of chronic glaucoma. Dis Model Mech. 8:443–455. 2015. View Article : Google Scholar : PubMed/NCBI

82 

Williams PA, Marsh-Armstrong N and Howell GR; Lasker/IRRF Initiative on Astrocytes and Glaucomatous Neurodegeneration Participants, : Neuroinflammation in glaucoma: A new opportunity. Exp Eye Res. 157:20–27. 2017. View Article : Google Scholar : PubMed/NCBI

83 

Tribble JR, Kokkali E, Otmani A, Plastino F, Lardner E, Vohra R, Kolko M, André H, Morgan JE and Williams PA: When is a control not a control? Reactive microglia occur throughout the control contralateral pathway of retinal ganglion cell projections in experimental glaucoma. Transl Vis Sci Technol. 10:222021. View Article : Google Scholar : PubMed/NCBI

84 

Unlu M, Aktas Z, Gocun PU, Ilhan SO, Hasanreisoglu M and Hasanreisoglu B: Neuroprotective effect of systemic and/or intravitreal rosuvastatin administration in rat glaucoma model. Int J Ophthalmol. 9:340–347. 2016.PubMed/NCBI

85 

Dyka FM, May CA and Enz R: Metabotropic glutamate receptors are differentially regulated under elevated intraocular pressure. J Neurochem. 90:190–202. 2004. View Article : Google Scholar : PubMed/NCBI

86 

Wu X, Dou YN, Fei Z and Fei F: Parkin prevents glutamate excitotoxicity through inhibiting NLRP3 inflammasome in retinal ganglion cells. Neuroscience. 478:1–10. 2021. View Article : Google Scholar : PubMed/NCBI

87 

Murphy G, Knäuper V, Lee MH, Amour A, Worley JR, Hutton M, Atkinson S, Rapti M and Williamson R: Role of TIMPs (tissue inhibitors of metalloproteinases) in pericellular proteolysis: The specificity is in the detail. Biochem Soc Symp. 65–80. 2003.PubMed/NCBI

88 

Mathew DJ, Livne-Bar I and Sivak JM: An inducible rodent glaucoma model that exhibits gradual sustained increase in intraocular pressure with distinct inner retina and optic nerve inflammation. Sci Rep. 11:228802021. View Article : Google Scholar : PubMed/NCBI

89 

Sakata R, Ueno T, Nakamura T, Ueno H and Sata M: Mechanical stretch induces TGF-beta synthesis in hepatic stellate cells. Eur J Clin Invest. 34:129–136. 2004. View Article : Google Scholar : PubMed/NCBI

90 

Kirwan RP, Crean JK, Fenerty CH, Clark AF and O'Brien CJ: Effect of cyclical mechanical stretch and exogenous transforming growth factor-beta1 on matrix metalloproteinase-2 activity in lamina cribrosa cells from the human optic nerve head. J Glaucoma. 13:327–334. 2004. View Article : Google Scholar : PubMed/NCBI

91 

Gomes LR, Terra LF, Wailemann RA, Labriola L and Sogayar MC: TGF-β1 modulates the homeostasis between MMPs and MMP inhibitors through p38 MAPK and ERK1/2 in highly invasive breast cancer cells. BMC Cancer. 12:262012. View Article : Google Scholar : PubMed/NCBI

92 

Cordeiro MF, Bhattacharya SS, Schultz GS and Khaw PT: TGF-beta1, -beta2, and -beta3 in vitro: Biphasic effects on Tenon's fibroblast contraction, proliferation, and migration. Invest Ophthalmol Vis Sci. 41:756–763. 2000.PubMed/NCBI

93 

Nguyen TTM, Gillet G and Popgeorgiev N: Caspases in the developing central nervous system: Apoptosis and beyond. Front Cell Dev Biol. 9:7024042021. View Article : Google Scholar : PubMed/NCBI

94 

Cohen GM: Caspases: The executioners of apoptosis. Biochem J. 326:1–16. 1997. View Article : Google Scholar : PubMed/NCBI

95 

Abate M, Festa A, Falco M, Lombardi A, Luce A, Grimaldi A, Zappavigna S, Sperlongano P, Irace C, Caraglia M and Misso G: Mitochondria as playmakers of apoptosis, autophagy and senescence. Semin Cell Dev Biol. 98:139–153. 2020. View Article : Google Scholar : PubMed/NCBI

96 

Alapati T, Sagal KM, Gudiseva HV, Pistilli M, Pyfer M, Chavali VRM and O'Brien JM: Evaluating TNF-α and interleukin-2 (IL-2) levels in African American primary open-angle glaucoma patients. Genes (Basel). 13:542021. View Article : Google Scholar : PubMed/NCBI

97 

Wilson NS, Dixit V and Ashkenazi A: Death receptor signal transducers: Nodes of coordination in immune signaling networks. Nat Immunol. 10:348–355. 2009. View Article : Google Scholar : PubMed/NCBI

98 

Mahdizadeh SJ, Thomas M and Eriksson LA: Reconstruction of the Fas-based death-inducing signaling complex (DISC) using a protein-protein docking meta-approach. J Chem Inf Model. 61:3543–3558. 2021. View Article : Google Scholar : PubMed/NCBI

99 

Hillert-Richter LK and Lavrik IN: Measuring composition of CD95 death-inducing signaling complex and processing of procaspase-8 in this complex. J Vis Exp. 2021. View Article : Google Scholar : PubMed/NCBI

100 

Yang XJ, Ge J and Zhuo YH: Role of mitochondria in the pathogenesis and treatment of glaucoma. Chin Med J (Engl). 126:4358–4365. 2013. View Article : Google Scholar : PubMed/NCBI

101 

Zeng Z, You M, Fan C, Rong R, Li H and Xia X: Pathologically high intraocular pressure induces mitochondrial dysfunction through Drp1 and leads to retinal ganglion cell PANoptosis in glaucoma. Redox Biol. 62:1026872023. View Article : Google Scholar : PubMed/NCBI

102 

Bock FJ and Tait SWG: Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol. 21:85–100. 2020. View Article : Google Scholar : PubMed/NCBI

103 

Saelens X, Festjens N, Vande Walle L, van Gurp M, van Loo G and Vandenabeele P: Toxic proteins released from mitochondria in cell death. Oncogene. 23:2861–2874. 2004. View Article : Google Scholar : PubMed/NCBI

104 

Shakeri R, Kheirollahi A and Davoodi J: Apaf-1: Regulation and function in cell death. Biochimie. 135:111–125. 2017. View Article : Google Scholar : PubMed/NCBI

105 

Brentnall M, Rodriguez-Menocal L, De Guevara RL, Cepero E and Boise LH: Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol. 14:322013. View Article : Google Scholar : PubMed/NCBI

106 

Kale J, Osterlund EJ and Andrews DW: BCL-2 family proteins: Changing partners in the dance towards death. Cell Death Differ. 25:65–80. 2018. View Article : Google Scholar : PubMed/NCBI

