Apoptosis in glaucoma: A new direction for the treatment of glaucoma (Review)
- Authors:
- Qiongrong Xia
- Dingding Zhang
-
Affiliations: Department of Medical Laboratory, Xindu District People's Hospital of Chengdu, Chengdu, Sichuan 610500, P.R. China, Sichuan Provincial Key Laboratory for Genetic Disease, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China - Published online on: March 19, 2024 https://doi.org/10.3892/mmr.2024.13207
- Article Number: 82
-
Copyright: © Xia et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
GBD 2019 Blindness and Vision Impairment Collaborators: Vision Loss Expert Group of the Global Burden of Disease Study, . Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: The right to sight: An analysis for the global burden of disease study. Lancet Glob Health. 9:e144–e160. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tham YC, Li X, Wong TY, Quigley HA, Aung T and Cheng CY: Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology. 121:2081–2090. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kang JM and Tanna AP: Glaucoma. Med Clin North Am. 105:493–510. 2021. View Article : Google Scholar : PubMed/NCBI | |
Quigley HA: Glaucoma. Lancet. 377:1367–1377. 2011. View Article : Google Scholar : PubMed/NCBI | |
Burgoyne CF, Downs JC, Bellezza AJ, Suh JK and Hart RT: The optic nerve head as a biomechanical structure: A new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res. 24:39–73. 2005. View Article : Google Scholar : PubMed/NCBI | |
Weinreb RN, Aung T and Medeiros FA: The pathophysiology and treatment of glaucoma: A review. JAMA. 311:1901–1911. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li L and Song F: Biomechanical research into lamina cribrosa in glaucoma. Natl Sci Rev. 7:1277–1279. 2020. View Article : Google Scholar : PubMed/NCBI | |
Marcus MW, de Vries MM, Junoy Montolio FG and Jansonius NM: Myopia as a risk factor for open-angle glaucoma: A systematic review and meta-analysis. Ophthalmology. 118:1989–1994.e2. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ha A, Kim CY, Shim SR, Chang IB and Kim YK: Degree of myopia and glaucoma risk: A dose-response meta-analysis. Am J Ophthalmol. 236:107–119. 2022. View Article : Google Scholar : PubMed/NCBI | |
Fong DS, Epstein DL and Allingham RR: Glaucoma and myopia: Are they related? Int Ophthalmol Clin. 30:215–218. 1990. View Article : Google Scholar : PubMed/NCBI | |
Saw SM, Gazzard G, Shih-Yen EC and Chua WH: Myopia and associated pathological complications. Ophthalmic Physiol Opt. 25:381–391. 2005. View Article : Google Scholar : PubMed/NCBI | |
Juliano J, Burkemper B, Lee J, Nelson A, LeTran V, Chu Z, Zhou G, Jiang X, Wang RK, Varma R and Richter GM: Longer axial length potentiates relationship of intraocular pressure and peripapillary vessel density in glaucoma patients. Invest Ophthalmol Vis Sci. 62:372021. View Article : Google Scholar : PubMed/NCBI | |
Ren R, Wang N, Li B, Li L, Gao F, Xu X and Jonas JB: Lamina cribrosa and peripapillary sclera histomorphometry in normal and advanced glaucomatous Chinese eyes with various axial length. Invest Ophthalmol Vis Sci. 50:2175–2184. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kim KE and Park KH: Update on the prevalence, etiology, diagnosis, and monitoring of normal-tension glaucoma. Asia Pac J Ophthalmol (Phila). 5:23–31. 2016. View Article : Google Scholar : PubMed/NCBI | |
Killer HE and Pircher A: Normal tension glaucoma: Review of current understanding and mechanisms of the pathogenesis. Eye (Lond). 32:924–930. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mi XS, Yuan TF and So KF: The current research status of normal tension glaucoma. Clin Interv Aging. 9:1563–1571. 2014.PubMed/NCBI | |
Chitranshi N, Rajput R, Godinez A, Pushpitha K, Mirzaei M, Basavarajappa D, Gupta V, Sharma S, You Y, Galliciotti G, et al: Neuroserpin gene therapy inhibits retinal ganglion cell apoptosis and promotes functional preservation in glaucoma. Mol Ther. 31:2056–2076. 2023. View Article : Google Scholar : PubMed/NCBI | |
Miglior S, Torri V, Zeyen T, Pfeiffer N, Vaz JC and Adamsons I; EGPS Group, : Intercurrent factors associated with the development of open-angle glaucoma in the European glaucoma prevention study. Am J Ophthalmol. 144:266–275. 2007. View Article : Google Scholar : PubMed/NCBI | |
Suzuki Y, Iwase A, Araie M, Yamamoto T, Abe H, Shirato S, Kuwayama Y, Mishima HK, Shimizu H, Tomita G, et al: Risk factors for open-angle glaucoma in a Japanese population: The Tajimi study. Ophthalmology. 113:1613–1617. 2006. View Article : Google Scholar : PubMed/NCBI | |
Saccà SC and Izzotti A: Oxidative stress and glaucoma: Injury in the anterior segment of the eye. Prog Brain Res. 173:385–407. 2008. View Article : Google Scholar : PubMed/NCBI | |
Flammer J and Mozaffarieh M: What is the present pathogenetic concept of glaucomatous optic neuropathy? Surv Ophthalmol. 52 (Suppl 2):S162–S173. 2007. View Article : Google Scholar : PubMed/NCBI | |
Shen WC, Huang BQ and Yang J: Regulatory mechanisms of retinal ganglion cell death in normal tension glaucoma and potential therapies. Neural Regen Res. 18:87–93. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kerr JF, Wyllie AH and Currie AR: Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 26:239–257. 1972. View Article : Google Scholar : PubMed/NCBI | |
Fleisher TA: Apoptosis. Ann Allergy Asthma Immunol. 78:245–250. 1997. View Article : Google Scholar : PubMed/NCBI | |
Elmore S: Apoptosis: A review of programmed cell death. Toxicol Pathol. 35:495–516. 2007. View Article : Google Scholar : PubMed/NCBI | |
Li C, Liu W, Wang F, Hayashi T, Mizuno K, Hattori S, Fujisaki H and Ikejima T: DNA damage-triggered activation of cGAS-STING pathway induces apoptosis in human keratinocyte HaCaT cells. Mol Immunol. 131:180–190. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yu J, Sun W, Song Y, Liu J, Xue F, Gong K, Yang X and Kang Q: SIRT6 protects retinal ganglion cells against hydrogen peroxide-induced apoptosis and oxidative stress by promoting Nrf2/ARE signaling via inhibition of Bach1. Chem Biol Interact. 300:151–158. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Osakue D, Yang E, Zhou Y, Gong H, Xia X and Du Y: Endoplasmic reticulum stress response of trabecular meshwork stem cells and trabecular meshwork cells and protective effects of activated PERK pathway. Invest Ophthalmol Vis Sci. 60:265–273. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Tan J, Miao Y, Li M and Zhang Q: Role of Ca2+ and ion channels in the regulation of apoptosis under hypoxia. Histol Histopathol. 33:237–246. 2018.PubMed/NCBI | |
Liu Z, Fu G and Liu A: The relationship between inflammatory mediator expression in the aqueous humor and secondary glaucoma incidence after silicone oil tamponade. Exp Ther Med. 14:5833–5836. 2017.PubMed/NCBI | |
Saraste A and Pulkki K: Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res. 45:528–537. 2000. View Article : Google Scholar : PubMed/NCBI | |
Geske FJ and Gerschenson LE: The biology of apoptosis. Hum Pathol. 32:1029–1038. 2001. View Article : Google Scholar : PubMed/NCBI | |
Baleriola J, García-Feijoo J, Martínez-de-la-Casa JM, Fernández-Cruz A, de la Rosa EJ and Fernández-Durango R: Apoptosis in the trabecular meshwork of glaucomatous patients. Mol Vis. 14:1513–1516. 2008.PubMed/NCBI | |
Galvao J, Davis BM and Cordeiro MF: In vivo imaging of retinal ganglion cell apoptosis. Curr Opin Pharmacol. 13:123–127. 2013. View Article : Google Scholar : PubMed/NCBI | |
Krishnan A, Kocab AJ, Zacks DN, Marshak-Rothstein A and Gregory-Ksander M: A small peptide antagonist of the Fas receptor inhibits neuroinflammation and prevents axon degeneration and retinal ganglion cell death in an inducible mouse model of glaucoma. J Neuroinflammation. 16:1842019. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Lei F, Zhou C, Chodosh J, Wang L, Huang Y, Dohlman CH and Paschalis EI: Glaucoma after ocular surgery or trauma: The role of infiltrating monocytes and their response to cytokine inhibitors. Am J Pathol. 190:2056–2066. 2020. View Article : Google Scholar : PubMed/NCBI | |
Dohlman CH, Zhou C, Lei F, Cade F, Regatieri CV, Črnej A, Dohlman JG, Shen LQ and Paschalis EI: Glaucoma after corneal trauma or surgery-A rapid, inflammatory, IOP-independent pathway. Cornea. 38:1589–1594. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rasmussen CA, Kaufman PL and Kiland JA: Benzalkonium chloride and glaucoma. J Ocul Pharmacol Ther. 30:163–169. 2014. View Article : Google Scholar : PubMed/NCBI | |
Almasieh M, Wilson AM, Morquette B, Cueva Vargas JL and Di Polo A: The molecular basis of retinal ganglion cell death in glaucoma. Prog Retin Eye Res. 31:152–181. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wu A, Khawaja AP, Pasquale LR and Stein JD: A review of systemic medications that may modulate the risk of glaucoma. Eye (Lond). 34:12–28. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hamard P, Blondin C, Debbasch C, Warnet JM, Baudouin C and Brignole F: In vitro effects of preserved and unpreserved antiglaucoma drugs on apoptotic marker expression by human trabecular cells. Graefes Arch Clin Exp Ophthalmol. 241:1037–1043. 2003. View Article : Google Scholar : PubMed/NCBI | |
Gedde SJ, Schiffman JC, Feuer WJ, Herndon LW, Brandt JD and Budenz DL; Tube versus Trabeculectomy Study Group, : Treatment outcomes in the tube versus trabeculectomy (TVT) study after five years of follow-up. Am J Ophthalmol. 153:789–803.e2. 2012. View Article : Google Scholar : PubMed/NCBI | |
Javaid U, Ali MH, Jamal S and Butt NH: Pathophysiology, diagnosis, and management of glaucoma associated with Sturge-Weber syndrome. Int Ophthalmol. 38:409–416. 2018.PubMed/NCBI | |
Yoon PS and Singh K: Update on antifibrotic use in glaucoma surgery, including use in trabeculectomy and glaucoma drainage implants and combined cataract and glaucoma surgery. Curr Opin Ophthalmol. 15:141–146. 2004. View Article : Google Scholar : PubMed/NCBI | |
Paschalis EI, Lei F, Zhou C, Chen XN, Kapoulea V, Hui PC, Dana R, Chodosh J, Vavvas DG and Dohlman CH: Microglia regulate neuroglia remodeling in various ocular and retinal injuries. J Immunol. 202:539–549. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cade F, Paschalis EI, Regatieri CV, Vavvas DG, Dana R and Dohlman CH: Alkali burn to the eye: Protection using TNF-α inhibition. Cornea. 33:382–389. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ju KR, Kim HS, Kim JH, Lee NY and Park CK: Retinal glial cell responses and Fas/FasL activation in rats with chronic ocular hypertension. Brain Res. 1122:209–221. 2006. View Article : Google Scholar : PubMed/NCBI | |
Quigley HA, Nickells RW, Kerrigan LA, Pease ME, Thibault DJ and Zack DJ: Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol Vis Sci. 36:774–786. 1995.PubMed/NCBI | |
Libby RT, Li Y, Savinova OV, Barter J, Smith RS, Nickells RW and John SW: Susceptibility to neurodegeneration in a glaucoma is modified by Bax gene dosage. PLoS Genet. 1:17–26. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kerrigan LA, Zack DJ, Quigley HA, Smith SD and Pease ME: TUNEL-positive ganglion cells in human primary open-angle glaucoma. Arch Ophthalmol. 115:1031–1035. 1997. View Article : Google Scholar : PubMed/NCBI | |
Tök L, Nazıroğlu M, Uğuz AC and Tök O: Elevated hydrostatic pressures induce apoptosis and oxidative stress through mitochondrial membrane depolarization in PC12 neuronal cells: A cell culture model of glaucomaz: A cell culture model of glaucoma. J Recept Signal Transduct Res. 34:410–416. 2014. View Article : Google Scholar : PubMed/NCBI | |