107 

Leibowitz B and Yu J: Mitochondrial signaling in cell death via the Bcl-2 family. Cancer Biol Ther. 9:417–422. 2010. View Article : Google Scholar : PubMed/NCBI

108 

Ding J, Mooers BHM, Zhang Z, Kale J, Falcone D, McNichol J, Huang B, Zhang XC, Xing C, Andrews DW and Lin J: After embedding in membranes antiapoptotic Bcl-XL protein binds both Bcl-2 homology region 3 and helix 1 of proapoptotic Bax protein to inhibit apoptotic mitochondrial permeabilization. J Biol Chem. 289:11873–11896. 2014. View Article : Google Scholar : PubMed/NCBI

109 

Luna-Vargas MPA and Chipuk JE: The deadly landscape of pro-apoptotic BCL-2 proteins in the outer mitochondrial membrane. FEBS J. 283:2676–2689. 2016. View Article : Google Scholar : PubMed/NCBI

110 

Huang DC and Strasser A: BH3-Only proteins-essential initiators of apoptotic cell death. Cell. 103:839–842. 2000. View Article : Google Scholar : PubMed/NCBI

111 

Bano D and Prehn JHM: Apoptosis-inducing factor (AIF) in physiology and disease: The tale of a repented natural born killer. EBioMedicine. 30:29–37. 2018. View Article : Google Scholar : PubMed/NCBI

112 

Porat S and Simantov R: Bcl-2 and p53: Role in dopamine-induced apoptosis and differentiation. Ann N Y Acad Sci. 893:372–375. 1999. View Article : Google Scholar : PubMed/NCBI

113 

Sawada O, Perusek L, Kohno H, Howell SJ, Maeda A, Matsuyama S and Maeda T: All-trans-retinal induces Bax activation via DNA damage to mediate retinal cell apoptosis. Exp Eye Res. 123:27–36. 2014. View Article : Google Scholar : PubMed/NCBI

114 

Wang Y, Okan I, Szekely L, Klein G and Wiman KG: bcl-2 inhibits wild-type p53-triggered apoptosis but not G1 cell cycle arrest and transactivation of WAF1 and bax. Cell Growth Differ. 6:1071–1075. 1995.PubMed/NCBI

115 

Chylicki K, Ehinger M, Svedberg H and Gullberg U: Characterization of the molecular mechanisms for p53-mediated differentiation. Cell Growth Differ. 11:561–571. 2000.PubMed/NCBI

116 

Oakes SA and Papa FR: The role of endoplasmic reticulum stress in human pathology. Annu Rev Pathol. 10:173–194. 2015. View Article : Google Scholar : PubMed/NCBI

117 

Hetz C, Zhang K and Kaufman RJ: Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol. 21:421–438. 2020. View Article : Google Scholar : PubMed/NCBI

118 

Ron D and Walter P: Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 8:519–529. 2007. View Article : Google Scholar : PubMed/NCBI

119 

Lafleur MA, Stevens JL and Lawrence JW: Xenobiotic perturbation of ER stress and the unfolded protein response. Toxicol Pathol. 41:235–262. 2013. View Article : Google Scholar : PubMed/NCBI

120 

Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP and Ron D: Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science. 287:664–666. 2000. View Article : Google Scholar : PubMed/NCBI

121 

Kwong JMK and Caprioli J: Expression of phosphorylated c-Jun N-terminal protein kinase (JNK) in experimental glaucoma in rats. Exp Eye Res. 82:576–582. 2006. View Article : Google Scholar : PubMed/NCBI

122 

Hwang J and Qi L: Quality control in the endoplasmic reticulum: Crosstalk between ERAD and UPR pathways. Trends Biochem Sci. 43:593–605. 2018. View Article : Google Scholar : PubMed/NCBI

123 

Maurel M, Chevet E, Tavernier J and Gerlo S: Getting RIDD of RNA: IRE1 in cell fate regulation. Trends Biochem Sci. 39:245–254. 2014. View Article : Google Scholar : PubMed/NCBI

124 

Hayashi T, Saito A, Okuno S, Ferrand-Drake M, Dodd RL and Chan PH: Oxidative injury to the endoplasmic reticulum in mouse brains after transient focal ischemia. Neurobiol Dis. 15:229–239. 2004. View Article : Google Scholar : PubMed/NCBI

125 

Wek RC, Jiang HY and Anthony TG: Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans. 34:7–11. 2006. View Article : Google Scholar : PubMed/NCBI

126 

Peters JC, Bhattacharya S, Clark AF and Zode GS: Increased endoplasmic reticulum stress in human glaucomatous trabecular meshwork cells and tissues. Invest Ophthalmol Vis Sci. 56:3860–3868. 2015. View Article : Google Scholar : PubMed/NCBI

127 

Marola OJ, Syc-Mazurek SB and Libby RT: DDIT3 (CHOP) contributes to retinal ganglion cell somal loss but not axonal degeneration in DBA/2J mice. Cell Death Discov. 5:1402019. View Article : Google Scholar : PubMed/NCBI

128 

Kasetti RB, Patel PD, Maddineni P, Patil S, Kiehlbauch C, Millar JC, Searby CC, Raghunathan V, Sheffield VC and Zode GS: ATF4 leads to glaucoma by promoting protein synthesis and ER client protein load. Nat Commun. 11:55942020. View Article : Google Scholar : PubMed/NCBI

129 

Doh SH, Kim JH, Lee KM, Park HY and Park CK: Retinal ganglion cell death induced by endoplasmic reticulum stress in a chronic glaucoma model. Brain Res. 1308:158–166. 2010. View Article : Google Scholar : PubMed/NCBI

130 

Yoshida H, Matsui T, Yamamoto A, Okada T and Mori K: XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell. 107:881–891. 2001. View Article : Google Scholar : PubMed/NCBI

131 

Watanabe M, Ida Y, Furuhashi M, Tsugeno Y, Ohguro H and Hikage F: Screening of the drug-induced effects of prostaglandin EP2 and FP agonists on 3D cultures of dexamethasone-treated human trabecular meshwork cells. Biomedicines. 9:9302021. View Article : Google Scholar : PubMed/NCBI

132 

Lee EJ, Chan P, Chea L, Kim K, Kaufman RJ and Lin JH: ATF6 is required for efficient rhodopsin clearance and retinal homeostasis in the P23H rho retinitis pigmentosa mouse model. Sci Rep. 11:163562021. View Article : Google Scholar : PubMed/NCBI

133 

Julien O and Wells JA: Caspases and their substrates. Cell Death Differ. 24:1380–1389. 2017. View Article : Google Scholar : PubMed/NCBI

134 

Yuan J, Shaham S, Ledoux S, Ellis HM and Horvitz HR: The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell. 75:641–652. 1993. View Article : Google Scholar : PubMed/NCBI

135 

Van Opdenbosch N and Lamkanfi M: Caspases in cell death, inflammation, and disease. Immunity. 50:1352–1364. 2019. View Article : Google Scholar : PubMed/NCBI

136 

Ramirez MLG and Salvesen GS: A primer on caspase mechanisms. Semin Cell Dev Biol. 82:79–85. 2018. View Article : Google Scholar : PubMed/NCBI

137 

Man SM, Karki R and Kanneganti TD: Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev. 277:61–75. 2017. View Article : Google Scholar : PubMed/NCBI

138 

Ye D, Xu Y, Shi Y, Fan M, Lu P, Bai X, Feng Y, Hu C, Cui K, Tang X, et al: Anti-PANoptosis is involved in neuroprotective effects of melatonin in acute ocular hypertension model. J Pineal Res. 73:e128282022. View Article : Google Scholar : PubMed/NCBI

139 

Du HY, Wang R, Li JL, Luo H, Xie XY, Yan R, Jian YL and Cai JY: Ligustrazine protects against chronic hypertensive glaucoma in rats by inhibiting autophagy via the PI3K-Akt/mTOR pathway. Mol Vis. 27:725–733. 2021.PubMed/NCBI

140 

Xu K, Li S, Yang Q, Zhou Z, Fu M, Yang X, Hao K, Liu Y and Ji H: MicroRNA-145-5p targeting of TRIM2 mediates the apoptosis of retinal ganglion cells via the PI3K/AKT signaling pathway in glaucoma. J Gene Med. 23:e33782021. View Article : Google Scholar : PubMed/NCBI

141 

Li R, Jin Y, Li Q, Sun X, Zhu H and Cui H: MiR-93-5p targeting PTEN regulates the NMDA-induced autophagy of retinal ganglion cells via AKT/mTOR pathway in glaucoma. Biomed Pharmacother. 100:1–7. 2018. View Article : Google Scholar : PubMed/NCBI

142 

Tatton WG, Chalmers-Redman RM, Sud A, Podos SM and Mittag TW: Maintaining mitochondrial membrane impermeability. An opportunity for new therapy in glaucoma? Surv Ophthalmol. 45 (Suppl 3):S277–S283. S295–S296. 2001.PubMed/NCBI

143 

Miano M, Madeo A, Cappelli E, Lanza F, Lanza T, Stroppiano M, Terranova P, Venè R, Bleesing JJH and Di Rocco M: Defective FAS-mediated apoptosis and immune dysregulation in gaucher disease. J Allergy Clin Immunol Pract. 8:3535–3542. 2020. View Article : Google Scholar : PubMed/NCBI

144 

Li-Weber M and Krammer PH: Function and regulation of the CD95 (APO-1/Fas) ligand in the immune system. Semin Immunol. 15:145–157. 2003. View Article : Google Scholar : PubMed/NCBI

145 

Levoin N, Jean M and Legembre P: CD95 structure, aggregation and cell signaling. Front Cell Dev Biol. 8:3142020. View Article : Google Scholar : PubMed/NCBI

146 

Guégan JP and Legembre P: Nonapoptotic functions of Fas/CD95 in the immune response. FEBS J. 285:809–827. 2018. View Article : Google Scholar : PubMed/NCBI

147 

Krishnan A, Fei F, Jones A, Busto P, Marshak-Rothstein A, Ksander BR and Gregory-Ksander M: Overexpression of soluble fas ligand following adeno-associated virus gene therapy prevents retinal ganglion cell death in chronic and acute murine models of glaucoma. J Immunol. 197:4626–4638. 2016. View Article : Google Scholar : PubMed/NCBI

148 

Gregory-Ksander M and Marshak-Rothstein A: The FasLane to ocular pathology-metalloproteinase cleavage of membrane-bound FasL determines FasL function. J Leukoc Biol. 110:965–977. 2021. View Article : Google Scholar : PubMed/NCBI

149 

Razeghinejad MR and Kamali-Sarvestani E: Aqueous humor levels of soluble Fas and Fas-ligand in patients with primary open angle and pseudoexfoliation glaucoma. Iran J Immunol. 4:215–219. 2007.PubMed/NCBI

150 

Gregory MS, Hackett CG, Abernathy EF, Lee KS, Saff RR, Hohlbaum AM, Moody KS, Hobson MW, Jones A, Kolovou P, et al: Opposing roles for membrane bound and soluble Fas ligand in glaucoma-associated retinal ganglion cell death. PLoS One. 6:e176592011. View Article : Google Scholar : PubMed/NCBI

151 

O' Reilly LA, Tai L, Lee L, Kruse EA, Grabow S, Fairlie WD, Haynes NM, Tarlinton DM, Zhang JG, Belz GT, et al: Membrane-bound Fas ligand only is essential for Fas-induced apoptosis. Nature. 461:659–663. 2009. View Article : Google Scholar : PubMed/NCBI

152 

Wax MB, Tezel G, Yang J, Peng G, Patil RV, Agarwal N, Sappington RM and Calkins DJ: Induced autoimmunity to heat shock proteins elicits glaucomatous loss of retinal ganglion cell neurons via activated T-cell-derived fas-ligand. J Neurosci. 28:12085–12096. 2008. View Article : Google Scholar : PubMed/NCBI

153 

Besirli CG, Chinskey ND, Zheng QD and Zacks DN: Inhibition of retinal detachment-induced apoptosis in photoreceptors by a small peptide inhibitor of the fas receptor. Invest Ophthalmol Vis Sci. 51:2177–2184. 2010. View Article : Google Scholar : PubMed/NCBI

154 

Aoki K, Kurooka M, Chen JJ, Petryniak J, Nabel EG and Nabel GJ: Extracellular matrix interacts with soluble CD95L: Retention and enhancement of cytotoxicity. Nat Immunol. 2:333–337. 2001. View Article : Google Scholar : PubMed/NCBI

155 

Bai Y, Shi Z, Zhuo Y, Liu J, Malakhov A, Ko E, Burgess K, Schaefer H, Esteban PF, Tessarollo L and Saragovi HU: In glaucoma the upregulated truncated TrkC.T1 receptor isoform in glia causes increased TNF-alpha production, leading to retinal ganglion cell death. Invest Ophthalmol Vis Sci. 51:6639–6651. 2010. View Article : Google Scholar : PubMed/NCBI

156 

Aggarwal BB, Gupta SC and Kim JH: Historical perspectives on tumor necrosis factor and its superfamily: 25 Years later, a golden journey. Blood. 119:651–665. 2012. View Article : Google Scholar : PubMed/NCBI

157 

Kelker HC, Oppenheim JD, Stone-Wolff D, Henriksen-DeStefano D, Aggarwal BB, Stevenson HC and Vilcek J: Characterization of human tumor necrosis factor produced by peripheral blood monocytes and its separation from lymphotoxin. Int J Cancer. 36:69–73. 1985. View Article : Google Scholar : PubMed/NCBI