Erisgin Z, Ozer MA, Tosun M, Ozen S and Takir S: The effects of intravitreal H2 S application on apoptosis in the retina and cornea in experimental glaucoma model. Int J Exp Pathol. 100:330–336. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ying Y, Xue R, Yang Y, Zhang SX, Xiao H, Zhu H, Li J, Chen G, Ye Y, Yu M, et al: Activation of ATF4 triggers trabecular meshwork cell dysfunction and apoptosis in POAG. Aging (Albany NY). 13:8628–8642. 2021. View Article : Google Scholar : PubMed/NCBI | |
Saccà SC, Pulliero A and Izzotti A: The dysfunction of the trabecular meshwork during glaucoma course. J Cell Physiol. 230:510–525. 2015. View Article : Google Scholar : PubMed/NCBI | |
Saccà SC, Gandolfi S, Bagnis A, Manni G, Damonte G, Traverso CE and Izzotti A: From DNA damage to functional changes of the trabecular meshwork in aging and glaucoma. Ageing Res Rev. 29:26–41. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ammar DA and Kahook MY: Effects of benzalkonium chloride- or polyquad-preserved fixed combination glaucoma medications on human trabecular meshwork cells. Mol Vis. 17:1806–1813. 2011.PubMed/NCBI | |
Goldstein MH, Silva FQ, Blender N, Tran T and Vantipalli S: Ocular benzalkonium chloride exposure: Problems and solutions. Eye (Lond). 36:361–368. 2022. View Article : Google Scholar : PubMed/NCBI | |
Baudouin C, Kolko M, Melik-Parsadaniantz S and Messmer EM: Inflammation in glaucoma: From the back to the front of the eye, and beyond. Prog Retin Eye Res. 83:1009162021. View Article : Google Scholar : PubMed/NCBI | |
Liton PB and Gonzalez P: Stress response of the trabecular meshwork. J Glaucoma. 17:378–385. 2008. View Article : Google Scholar : PubMed/NCBI | |
Rohen JW, Lütjen-Drecoll E, Flügel C, Meyer M and Grierson I: Ultrastructure of the trabecular meshwork in untreated cases of primary open-angle glaucoma (POAG). Exp Eye Res. 56:683–692. 1993. View Article : Google Scholar : PubMed/NCBI | |
Stamer WD and Acott TS: Current understanding of conventional outflow dysfunction in glaucoma. Curr Opin Ophthalmol. 23:135–143. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yan X, Wu S, Liu Q, Li Y, Zhu W and Zhang J: Accumulation of Asn450Tyr mutant myocilin in ER promotes apoptosis of human trabecular meshwork cells. Mol Vis. 26:563–573. 2020.PubMed/NCBI | |
Agarwal R, Talati M, Lambert W, Clark AF, Wilson SE, Agarwal N and Wordinger RJ: Fas-activated apoptosis and apoptosis mediators in human trabecular meshwork cells. Exp Eye Res. 68:583–590. 1999. View Article : Google Scholar : PubMed/NCBI | |
Suri F, Yazdani S and Elahi E: LTBP2 knockdown and oxidative stress affect glaucoma features including TGFβ pathways, ECM genes expression and apoptosis in trabecular meshwork cells. Gene. 673:70–81. 2018. View Article : Google Scholar : PubMed/NCBI | |
Oritani K, Aoyama K, Tomiyama Y, Kincade PW and Matsuzawa Y: Stromal cell CD9 and the differentiation of hematopoietic stem/progenitor cells. Leuk Lymphoma. 38:147–152. 2000. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Teng M, Ji R, Zhang D, Zhang Z, Lv Y, Zhang Q, Zhang J and Huang Y: CD9 regulates keratinocyte differentiation and motility by recruiting E-cadherin to the plasma membrane and activating the PI3K/Akt pathway. Biochim Biophys Acta Mol Cell Res. 1867:1185742020. View Article : Google Scholar : PubMed/NCBI | |
Yan J, Yang X, Jiao X, Yang X, Guo M, Chen Y, Zhan L and Chen W: Integrative transcriptomic and proteomic analysis reveals CD9/ITGA4/PI3K-Akt axis mediates trabecular meshwork cell apoptosis in human glaucoma. J Cell Mol Med. 24:814–829. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Li F and Wang S: MicroRNA-93 is overexpressed and induces apoptosis in glaucoma trabecular meshwork cells. Mol Med Rep. 14:5746–5750. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shen Y, Zhu Y and Rong F: miR-200c-3p regulates the proliferation and apoptosis of human trabecular meshwork cells by targeting PTEN. Mol Med Rep. 22:1605–1612. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Li Z, Bai J, Song W and Zhang F: miR-17-5p regulates the proliferation and apoptosis of human trabecular meshwork cells by targeting phosphatase and tensin homolog. Mol Med Rep. 19:3132–3138. 2019.PubMed/NCBI | |
Wang Y, Zhou H, Liu X, Han Y, Pan S and Wang Y: MiR-181a inhibits human trabecular meshwork cell apoptosis induced by H2O2 through the suppression of NF-κB and JNK pathways. Adv Clin Exp Med. 27:577–582. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Read AT, Sulchek T and Ethier CR: Trabecular meshwork stiffness in glaucoma. Exp Eye Res. 158:3–12. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fuchshofer R and Tamm ER: The role of TGF-β in the pathogenesis of primary open-angle glaucoma. Cell Tissue Res. 347:279–290. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Liu X and Zhong Y: Rho/Rho-associated kinase pathway in glaucoma (review). Int J Oncol. 43:1357–1367. 2013. View Article : Google Scholar : PubMed/NCBI | |
Vernazza S, Tirendi S, Passalacqua M, Piacente F, Scarfì S, Oddone F and Bassi AM: An innovative in vitro open-angle glaucoma model (IVOM) shows changes induced by increased ocular pressure and oxidative stress. Int J Mol Sci. 22:121292021. View Article : Google Scholar : PubMed/NCBI | |
Soto I and Howell GR: The complex role of neuroinflammation in glaucoma. Cold Spring Harb Perspect Med. 4:a0172692014. View Article : Google Scholar : PubMed/NCBI | |
Ebneter A, Casson RJ, Wood JP and Chidlow G: Microglial activation in the visual pathway in experimental glaucoma: Spatiotemporal characterization and correlation with axonal injury. Invest Ophthalmol Vis Sci. 51:6448–6460. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bordone MP, González Fleitas MF, Pasquini LA, Bosco A, Sande PH, Rosenstein RE and Dorfman D: Involvement of microglia in early axoglial alterations of the optic nerve induced by experimental glaucoma. J Neurochem. 142:323–337. 2017. View Article : Google Scholar : PubMed/NCBI | |
Guo L, Moss SE, Alexander RA, Ali RR, Fitzke FW and Cordeiro MF: Retinal ganglion cell apoptosis in glaucoma is related to intraocular pressure and IOP-induced effects on extracellular matrix. Invest Ophthalmol Vis Sci. 46:175–182. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bosco A, Steele MR and Vetter ML: Early microglia activation in a mouse model of chronic glaucoma. J Comp Neurol. 519:599–620. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bosco A, Romero CO, Breen KT, Chagovetz AA, Steele MR, Ambati BK and Vetter ML: Neurodegeneration severity can be predicted from early microglia alterations monitored in vivo in a mouse model of chronic glaucoma. Dis Model Mech. 8:443–455. 2015. View Article : Google Scholar : PubMed/NCBI | |
Williams PA, Marsh-Armstrong N and Howell GR; Lasker/IRRF Initiative on Astrocytes and Glaucomatous Neurodegeneration Participants, : Neuroinflammation in glaucoma: A new opportunity. Exp Eye Res. 157:20–27. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tribble JR, Kokkali E, Otmani A, Plastino F, Lardner E, Vohra R, Kolko M, André H, Morgan JE and Williams PA: When is a control not a control? Reactive microglia occur throughout the control contralateral pathway of retinal ganglion cell projections in experimental glaucoma. Transl Vis Sci Technol. 10:222021. View Article : Google Scholar : PubMed/NCBI | |
Unlu M, Aktas Z, Gocun PU, Ilhan SO, Hasanreisoglu M and Hasanreisoglu B: Neuroprotective effect of systemic and/or intravitreal rosuvastatin administration in rat glaucoma model. Int J Ophthalmol. 9:340–347. 2016.PubMed/NCBI | |
Dyka FM, May CA and Enz R: Metabotropic glutamate receptors are differentially regulated under elevated intraocular pressure. J Neurochem. 90:190–202. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Dou YN, Fei Z and Fei F: Parkin prevents glutamate excitotoxicity through inhibiting NLRP3 inflammasome in retinal ganglion cells. Neuroscience. 478:1–10. 2021. View Article : Google Scholar : PubMed/NCBI | |
Murphy G, Knäuper V, Lee MH, Amour A, Worley JR, Hutton M, Atkinson S, Rapti M and Williamson R: Role of TIMPs (tissue inhibitors of metalloproteinases) in pericellular proteolysis: The specificity is in the detail. Biochem Soc Symp. 65–80. 2003.PubMed/NCBI | |
Mathew DJ, Livne-Bar I and Sivak JM: An inducible rodent glaucoma model that exhibits gradual sustained increase in intraocular pressure with distinct inner retina and optic nerve inflammation. Sci Rep. 11:228802021. View Article : Google Scholar : PubMed/NCBI | |
Sakata R, Ueno T, Nakamura T, Ueno H and Sata M: Mechanical stretch induces TGF-beta synthesis in hepatic stellate cells. Eur J Clin Invest. 34:129–136. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kirwan RP, Crean JK, Fenerty CH, Clark AF and O'Brien CJ: Effect of cyclical mechanical stretch and exogenous transforming growth factor-beta1 on matrix metalloproteinase-2 activity in lamina cribrosa cells from the human optic nerve head. J Glaucoma. 13:327–334. 2004. View Article : Google Scholar : PubMed/NCBI | |
Gomes LR, Terra LF, Wailemann RA, Labriola L and Sogayar MC: TGF-β1 modulates the homeostasis between MMPs and MMP inhibitors through p38 MAPK and ERK1/2 in highly invasive breast cancer cells. BMC Cancer. 12:262012. View Article : Google Scholar : PubMed/NCBI | |
Cordeiro MF, Bhattacharya SS, Schultz GS and Khaw PT: TGF-beta1, -beta2, and -beta3 in vitro: Biphasic effects on Tenon's fibroblast contraction, proliferation, and migration. Invest Ophthalmol Vis Sci. 41:756–763. 2000.PubMed/NCBI | |
Nguyen TTM, Gillet G and Popgeorgiev N: Caspases in the developing central nervous system: Apoptosis and beyond. Front Cell Dev Biol. 9:7024042021. View Article : Google Scholar : PubMed/NCBI | |
Cohen GM: Caspases: The executioners of apoptosis. Biochem J. 326:1–16. 1997. View Article : Google Scholar : PubMed/NCBI | |
Abate M, Festa A, Falco M, Lombardi A, Luce A, Grimaldi A, Zappavigna S, Sperlongano P, Irace C, Caraglia M and Misso G: Mitochondria as playmakers of apoptosis, autophagy and senescence. Semin Cell Dev Biol. 98:139–153. 2020. View Article : Google Scholar : PubMed/NCBI | |
Alapati T, Sagal KM, Gudiseva HV, Pistilli M, Pyfer M, Chavali VRM and O'Brien JM: Evaluating TNF-α and interleukin-2 (IL-2) levels in African American primary open-angle glaucoma patients. Genes (Basel). 13:542021. View Article : Google Scholar : PubMed/NCBI | |
Wilson NS, Dixit V and Ashkenazi A: Death receptor signal transducers: Nodes of coordination in immune signaling networks. Nat Immunol. 10:348–355. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mahdizadeh SJ, Thomas M and Eriksson LA: Reconstruction of the Fas-based death-inducing signaling complex (DISC) using a protein-protein docking meta-approach. J Chem Inf Model. 61:3543–3558. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hillert-Richter LK and Lavrik IN: Measuring composition of CD95 death-inducing signaling complex and processing of procaspase-8 in this complex. J Vis Exp. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang XJ, Ge J and Zhuo YH: Role of mitochondria in the pathogenesis and treatment of glaucoma. Chin Med J (Engl). 126:4358–4365. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zeng Z, You M, Fan C, Rong R, Li H and Xia X: Pathologically high intraocular pressure induces mitochondrial dysfunction through Drp1 and leads to retinal ganglion cell PANoptosis in glaucoma. Redox Biol. 62:1026872023. View Article : Google Scholar : PubMed/NCBI | |
Bock FJ and Tait SWG: Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol. 21:85–100. 2020. View Article : Google Scholar : PubMed/NCBI | |
Saelens X, Festjens N, Vande Walle L, van Gurp M, van Loo G and Vandenabeele P: Toxic proteins released from mitochondria in cell death. Oncogene. 23:2861–2874. 2004. View Article : Google Scholar : PubMed/NCBI | |