158 

Subedi L, Lee SE, Madiha S, Gaire BP, Jin M, Yumnam S and Kim SY: Phytochemicals against TNFα-mediated neuroinflammatory diseases. Int J Mol Sci. 21:7642020. View Article : Google Scholar : PubMed/NCBI

159 

Pegoretti V, Baron W, Laman JD and Eisel ULM: Selective modulation of TNF-TNFRs signaling: Insights for multiple sclerosis treatment. Front Immunol. 9:9252018. View Article : Google Scholar : PubMed/NCBI

160 

Sivakumar V, Foulds WS, Luu CD, Ling EA and Kaur C: Retinal ganglion cell death is induced by microglia derived pro-inflammatory cytokines in the hypoxic neonatal retina. J Pathol. 224:245–260. 2011. View Article : Google Scholar : PubMed/NCBI

161 

Cueva Vargas JL, Osswald IK, Unsain N, Aurousseau MR, Barker PA, Bowie D and Di Polo A: Soluble tumor necrosis factor alpha promotes retinal ganglion cell death in glaucoma via calcium-permeable AMPA receptor activation. J Neurosci. 35:12088–12102. 2015. View Article : Google Scholar : PubMed/NCBI

162 

Lee JC, Park CW, Shin MC, Cho JH, Lee HA, Kim YM, Park JH, Ahn JH, Cho JH, Tae HJ, et al: Tumor necrosis factor receptor 2 is required for ischemic preconditioning-mediated neuroprotection in the hippocampus following a subsequent longer transient cerebral ischemia. Neurochem Int. 118:292–303. 2018. View Article : Google Scholar : PubMed/NCBI

163 

Agarwal R and Agarwal P: Glaucomatous neurodegeneration: An eye on tumor necrosis factor-alpha. Indian J Ophthalmol. 60:255–261. 2012. View Article : Google Scholar : PubMed/NCBI

164 

Levkovitch-Verbin H, Waserzoog Y, Vander S, Makarovsky D and Piven I: Minocycline upregulates pro-survival genes and downregulates pro-apoptotic genes in experimental glaucoma. Graefes Arch Clin Exp Ophthalmol. 252:761–772. 2014. View Article : Google Scholar : PubMed/NCBI

165 

Taurone S, Ripandelli G, Pacella E, Bianchi E, Plateroti AM, De Vito S, Plateroti P, Grippaudo FR, Cavallotti C and Artico M: Potential regulatory molecules in the human trabecular meshwork of patients with glaucoma: Immunohistochemical profile of a number of inflammatory cytokines. Mol Med Rep. 11:1384–1390. 2015. View Article : Google Scholar : PubMed/NCBI

166 

Choi JA, Maddala R, Karnam S, Skiba NP, Vann R, Challa P and Rao PV: Role of vasorin, an anti-apoptotic, anti-TGF-β and hypoxia-induced glycoprotein in the trabecular meshwork cells and glaucoma. J Cell Mol Med. 26:2063–2075. 2022. View Article : Google Scholar : PubMed/NCBI

167 

Morgan MJ and Liu ZG: Reactive oxygen species in TNFalpha-induced signaling and cell death. Mol Cells. 30:1–12. 2010. View Article : Google Scholar : PubMed/NCBI

168 

Madeira MH, Elvas F, Boia R, Gonçalves FQ, Cunha RA, Ambrósio AF and Santiago AR: Adenosine A2AR blockade prevents neuroinflammation-induced death of retinal ganglion cells caused by elevated pressure. J Neuroinflammation. 12:1152015. View Article : Google Scholar : PubMed/NCBI

169 

Bozkurt B, Mesci L, Irkec M, Ozdag BB, Sanal O, Arslan U, Ersoy F and Tezcan I: Association of tumour necrosis factor-alpha-308 G/A polymorphism with primary open-angle glaucoma. Clin Exp Ophthalmol. 40:e156–e162. 2012. View Article : Google Scholar : PubMed/NCBI

170 

Lin HJ, Tsai FJ, Chen WC, Shi YR, Hsu Y and Tsai SW: Association of tumour necrosis factor alpha-308 gene polymorphism with primary open-angle glaucoma in Chinese. Eye (Lond). 17:31–34. 2003. View Article : Google Scholar : PubMed/NCBI

171 

Singh A, Ni J and Aggarwal BB: Death domain receptors and their role in cell demise. J Interferon Cytokine Res. 18:439–450. 1998. View Article : Google Scholar : PubMed/NCBI

172 

Lavrik I, Golks A and Krammer PH: Death receptor signaling. J Cell Sci. 118:265–267. 2005. View Article : Google Scholar : PubMed/NCBI

173 

Zalewska R, Zalewski B, Reszec J, Mariak Z, Zimnoch L and Proniewska-Skretek E: The expressions of Fas and caspase-3 in human glaucomatous optic nerve axons. Med Sci Monit. 14:BR274–BR278. 2008.PubMed/NCBI

174 

Pawar M, Busov B, Chandrasekhar A, Yao J, Zacks DN and Besirli CG: FAS apoptotic inhibitory molecule 2 is a stress-induced intrinsic neuroprotective factor in the retina. Cell Death Differ. 24:1799–1810. 2017. View Article : Google Scholar : PubMed/NCBI

175 

Tezel G: TNF-alpha signaling in glaucomatous neurodegeneration. Prog Brain Res. 173:409–421. 2008. View Article : Google Scholar : PubMed/NCBI

176 

Yan X, Tezel G, Wax MB and Edward DP: Matrix metalloproteinases and tumor necrosis factor alpha in glaucomatous optic nerve head. Arch Ophthalmol. 118:666–673. 2000. View Article : Google Scholar : PubMed/NCBI

177 

Yuan L and Neufeld AH: Tumor necrosis factor-alpha: A potentially neurodestructive cytokine produced by glia in the human glaucomatous optic nerve head. Glia. 32:42–50. 2000. View Article : Google Scholar : PubMed/NCBI

178 

Tezel G, Li LY, Patil RV and Wax MB: TNF-alpha and TNF-alpha receptor-1 in the retina of normal and glaucomatous eyes. Invest Ophthalmol Vis Sci. 42:1787–1794. 2001.PubMed/NCBI

179 

Cheng S, Wang HN, Xu LJ, Li F, Miao Y, Lei B, Sun X and Wang Z: Soluble tumor necrosis factor-alpha-induced hyperexcitability contributes to retinal ganglion cell apoptosis by enhancing Nav1.6 in experimental glaucoma. J Neuroinflammation. 18:1822021. View Article : Google Scholar : PubMed/NCBI

180 

Nakazawa T, Nakazawa C, Matsubara A, Noda K, Hisatomi T, She H, Michaud N, Hafezi-Moghadam A, Miller JW and Benowitz LI: Tumor necrosis factor-alpha mediates oligodendrocyte death and delayed retinal ganglion cell loss in a mouse model of glaucoma. J Neurosci. 26:12633–12641. 2006. View Article : Google Scholar : PubMed/NCBI

181 

Hänninen VA, Pantcheva MB, Freeman EE, Poulin NR and Grosskreutz CL: Activation of caspase 9 in a rat model of experimental glaucoma. Curr Eye Res. 25:389–395. 2002. View Article : Google Scholar : PubMed/NCBI

182 

Chi W, Li F, Chen H, Wang Y, Zhu Y, Yang X, Zhu J, Wu F, Ouyang H, Ge J, et al: Caspase-8 promotes NLRP1/NLRP3 inflammasome activation and IL-1β production in acute glaucoma. Proc Natl Acad Sci USA. 111:11181–11186. 2014. View Article : Google Scholar : PubMed/NCBI

183 

Yang X, Zeng Q and Tezel G: Regulation of distinct caspase-8 functions in retinal ganglion cells and astroglia in experimental glaucoma. Neurobiol Dis. 150:1052582021. View Article : Google Scholar : PubMed/NCBI

184 

Choudhury S, Liu Y, Clark AF and Pang IH: Caspase-7: A critical mediator of optic nerve injury-induced retinal ganglion cell death. Mol Neurodegener. 10:402015. View Article : Google Scholar : PubMed/NCBI

185 

Vigneswara V, Akpan N, Berry M, Logan A, Troy CM and Ahmed Z: Combined suppression of CASP2 and CASP6 protects retinal ganglion cells from apoptosis and promotes axon regeneration through CNTF-mediated JAK/STAT signalling. Brain. 137:1656–1675. 2014. View Article : Google Scholar : PubMed/NCBI

186 

Seong H, Ryu J, Yoo WS, Kim SJ, Han YS, Park JM, Kang SS and Seo SW: Resveratrol ameliorates retinal ischemia/reperfusion injury in C57BL/6J mice via downregulation of caspase-3. Curr Eye Res. 42:1650–1658. 2017. View Article : Google Scholar : PubMed/NCBI

187 

Thomas CN, Berry M, Logan A, Blanch RJ and Ahmed Z: Caspases in retinal ganglion cell death and axon regeneration. Cell Death Discov. 3:170322017. View Article : Google Scholar : PubMed/NCBI

188 

Ngan BY, Chen-Levy Z, Weiss LM, Warnke RA and Cleary ML: Expression in non-Hodgkin's lymphoma of the bcl-2 protein associated with the t(14;18) chromosomal translocation. N Engl J Med. 318:1638–1644. 1988. View Article : Google Scholar : PubMed/NCBI

189 

Maes ME, Schlamp CL and Nickells RW: BAX to basics: How the BCL2 gene family controls the death of retinal ganglion cells. Prog Retin Eye Res. 57:1–25. 2017. View Article : Google Scholar : PubMed/NCBI

190 

Singh R, Letai A and Sarosiek K: Regulation of apoptosis in health and disease: The balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol. 20:175–193. 2019. View Article : Google Scholar : PubMed/NCBI

191 

Cottet S and Schorderet DF: Triggering of Bcl-2-related pathway is associated with apoptosis of photoreceptors in Rpe65-/- mouse model of Leber's congenital amaurosis. Apoptosis. 13:329–342. 2008. View Article : Google Scholar : PubMed/NCBI

192 

Zalewska R, Reszeć J, Mariak Z and Sulkowski S: The expression of Bcl-2, Bcl-xl, Bak and Bax proteins in axons of the optic nerve in closed-angle glaucoma. Klin Oczna. 106 (1–2 Suppl):S155–S157. 2004.(In Polish). PubMed/NCBI

193 

Takahashi A, Masuda A, Sun M, Centonze VE and Herman B: Oxidative stress-induced apoptosis is associated with alterations in mitochondrial caspase activity and Bcl-2-dependent alterations in mitochondrial pH (pHm). Brain Res Bull. 62:497–504. 2004. View Article : Google Scholar : PubMed/NCBI

194 

Tatton WG, Chalmers-Redman RM and Tatton NA: Apoptosis and anti-apoptosis signalling in glaucomatous retinopathy. Eur J Ophthalmol. 11 (Suppl 2):S12–S22. 2001.PubMed/NCBI

195 

Ye D, Shi Y, Xu Y and Huang J: PACAP attenuates optic nerve crush-induced retinal ganglion cell apoptosis via activation of the CREB-Bcl-2 pathway. J Mol Neurosci. 68:475–484. 2019. View Article : Google Scholar : PubMed/NCBI

196 

González-García M, García I, Ding L, O'Shea S, Boise LH, Thompson CB and Núñez G: bcl-x is expressed in embryonic and postnatal neural tissues and functions to prevent neuronal cell death. Proc Natl Acad Sci USA. 92:4304–4308. 1995. View Article : Google Scholar : PubMed/NCBI

197 

Liu XH, Collier RJ and Youle RJ: Inhibition of axotomy-induced neuronal apoptosis by extracellular delivery of a Bcl-XL fusion protein. J Biol Chem. 276:46326–46332. 2001. View Article : Google Scholar : PubMed/NCBI

198 

Malik JMI, Shevtsova Z, Bähr M and Kügler S: Long-term in vivo inhibition of CNS neurodegeneration by Bcl-XL gene transfer. Mol Ther. 11:373–381. 2005. View Article : Google Scholar : PubMed/NCBI

199 

Donahue RJ, Fehrman RL, Gustafson JR and Nickells RW: BCLX(L) gene therapy moderates neuropathology in the DBA/2J mouse model of inherited glaucoma. Cell Death Dis. 12:7812021. View Article : Google Scholar : PubMed/NCBI

200 

Näpänkangas U, Lindqvist N, Lindholm D and Hallböök F: Rat retinal ganglion cells upregulate the pro-apoptotic BH3-only protein Bim after optic nerve transection. Brain research. Brain Res Mol Brain Res. 120:30–37. 2003. View Article : Google Scholar : PubMed/NCBI

201 

Donahue RJ, Maes ME, Grosser JA and Nickells RW: BAX-depleted retinal ganglion cells survive and become quiescent following optic nerve damage. Mol Neurobiol. 57:1070–1084. 2020. View Article : Google Scholar : PubMed/NCBI

202 

Wei Y, Fan T and Yu M: Inhibitor of apoptosis proteins and apoptosis. Acta Biochim Biophys Sin (Shanghai). 40:278–288. 2008. View Article : Google Scholar : PubMed/NCBI

203 

Levkovitch-Verbin H, Dardik R, Vander S, Nisgav Y, Kalev-Landoy M and Melamed S: Experimental glaucoma and optic nerve transection induce simultaneous upregulation of proapoptotic and prosurvival genes. Invest Ophthalmol Vis Sci. 47:2491–2497. 2006. View Article : Google Scholar : PubMed/NCBI

204 

Kisiswa L, Albon J, Morgan JE and Wride MA: Cellular inhibitor of apoptosis (cIAP1) is down-regulated during retinal ganglion cell (RGC) maturation. Exp Eye Res. 91:739–747. 2010. View Article : Google Scholar : PubMed/NCBI