Shakeri R, Kheirollahi A and Davoodi J: Apaf-1: Regulation and function in cell death. Biochimie. 135:111–125. 2017. View Article : Google Scholar : PubMed/NCBI | |
Brentnall M, Rodriguez-Menocal L, De Guevara RL, Cepero E and Boise LH: Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol. 14:322013. View Article : Google Scholar : PubMed/NCBI | |
Kale J, Osterlund EJ and Andrews DW: BCL-2 family proteins: Changing partners in the dance towards death. Cell Death Differ. 25:65–80. 2018. View Article : Google Scholar : PubMed/NCBI | |
Leibowitz B and Yu J: Mitochondrial signaling in cell death via the Bcl-2 family. Cancer Biol Ther. 9:417–422. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ding J, Mooers BHM, Zhang Z, Kale J, Falcone D, McNichol J, Huang B, Zhang XC, Xing C, Andrews DW and Lin J: After embedding in membranes antiapoptotic Bcl-XL protein binds both Bcl-2 homology region 3 and helix 1 of proapoptotic Bax protein to inhibit apoptotic mitochondrial permeabilization. J Biol Chem. 289:11873–11896. 2014. View Article : Google Scholar : PubMed/NCBI | |
Luna-Vargas MPA and Chipuk JE: The deadly landscape of pro-apoptotic BCL-2 proteins in the outer mitochondrial membrane. FEBS J. 283:2676–2689. 2016. View Article : Google Scholar : PubMed/NCBI | |
Huang DC and Strasser A: BH3-Only proteins-essential initiators of apoptotic cell death. Cell. 103:839–842. 2000. View Article : Google Scholar : PubMed/NCBI | |
Bano D and Prehn JHM: Apoptosis-inducing factor (AIF) in physiology and disease: The tale of a repented natural born killer. EBioMedicine. 30:29–37. 2018. View Article : Google Scholar : PubMed/NCBI | |
Porat S and Simantov R: Bcl-2 and p53: Role in dopamine-induced apoptosis and differentiation. Ann N Y Acad Sci. 893:372–375. 1999. View Article : Google Scholar : PubMed/NCBI | |
Sawada O, Perusek L, Kohno H, Howell SJ, Maeda A, Matsuyama S and Maeda T: All-trans-retinal induces Bax activation via DNA damage to mediate retinal cell apoptosis. Exp Eye Res. 123:27–36. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Okan I, Szekely L, Klein G and Wiman KG: bcl-2 inhibits wild-type p53-triggered apoptosis but not G1 cell cycle arrest and transactivation of WAF1 and bax. Cell Growth Differ. 6:1071–1075. 1995.PubMed/NCBI | |
Chylicki K, Ehinger M, Svedberg H and Gullberg U: Characterization of the molecular mechanisms for p53-mediated differentiation. Cell Growth Differ. 11:561–571. 2000.PubMed/NCBI | |
Oakes SA and Papa FR: The role of endoplasmic reticulum stress in human pathology. Annu Rev Pathol. 10:173–194. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hetz C, Zhang K and Kaufman RJ: Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol. 21:421–438. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ron D and Walter P: Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 8:519–529. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lafleur MA, Stevens JL and Lawrence JW: Xenobiotic perturbation of ER stress and the unfolded protein response. Toxicol Pathol. 41:235–262. 2013. View Article : Google Scholar : PubMed/NCBI | |
Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP and Ron D: Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science. 287:664–666. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kwong JMK and Caprioli J: Expression of phosphorylated c-Jun N-terminal protein kinase (JNK) in experimental glaucoma in rats. Exp Eye Res. 82:576–582. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hwang J and Qi L: Quality control in the endoplasmic reticulum: Crosstalk between ERAD and UPR pathways. Trends Biochem Sci. 43:593–605. 2018. View Article : Google Scholar : PubMed/NCBI | |
Maurel M, Chevet E, Tavernier J and Gerlo S: Getting RIDD of RNA: IRE1 in cell fate regulation. Trends Biochem Sci. 39:245–254. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hayashi T, Saito A, Okuno S, Ferrand-Drake M, Dodd RL and Chan PH: Oxidative injury to the endoplasmic reticulum in mouse brains after transient focal ischemia. Neurobiol Dis. 15:229–239. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wek RC, Jiang HY and Anthony TG: Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans. 34:7–11. 2006. View Article : Google Scholar : PubMed/NCBI | |
Peters JC, Bhattacharya S, Clark AF and Zode GS: Increased endoplasmic reticulum stress in human glaucomatous trabecular meshwork cells and tissues. Invest Ophthalmol Vis Sci. 56:3860–3868. 2015. View Article : Google Scholar : PubMed/NCBI | |
Marola OJ, Syc-Mazurek SB and Libby RT: DDIT3 (CHOP) contributes to retinal ganglion cell somal loss but not axonal degeneration in DBA/2J mice. Cell Death Discov. 5:1402019. View Article : Google Scholar : PubMed/NCBI | |
Kasetti RB, Patel PD, Maddineni P, Patil S, Kiehlbauch C, Millar JC, Searby CC, Raghunathan V, Sheffield VC and Zode GS: ATF4 leads to glaucoma by promoting protein synthesis and ER client protein load. Nat Commun. 11:55942020. View Article : Google Scholar : PubMed/NCBI | |
Doh SH, Kim JH, Lee KM, Park HY and Park CK: Retinal ganglion cell death induced by endoplasmic reticulum stress in a chronic glaucoma model. Brain Res. 1308:158–166. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yoshida H, Matsui T, Yamamoto A, Okada T and Mori K: XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell. 107:881–891. 2001. View Article : Google Scholar : PubMed/NCBI | |
Watanabe M, Ida Y, Furuhashi M, Tsugeno Y, Ohguro H and Hikage F: Screening of the drug-induced effects of prostaglandin EP2 and FP agonists on 3D cultures of dexamethasone-treated human trabecular meshwork cells. Biomedicines. 9:9302021. View Article : Google Scholar : PubMed/NCBI | |
Lee EJ, Chan P, Chea L, Kim K, Kaufman RJ and Lin JH: ATF6 is required for efficient rhodopsin clearance and retinal homeostasis in the P23H rho retinitis pigmentosa mouse model. Sci Rep. 11:163562021. View Article : Google Scholar : PubMed/NCBI | |