205 

Levkovitch-Verbin H, Vander S, Makarovsky D and Lavinsky F: Increase in retinal ganglion cells' susceptibility to elevated intraocular pressure and impairment of their endogenous neuroprotective mechanism by age. Mol Vis. 19:2011–2022. 2013.PubMed/NCBI

206 

Ayub H, Micheal S, Akhtar F, Khan MI, Bashir S, Waheed NK, Ali M, Schoenmaker-Koller FE, Shafique S, Qamar R and Hollander AI: Association of a polymorphism in the BIRC6 gene with pseudoexfoliative glaucoma. PLoS One. 9:e1050232014. View Article : Google Scholar : PubMed/NCBI

207 

Carbone MA, Chen Y, Hughes GA, Weinreb RN, Zabriskie NA, Zhang K and Anholt RR: Genes of the unfolded protein response pathway harbor risk alleles for primary open angle glaucoma. PLoS One. 6:e206492011. View Article : Google Scholar : PubMed/NCBI

208 

Kernt M, Neubauer AS, Eibl KH, Wolf A, Ulbig MW, Kampik A and Hirneiss C: Minocycline is cytoprotective in human trabecular meshwork cells and optic nerve head astrocytes by increasing expression of XIAP, survivin, and Bcl-2. Clin Ophthalmol. 4:591–604. 2010. View Article : Google Scholar : PubMed/NCBI

209 

Liu L and Yang X, Zhang J, Jiang W, Hou T, Zong Y, Bai H, Yang K and Yang X: Long non-coding RNA SNHG11 regulates the Wnt/β-catenin signaling pathway through rho/ROCK in trabecular meshwork cells. FASEB J. 37:e228732023. View Article : Google Scholar : PubMed/NCBI

210 

Levkovitch-Verbin H, Makarovsky D and Vander S: Comparison between axonal and retinal ganglion cell gene expression in various optic nerve injuries including glaucoma. Mol Vis. 19:2526–2541. 2013.PubMed/NCBI

211 

Murray-Zmijewski F, Lane DP and Bourdon JC: p53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death Differ. 13:962–972. 2006. View Article : Google Scholar : PubMed/NCBI

212 

Lane DP, Lu X, Hupp T and Hall PA: The role of the p53 protein in the apoptotic response. Philos Trans R Soc Lond B Biol Sci. 345:277–280. 1994. View Article : Google Scholar : PubMed/NCBI

213 

Peng Q, Lao X, Chen Z, Lai H, Deng Y, Wang J, Mo C, Sui J, Wu J, Zhai L, et al: TP53 and MDM2 gene polymorphisms, gene-gene interaction, and hepatocellular carcinoma risk: evidence from an updated meta-analysis. PLoS One. 8:e827732013. View Article : Google Scholar : PubMed/NCBI

214 

Lin HJ, Chen WC, Tsai FJ and Tsai SW: Distributions of p53 codon 72 polymorphism in primary open angle glaucoma. Br J Ophthalmol. 86:767–770. 2002. View Article : Google Scholar : PubMed/NCBI

215 

Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M and Green DR: Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science. 303:1010–1014. 2004. View Article : Google Scholar : PubMed/NCBI

216 

Acharya M, Mitra S, Mukhopadhyay A, Khan M, Roychoudhury S and Ray K: Distribution of p53 codon 72 polymorphism in Indian primary open angle glaucoma patients. Mol Vis. 8:367–371. 2002.PubMed/NCBI

217 

Ara S, Lee PS, Hansen MF and Saya H: Codon 72 polymorphism of the TP53 gene. Nucleic Acids Res. 18:49611990. View Article : Google Scholar : PubMed/NCBI

218 

Fan BJ, Liu K, Wang DY, Tham CC, Tam PO, Lam DS and Pang CP: Association of polymorphisms of tumor necrosis factor and tumor protein p53 with primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 51:4110–4116. 2010. View Article : Google Scholar : PubMed/NCBI

219 

Gupta S, Chatterjee S, Chandra A, Maurya OPS, Mishra RN, Mukherjee A and Mutsuddi M: TP53 codon 72 polymorphism and the risk of glaucoma in a north Indian cohort: A genetic association study. Ophthalmic Genet. 39:228–235. 2018. View Article : Google Scholar : PubMed/NCBI

220 

Guo Y, Zhang H, Chen X, Yang X, Cheng W and Zhao K: Association of TP53 polymorphisms with primary open-angle glaucoma: A meta-analysis. Invest Ophthalmol Vis Sci. 53:3756–3763. 2012. View Article : Google Scholar : PubMed/NCBI

221 

Gohari M, Neámatzadeh H, Jafari MA, Mazaheri M, Zare-Shehneh M and Abbasi-Shavazi E: Association between the p53 codon 72 polymorphism and primary open-angle glaucoma risk: Meta-analysis based on 11 case-control studies. Indian J Ophthalmol. 64:756–761. 2016. View Article : Google Scholar : PubMed/NCBI

222 

Blanco-Marchite C, Sánchez-Sánchez F, López-Garrido MP, Iñigez-de-Onzoño M, López-Martínez F, López-Sánchez E, Alvarez L, Rodríguez-Calvo PP, Méndez-Hernández C, Fernández-Vega L, et al: WDR36 and P53 gene variants and susceptibility to primary open-angle glaucoma: analysis of gene-gene interactions. Invest Ophthalmol Vis Sci. 52:8467–8478. 2011. View Article : Google Scholar : PubMed/NCBI

223 

Neamatzadeh H, Soleimanizad R, Atefi A, Zare-Shehneh M, Gharibi S, Shekari A and Rahimzadeh AB: Association between p53 codon 72 (Arg72Pro) polymorphism and primary open-angle glaucoma in Iranian patients. Iran Biomed J. 19:51–56. 2015.PubMed/NCBI

224 

Wiggs JL, Hewitt AW, Fan BJ, Wang DY, Figueiredo Sena DR, O'Brien C, Realini A, Craig JE, Dimasi DP, Mackey DA, et al: The p53 codon 72 PRO/PRO genotype may be associated with initial central visual field defects in caucasians with primary open angle glaucoma. PLoS One. 7:e456132012. View Article : Google Scholar : PubMed/NCBI

225 

Jeong BS, Hu W, Belyi V, Rabadan R and Levine AJ: Differential levels of transcription of p53-regulated genes by the arginine/proline polymorphism: p53 with arginine at codon 72 favors apoptosis. FASEB J. 24:1347–1353. 2010. View Article : Google Scholar : PubMed/NCBI

226 

Dimasi DP, Hewitt AW, Green CM, Mackey DA and Craig JE: Lack of association of p53 polymorphisms and haplotypes in high and normal tension open angle glaucoma. J Med Genet. 42:e552005. View Article : Google Scholar : PubMed/NCBI

227 

Silva RE, Arruda JT, Rodrigues FW and Moura KKVO: Primary open angle glaucoma was not found to be associated with p53 codon 72 polymorphism in a Brazilian cohort. Genet Mol Res. 8:268–272. 2009. View Article : Google Scholar : PubMed/NCBI

228 

Mabuchi F, Sakurada Y, Kashiwagi K, Yamagata Z, Iijima H and Tsukahara S: Lack of association between p53 gene polymorphisms and primary open angle glaucoma in the Japanese population. Mol Vis. 15:1045–1049. 2009.PubMed/NCBI

229 

Saglar E, Yucel D, Bozkurt B, Ozgul RK, Irkec M and Ogus A: Association of polymorphisms in APOE, p53, and p21 with primary open-angle glaucoma in Turkish patients. Mol Vis. 15:1270–1276. 2009.PubMed/NCBI

230 

Chen SD, Wang L and Zhang XL: Neuroprotection in glaucoma: Present and future. Chin Med J (Engl). 126:1567–1577. 2013. View Article : Google Scholar : PubMed/NCBI

231 

Tahzib NG, Ransom NL, Reitsamer HA and McKinnon SJ: Alpha-fodrin is cleaved by caspase-3 in a chronic ocular hypertensive (COH) rat model of glaucoma. Brain Res Bull. 62:491–495. 2004. View Article : Google Scholar : PubMed/NCBI

232 

Vigneswara V, Berry M, Logan A and Ahmed Z: Pharmacological inhibition of caspase-2 protects axotomised retinal ganglion cells from apoptosis in adult rats. PLoS One. 7:e534732012. View Article : Google Scholar : PubMed/NCBI

233 

Monnier PP, D'Onofrio PM, Magharious M, Hollander AC, Tassew N, Szydlowska K, Tymianski M and Koeberle PD: Involvement of caspase-6 and caspase-8 in neuronal apoptosis and the regenerative failure of injured retinal ganglion cells. J Neurosci. 31:10494–10505. 2011. View Article : Google Scholar : PubMed/NCBI

234 

Liu Y, Yan H, Chen S and Sabel BA: Caspase-3 inhibitor Z-DEVD-FMK enhances retinal ganglion cell survival and vision restoration after rabbit traumatic optic nerve injury. Restor Neurol Neurosci. 33:205–220. 2015.PubMed/NCBI

235 

Sánchez-Migallón MC, Valiente-Soriano FJ, Nadal-Nicolás FM, Vidal-Sanz M and Agudo-Barriuso M: Apoptotic retinal ganglion cell death after optic nerve transection or crush in mice: Delayed RGC loss with BDNF or a caspase 3 inhibitor. Invest Ophthalmol Vis Sci. 57:81–93. 2016. View Article : Google Scholar : PubMed/NCBI

236 

Nakazawa T, Tamai M and Mori N: Brain-derived neurotrophic factor prevents axotomized retinal ganglion cell death through MAPK and PI3K signaling pathways. Invest Ophthalmol Vis Sci. 43:3319–3326. 2002.PubMed/NCBI

237 

Tawfik M, Zhang X, Grigartzik L, Heiduschka P, Hintz W, Henrich-Noack P, van Wachem B and Sabel BA: Gene therapy with caspase-3 small interfering RNA-nanoparticles is neuroprotective after optic nerve damage. Neural Regen Res. 16:2534–2541. 2021. View Article : Google Scholar : PubMed/NCBI

238 

Ahmed Z, Kalinski H, Berry M, Almasieh M, Ashush H, Slager N, Brafman A, Spivak I, Prasad N, Mett I, et al: Ocular neuroprotection by siRNA targeting caspase-2. Cell Death Dis. 2:e1732011. View Article : Google Scholar : PubMed/NCBI

239 

Elewa HF, Hilali H, Hess DC, Machado LS and Fagan SC: Minocycline for short-term neuroprotection. Pharmacotherapy. 26:515–521. 2006. View Article : Google Scholar : PubMed/NCBI

240 

Bosco A, Inman DM, Steele MR, Wu G, Soto I, Marsh-Armstrong N, Hubbard WC, Calkins DJ, Horner PJ and Vetter ML: Reduced retina microglial activation and improved optic nerve integrity with minocycline treatment in the DBA/2J mouse model of glaucoma. Invest Ophthalmol Vis Sci. 49:1437–1446. 2008. View Article : Google Scholar : PubMed/NCBI

241 

Huang W, Gao F, Hu F, Huang J, Wang M, Xu P, Zhang R, Chen J, Sun X, Zhang S and Wu J: Asiatic acid prevents retinal ganglion cell apoptosis in a rat model of glaucoma. Front Neurosci. 12:4892018. View Article : Google Scholar : PubMed/NCBI

242 

Hu X, Zhuang D, Zhang R, Sun X, Lu Q and Dai Y: The small molecule inhibitor PR-619 protects retinal ganglion cells against glutamate excitotoxicity. Neuroreport. 31:1134–1141. 2020. View Article : Google Scholar : PubMed/NCBI

243 

Wu X, Pang Y, Zhang Z, Li X, Wang C, Lei Y, Li A, Yu L and Ye J: Mitochondria-targeted antioxidant peptide SS-31 mediates neuroprotection in a rat experimental glaucoma model. Acta Biochim Biophys Sin (Shanghai). 51:411–421. 2019. View Article : Google Scholar : PubMed/NCBI

244 

Shi Y, Ye D, Huang R, Xu Y, Lu P, Chen H and Huang J: Down syndrome critical region 1 reduces oxidative stress-induced retinal ganglion cells apoptosis via CREB-Bcl-2 pathway. Invest Ophthalmol Vis Sci. 61:232020. View Article : Google Scholar : PubMed/NCBI

245 

Dai Y, Lawrence TS and Xu L: Overcoming cancer therapy resistance by targeting inhibitors of apoptosis proteins and nuclear factor-kappa B. Am J Transl Res. 1:1–15. 2009.PubMed/NCBI

246 

McKinnon SJ, Lehman DM, Tahzib NG, Ransom NL, Reitsamer HA, Liston P, LaCasse E, Li Q, Korneluk RG and Hauswirth WW: Baculoviral IAP repeat-containing-4 protects optic nerve axons in a rat glaucoma model. Mol Ther. 5:780–787. 2002. View Article : Google Scholar : PubMed/NCBI

247 

Visuvanathan S, Baker AN, Lagali PS, Coupland SG, Miller G, Hauswirth WW and Tsilfidis C: XIAP gene therapy effects on retinal ganglion cell structure and function in a mouse model of glaucoma. Gene Ther. 29:147–156. 2022. View Article : Google Scholar : PubMed/NCBI

248 

Wang XC, Wang T, Zhang Y, Wang LL, Zhao RY and Tan W: Tacrolimus inhibits proliferation and induces apoptosis by decreasing survivin in scar fibroblasts after glaucoma surgery. Eur Rev Med Pharmacol Sci. 22:2934–2940. 2018.PubMed/NCBI