Julien O and Wells JA: Caspases and their substrates. Cell Death Differ. 24:1380–1389. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yuan J, Shaham S, Ledoux S, Ellis HM and Horvitz HR: The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell. 75:641–652. 1993. View Article : Google Scholar : PubMed/NCBI | |
Van Opdenbosch N and Lamkanfi M: Caspases in cell death, inflammation, and disease. Immunity. 50:1352–1364. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ramirez MLG and Salvesen GS: A primer on caspase mechanisms. Semin Cell Dev Biol. 82:79–85. 2018. View Article : Google Scholar : PubMed/NCBI | |
Man SM, Karki R and Kanneganti TD: Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev. 277:61–75. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ye D, Xu Y, Shi Y, Fan M, Lu P, Bai X, Feng Y, Hu C, Cui K, Tang X, et al: Anti-PANoptosis is involved in neuroprotective effects of melatonin in acute ocular hypertension model. J Pineal Res. 73:e128282022. View Article : Google Scholar : PubMed/NCBI | |
Du HY, Wang R, Li JL, Luo H, Xie XY, Yan R, Jian YL and Cai JY: Ligustrazine protects against chronic hypertensive glaucoma in rats by inhibiting autophagy via the PI3K-Akt/mTOR pathway. Mol Vis. 27:725–733. 2021.PubMed/NCBI | |
Xu K, Li S, Yang Q, Zhou Z, Fu M, Yang X, Hao K, Liu Y and Ji H: MicroRNA-145-5p targeting of TRIM2 mediates the apoptosis of retinal ganglion cells via the PI3K/AKT signaling pathway in glaucoma. J Gene Med. 23:e33782021. View Article : Google Scholar : PubMed/NCBI | |
Li R, Jin Y, Li Q, Sun X, Zhu H and Cui H: MiR-93-5p targeting PTEN regulates the NMDA-induced autophagy of retinal ganglion cells via AKT/mTOR pathway in glaucoma. Biomed Pharmacother. 100:1–7. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tatton WG, Chalmers-Redman RM, Sud A, Podos SM and Mittag TW: Maintaining mitochondrial membrane impermeability. An opportunity for new therapy in glaucoma? Surv Ophthalmol. 45 (Suppl 3):S277–S283. S295–S296. 2001.PubMed/NCBI | |
Miano M, Madeo A, Cappelli E, Lanza F, Lanza T, Stroppiano M, Terranova P, Venè R, Bleesing JJH and Di Rocco M: Defective FAS-mediated apoptosis and immune dysregulation in gaucher disease. J Allergy Clin Immunol Pract. 8:3535–3542. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li-Weber M and Krammer PH: Function and regulation of the CD95 (APO-1/Fas) ligand in the immune system. Semin Immunol. 15:145–157. 2003. View Article : Google Scholar : PubMed/NCBI | |
Levoin N, Jean M and Legembre P: CD95 structure, aggregation and cell signaling. Front Cell Dev Biol. 8:3142020. View Article : Google Scholar : PubMed/NCBI | |
Guégan JP and Legembre P: Nonapoptotic functions of Fas/CD95 in the immune response. FEBS J. 285:809–827. 2018. View Article : Google Scholar : PubMed/NCBI | |
Krishnan A, Fei F, Jones A, Busto P, Marshak-Rothstein A, Ksander BR and Gregory-Ksander M: Overexpression of soluble fas ligand following adeno-associated virus gene therapy prevents retinal ganglion cell death in chronic and acute murine models of glaucoma. J Immunol. 197:4626–4638. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gregory-Ksander M and Marshak-Rothstein A: The FasLane to ocular pathology-metalloproteinase cleavage of membrane-bound FasL determines FasL function. J Leukoc Biol. 110:965–977. 2021. View Article : Google Scholar : PubMed/NCBI | |
Razeghinejad MR and Kamali-Sarvestani E: Aqueous humor levels of soluble Fas and Fas-ligand in patients with primary open angle and pseudoexfoliation glaucoma. Iran J Immunol. 4:215–219. 2007.PubMed/NCBI | |
Gregory MS, Hackett CG, Abernathy EF, Lee KS, Saff RR, Hohlbaum AM, Moody KS, Hobson MW, Jones A, Kolovou P, et al: Opposing roles for membrane bound and soluble Fas ligand in glaucoma-associated retinal ganglion cell death. PLoS One. 6:e176592011. View Article : Google Scholar : PubMed/NCBI | |
O' Reilly LA, Tai L, Lee L, Kruse EA, Grabow S, Fairlie WD, Haynes NM, Tarlinton DM, Zhang JG, Belz GT, et al: Membrane-bound Fas ligand only is essential for Fas-induced apoptosis. Nature. 461:659–663. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wax MB, Tezel G, Yang J, Peng G, Patil RV, Agarwal N, Sappington RM and Calkins DJ: Induced autoimmunity to heat shock proteins elicits glaucomatous loss of retinal ganglion cell neurons via activated T-cell-derived fas-ligand. J Neurosci. 28:12085–12096. 2008. View Article : Google Scholar : PubMed/NCBI | |
Besirli CG, Chinskey ND, Zheng QD and Zacks DN: Inhibition of retinal detachment-induced apoptosis in photoreceptors by a small peptide inhibitor of the fas receptor. Invest Ophthalmol Vis Sci. 51:2177–2184. 2010. View Article : Google Scholar : PubMed/NCBI | |
Aoki K, Kurooka M, Chen JJ, Petryniak J, Nabel EG and Nabel GJ: Extracellular matrix interacts with soluble CD95L: Retention and enhancement of cytotoxicity. Nat Immunol. 2:333–337. 2001. View Article : Google Scholar : PubMed/NCBI | |
Bai Y, Shi Z, Zhuo Y, Liu J, Malakhov A, Ko E, Burgess K, Schaefer H, Esteban PF, Tessarollo L and Saragovi HU: In glaucoma the upregulated truncated TrkC.T1 receptor isoform in glia causes increased TNF-alpha production, leading to retinal ganglion cell death. Invest Ophthalmol Vis Sci. 51:6639–6651. 2010. View Article : Google Scholar : PubMed/NCBI | |
Aggarwal BB, Gupta SC and Kim JH: Historical perspectives on tumor necrosis factor and its superfamily: 25 Years later, a golden journey. Blood. 119:651–665. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kelker HC, Oppenheim JD, Stone-Wolff D, Henriksen-DeStefano D, Aggarwal BB, Stevenson HC and Vilcek J: Characterization of human tumor necrosis factor produced by peripheral blood monocytes and its separation from lymphotoxin. Int J Cancer. 36:69–73. 1985. View Article : Google Scholar : PubMed/NCBI | |
Subedi L, Lee SE, Madiha S, Gaire BP, Jin M, Yumnam S and Kim SY: Phytochemicals against TNFα-mediated neuroinflammatory diseases. Int J Mol Sci. 21:7642020. View Article : Google Scholar : PubMed/NCBI | |
Pegoretti V, Baron W, Laman JD and Eisel ULM: Selective modulation of TNF-TNFRs signaling: Insights for multiple sclerosis treatment. Front Immunol. 9:9252018. View Article : Google Scholar : PubMed/NCBI | |
Sivakumar V, Foulds WS, Luu CD, Ling EA and Kaur C: Retinal ganglion cell death is induced by microglia derived pro-inflammatory cytokines in the hypoxic neonatal retina. J Pathol. 224:245–260. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cueva Vargas JL, Osswald IK, Unsain N, Aurousseau MR, Barker PA, Bowie D and Di Polo A: Soluble tumor necrosis factor alpha promotes retinal ganglion cell death in glaucoma via calcium-permeable AMPA receptor activation. J Neurosci. 35:12088–12102. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lee JC, Park CW, Shin MC, Cho JH, Lee HA, Kim YM, Park JH, Ahn JH, Cho JH, Tae HJ, et al: Tumor necrosis factor receptor 2 is required for ischemic preconditioning-mediated neuroprotection in the hippocampus following a subsequent longer transient cerebral ischemia. Neurochem Int. 118:292–303. 2018. View Article : Google Scholar : PubMed/NCBI | |
Agarwal R and Agarwal P: Glaucomatous neurodegeneration: An eye on tumor necrosis factor-alpha. Indian J Ophthalmol. 60:255–261. 2012. View Article : Google Scholar : PubMed/NCBI | |
Levkovitch-Verbin H, Waserzoog Y, Vander S, Makarovsky D and Piven I: Minocycline upregulates pro-survival genes and downregulates pro-apoptotic genes in experimental glaucoma. Graefes Arch Clin Exp Ophthalmol. 252:761–772. 2014. View Article : Google Scholar : PubMed/NCBI | |
Taurone S, Ripandelli G, Pacella E, Bianchi E, Plateroti AM, De Vito S, Plateroti P, Grippaudo FR, Cavallotti C and Artico M: Potential regulatory molecules in the human trabecular meshwork of patients with glaucoma: Immunohistochemical profile of a number of inflammatory cytokines. Mol Med Rep. 11:1384–1390. 2015. View Article : Google Scholar : PubMed/NCBI | |
Choi JA, Maddala R, Karnam S, Skiba NP, Vann R, Challa P and Rao PV: Role of vasorin, an anti-apoptotic, anti-TGF-β and hypoxia-induced glycoprotein in the trabecular meshwork cells and glaucoma. J Cell Mol Med. 26:2063–2075. 2022. View Article : Google Scholar : PubMed/NCBI | |
Morgan MJ and Liu ZG: Reactive oxygen species in TNFalpha-induced signaling and cell death. Mol Cells. 30:1–12. 2010. View Article : Google Scholar : PubMed/NCBI | |
Madeira MH, Elvas F, Boia R, Gonçalves FQ, Cunha RA, Ambrósio AF and Santiago AR: Adenosine A2AR blockade prevents neuroinflammation-induced death of retinal ganglion cells caused by elevated pressure. J Neuroinflammation. 12:1152015. View Article : Google Scholar : PubMed/NCBI | |
Bozkurt B, Mesci L, Irkec M, Ozdag BB, Sanal O, Arslan U, Ersoy F and Tezcan I: Association of tumour necrosis factor-alpha-308 G/A polymorphism with primary open-angle glaucoma. Clin Exp Ophthalmol. 40:e156–e162. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lin HJ, Tsai FJ, Chen WC, Shi YR, Hsu Y and Tsai SW: Association of tumour necrosis factor alpha-308 gene polymorphism with primary open-angle glaucoma in Chinese. Eye (Lond). 17:31–34. 2003. View Article : Google Scholar : PubMed/NCBI | |
Singh A, Ni J and Aggarwal BB: Death domain receptors and their role in cell demise. J Interferon Cytokine Res. 18:439–450. 1998. View Article : Google Scholar : PubMed/NCBI | |
Lavrik I, Golks A and Krammer PH: Death receptor signaling. J Cell Sci. 118:265–267. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zalewska R, Zalewski B, Reszec J, Mariak Z, Zimnoch L and Proniewska-Skretek E: The expressions of Fas and caspase-3 in human glaucomatous optic nerve axons. Med Sci Monit. 14:BR274–BR278. 2008.PubMed/NCBI | |
Pawar M, Busov B, Chandrasekhar A, Yao J, Zacks DN and Besirli CG: FAS apoptotic inhibitory molecule 2 is a stress-induced intrinsic neuroprotective factor in the retina. Cell Death Differ. 24:1799–1810. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tezel G: TNF-alpha signaling in glaucomatous neurodegeneration. Prog Brain Res. 173:409–421. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yan X, Tezel G, Wax MB and Edward DP: Matrix metalloproteinases and tumor necrosis factor alpha in glaucomatous optic nerve head. Arch Ophthalmol. 118:666–673. 2000. View Article : Google Scholar : PubMed/NCBI | |
Yuan L and Neufeld AH: Tumor necrosis factor-alpha: A potentially neurodestructive cytokine produced by glia in the human glaucomatous optic nerve head. Glia. 32:42–50. 2000. View Article : Google Scholar : PubMed/NCBI | |
Tezel G, Li LY, Patil RV and Wax MB: TNF-alpha and TNF-alpha receptor-1 in the retina of normal and glaucomatous eyes. Invest Ophthalmol Vis Sci. 42:1787–1794. 2001.PubMed/NCBI | |
Cheng S, Wang HN, Xu LJ, Li F, Miao Y, Lei B, Sun X and Wang Z: Soluble tumor necrosis factor-alpha-induced hyperexcitability contributes to retinal ganglion cell apoptosis by enhancing Nav1.6 in experimental glaucoma. J Neuroinflammation. 18:1822021. View Article : Google Scholar : PubMed/NCBI | |
Nakazawa T, Nakazawa C, Matsubara A, Noda K, Hisatomi T, She H, Michaud N, Hafezi-Moghadam A, Miller JW and Benowitz LI: Tumor necrosis factor-alpha mediates oligodendrocyte death and delayed retinal ganglion cell loss in a mouse model of glaucoma. J Neurosci. 26:12633–12641. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hänninen VA, Pantcheva MB, Freeman EE, Poulin NR and Grosskreutz CL: Activation of caspase 9 in a rat model of experimental glaucoma. Curr Eye Res. 25:389–395. 2002. View Article : Google Scholar : PubMed/NCBI | |