249 

Lee J, Choi JH and Joo CK: TGF-β1 regulates cell fate during epithelial-mesenchymal transition by upregulating survivin. Cell Death Dis. 4:e7142013. View Article : Google Scholar : PubMed/NCBI

250 

Honjo M and Tanihara H: Impact of the clinical use of ROCK inhibitor on the pathogenesis and treatment of glaucoma. Jpn J Ophthalmol. 62:109–126. 2018. View Article : Google Scholar : PubMed/NCBI

251 

Wang J, Wang H and Dang Y: Rho-kinase inhibitors as emerging targets for glaucoma therapy. Ophthalmol Ther. 12:2943–2957. 2023. View Article : Google Scholar : PubMed/NCBI

252 

Chen W and Yang X, Fang J, Zhang Y, Zhu W and Yang X: Rho-associated protein kinase inhibitor treatment promotes proliferation and phagocytosis in trabecular meshwork cells. Front Pharmacol. 11:3022020. View Article : Google Scholar : PubMed/NCBI

253 

Garnock-Jones KP: Ripasudil: First global approval. Drugs. 74:2211–2215. 2014. View Article : Google Scholar : PubMed/NCBI

254 

Sturdivant JM, Royalty SM, Lin CW, Moore LA, Yingling JD, Laethem CL, Sherman B, Heintzelman GR, Kopczynski CC and de Long MA: Discovery of the ROCK inhibitor netarsudil for the treatment of open-angle glaucoma. Bioorg Med Chem Lett. 26:2475–2480. 2016. View Article : Google Scholar : PubMed/NCBI

255 

Tanna AP and Johnson M: Rho kinase inhibitors as a novel treatment for glaucoma and ocular hypertension. Ophthalmology. 125:1741–1756. 2018. View Article : Google Scholar : PubMed/NCBI

256 

Testa V, Ferro Desideri L, Della Giustina P, Traverso CE and Iester M: An update on ripasudil for the treatment of glaucoma and ocular hypertension. Drugs Today (Barc). 56:599–608. 2020. View Article : Google Scholar : PubMed/NCBI

257 

Li DW, Liu JP, Schmid PC, Schlosser R, Feng H, Liu WB, Yan Q, Gong L, Sun SM, Deng M and Liu Y: Protein serine/threonine phosphatase-1 dephosphorylates p53 at Ser-15 and Ser-37 to modulate its transcriptional and apoptotic activities. Oncogene. 25:3006–3022. 2006. View Article : Google Scholar : PubMed/NCBI

258 

Yang Z, Ge J, Yin W, Shen H, Liu H and Guo Y: The expression of p53, MDM2 and Ref1 gene in cultured retina neurons of SD rats treated with vitamin B1 and/or elevated pressure. Yan Ke Xue Bao. 20:259–263. 2004.(In Chinese). PubMed/NCBI

259 

Johnson KT, Rödicker F, Heise K, Heinz C, Steuhl KP, Pützer BM and Hudde T: Adenoviral p53 gene transfer inhibits human Tenon's capsule fibroblast proliferation. Br J Ophthalmol. 89:508–512. 2005. View Article : Google Scholar : PubMed/NCBI

260 

Husain S, Ahmad A, Singh S, Peterseim C, Abdul Y and Nutaitis MJ: PI3K/Akt pathway: A role in δ-opioid receptor-mediated RGC neuroprotection. Invest Ophthalmol Vis Sci. 58:6489–6499. 2017. View Article : Google Scholar : PubMed/NCBI

261 

Zhao N, Shi J, Xu H, Luo Q, Li Q and Liu M: Baicalin suppresses glaucoma pathogenesis by regulating the PI3K/AKT signaling in vitro and in vivo. Bioengineered. 12:10187–10198. 2021. View Article : Google Scholar : PubMed/NCBI

262 

Xi X, Chen Q, Ma J, Wang X, Xia Y, Wen X, Cai B and Li Y: Acteoside protects retinal ganglion cells from experimental glaucoma by activating the PI3K/AKT signaling pathway via caveolin 1 upregulation. Ann Transl Med. 10:3122022. View Article : Google Scholar : PubMed/NCBI

263 

Nie XG, Fan DS, Huang YX, He YY, Dong BL and Gao F: Downregulation of microRNA-149 in retinal ganglion cells suppresses apoptosis through activation of the PI3K/Akt signaling pathway in mice with glaucoma. Am J Physiol Cell Physiol. 315:C839–C849. 2018. View Article : Google Scholar : PubMed/NCBI

264 

Perkins TW, Faha B, Ni M, Kiland JA, Poulsen GL, Antelman D, Atencio I, Shinoda J, Sinha D, Brumback L, et al: Adenovirus-mediated gene therapy using human p21WAF-1/Cip-1 to prevent wound healing in a rabbit model of glaucoma filtration surgery. Arch Ophthalmol. 120:941–949. 2002. View Article : Google Scholar : PubMed/NCBI

265 

Heatley G, Kiland J, Faha B, Seeman J, Schlamp CL, Dawson DG, Gleiser J, Maneval D, Kaufman PL and Nickells RW: Gene therapy using p21WAF-1/Cip-1 to modulate wound healing after glaucoma trabeculectomy surgery in a primate model of ocular hypertension. Gene Ther. 11:949–955. 2004. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Xia Q and Zhang D: Apoptosis in glaucoma: A new direction for the treatment of glaucoma (Review). Mol Med Rep 29: 82, 2024.
APA
Xia, Q., & Zhang, D. (2024). Apoptosis in glaucoma: A new direction for the treatment of glaucoma (Review). Molecular Medicine Reports, 29, 82. https://doi.org/10.3892/mmr.2024.13207
MLA
Xia, Q., Zhang, D."Apoptosis in glaucoma: A new direction for the treatment of glaucoma (Review)". Molecular Medicine Reports 29.5 (2024): 82.
Chicago
Xia, Q., Zhang, D."Apoptosis in glaucoma: A new direction for the treatment of glaucoma (Review)". Molecular Medicine Reports 29, no. 5 (2024): 82. https://doi.org/10.3892/mmr.2024.13207
Copy and paste a formatted citation
x
Spandidos Publications style
Xia Q and Zhang D: Apoptosis in glaucoma: A new direction for the treatment of glaucoma (Review). Mol Med Rep 29: 82, 2024.
APA
Xia, Q., & Zhang, D. (2024). Apoptosis in glaucoma: A new direction for the treatment of glaucoma (Review). Molecular Medicine Reports, 29, 82. https://doi.org/10.3892/mmr.2024.13207
MLA
Xia, Q., Zhang, D."Apoptosis in glaucoma: A new direction for the treatment of glaucoma (Review)". Molecular Medicine Reports 29.5 (2024): 82.
Chicago
Xia, Q., Zhang, D."Apoptosis in glaucoma: A new direction for the treatment of glaucoma (Review)". Molecular Medicine Reports 29, no. 5 (2024): 82. https://doi.org/10.3892/mmr.2024.13207
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team