Chi W, Li F, Chen H, Wang Y, Zhu Y, Yang X, Zhu J, Wu F, Ouyang H, Ge J, et al: Caspase-8 promotes NLRP1/NLRP3 inflammasome activation and IL-1β production in acute glaucoma. Proc Natl Acad Sci USA. 111:11181–11186. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Zeng Q and Tezel G: Regulation of distinct caspase-8 functions in retinal ganglion cells and astroglia in experimental glaucoma. Neurobiol Dis. 150:1052582021. View Article : Google Scholar : PubMed/NCBI | |
Choudhury S, Liu Y, Clark AF and Pang IH: Caspase-7: A critical mediator of optic nerve injury-induced retinal ganglion cell death. Mol Neurodegener. 10:402015. View Article : Google Scholar : PubMed/NCBI | |
Vigneswara V, Akpan N, Berry M, Logan A, Troy CM and Ahmed Z: Combined suppression of CASP2 and CASP6 protects retinal ganglion cells from apoptosis and promotes axon regeneration through CNTF-mediated JAK/STAT signalling. Brain. 137:1656–1675. 2014. View Article : Google Scholar : PubMed/NCBI | |
Seong H, Ryu J, Yoo WS, Kim SJ, Han YS, Park JM, Kang SS and Seo SW: Resveratrol ameliorates retinal ischemia/reperfusion injury in C57BL/6J mice via downregulation of caspase-3. Curr Eye Res. 42:1650–1658. 2017. View Article : Google Scholar : PubMed/NCBI | |
Thomas CN, Berry M, Logan A, Blanch RJ and Ahmed Z: Caspases in retinal ganglion cell death and axon regeneration. Cell Death Discov. 3:170322017. View Article : Google Scholar : PubMed/NCBI | |
Ngan BY, Chen-Levy Z, Weiss LM, Warnke RA and Cleary ML: Expression in non-Hodgkin's lymphoma of the bcl-2 protein associated with the t(14;18) chromosomal translocation. N Engl J Med. 318:1638–1644. 1988. View Article : Google Scholar : PubMed/NCBI | |
Maes ME, Schlamp CL and Nickells RW: BAX to basics: How the BCL2 gene family controls the death of retinal ganglion cells. Prog Retin Eye Res. 57:1–25. 2017. View Article : Google Scholar : PubMed/NCBI | |
Singh R, Letai A and Sarosiek K: Regulation of apoptosis in health and disease: The balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol. 20:175–193. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cottet S and Schorderet DF: Triggering of Bcl-2-related pathway is associated with apoptosis of photoreceptors in Rpe65-/- mouse model of Leber's congenital amaurosis. Apoptosis. 13:329–342. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zalewska R, Reszeć J, Mariak Z and Sulkowski S: The expression of Bcl-2, Bcl-xl, Bak and Bax proteins in axons of the optic nerve in closed-angle glaucoma. Klin Oczna. 106 (1–2 Suppl):S155–S157. 2004.(In Polish). PubMed/NCBI | |
Takahashi A, Masuda A, Sun M, Centonze VE and Herman B: Oxidative stress-induced apoptosis is associated with alterations in mitochondrial caspase activity and Bcl-2-dependent alterations in mitochondrial pH (pHm). Brain Res Bull. 62:497–504. 2004. View Article : Google Scholar : PubMed/NCBI | |
Tatton WG, Chalmers-Redman RM and Tatton NA: Apoptosis and anti-apoptosis signalling in glaucomatous retinopathy. Eur J Ophthalmol. 11 (Suppl 2):S12–S22. 2001.PubMed/NCBI | |
Ye D, Shi Y, Xu Y and Huang J: PACAP attenuates optic nerve crush-induced retinal ganglion cell apoptosis via activation of the CREB-Bcl-2 pathway. J Mol Neurosci. 68:475–484. 2019. View Article : Google Scholar : PubMed/NCBI | |
González-García M, García I, Ding L, O'Shea S, Boise LH, Thompson CB and Núñez G: bcl-x is expressed in embryonic and postnatal neural tissues and functions to prevent neuronal cell death. Proc Natl Acad Sci USA. 92:4304–4308. 1995. View Article : Google Scholar : PubMed/NCBI | |
Liu XH, Collier RJ and Youle RJ: Inhibition of axotomy-induced neuronal apoptosis by extracellular delivery of a Bcl-XL fusion protein. J Biol Chem. 276:46326–46332. 2001. View Article : Google Scholar : PubMed/NCBI | |
Malik JMI, Shevtsova Z, Bähr M and Kügler S: Long-term in vivo inhibition of CNS neurodegeneration by Bcl-XL gene transfer. Mol Ther. 11:373–381. 2005. View Article : Google Scholar : PubMed/NCBI | |
Donahue RJ, Fehrman RL, Gustafson JR and Nickells RW: BCLX(L) gene therapy moderates neuropathology in the DBA/2J mouse model of inherited glaucoma. Cell Death Dis. 12:7812021. View Article : Google Scholar : PubMed/NCBI | |
Näpänkangas U, Lindqvist N, Lindholm D and Hallböök F: Rat retinal ganglion cells upregulate the pro-apoptotic BH3-only protein Bim after optic nerve transection. Brain research. Brain Res Mol Brain Res. 120:30–37. 2003. View Article : Google Scholar : PubMed/NCBI | |
Donahue RJ, Maes ME, Grosser JA and Nickells RW: BAX-depleted retinal ganglion cells survive and become quiescent following optic nerve damage. Mol Neurobiol. 57:1070–1084. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wei Y, Fan T and Yu M: Inhibitor of apoptosis proteins and apoptosis. Acta Biochim Biophys Sin (Shanghai). 40:278–288. 2008. View Article : Google Scholar : PubMed/NCBI | |
Levkovitch-Verbin H, Dardik R, Vander S, Nisgav Y, Kalev-Landoy M and Melamed S: Experimental glaucoma and optic nerve transection induce simultaneous upregulation of proapoptotic and prosurvival genes. Invest Ophthalmol Vis Sci. 47:2491–2497. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kisiswa L, Albon J, Morgan JE and Wride MA: Cellular inhibitor of apoptosis (cIAP1) is down-regulated during retinal ganglion cell (RGC) maturation. Exp Eye Res. 91:739–747. 2010. View Article : Google Scholar : PubMed/NCBI | |
Levkovitch-Verbin H, Vander S, Makarovsky D and Lavinsky F: Increase in retinal ganglion cells' susceptibility to elevated intraocular pressure and impairment of their endogenous neuroprotective mechanism by age. Mol Vis. 19:2011–2022. 2013.PubMed/NCBI | |
Ayub H, Micheal S, Akhtar F, Khan MI, Bashir S, Waheed NK, Ali M, Schoenmaker-Koller FE, Shafique S, Qamar R and Hollander AI: Association of a polymorphism in the BIRC6 gene with pseudoexfoliative glaucoma. PLoS One. 9:e1050232014. View Article : Google Scholar : PubMed/NCBI | |
Carbone MA, Chen Y, Hughes GA, Weinreb RN, Zabriskie NA, Zhang K and Anholt RR: Genes of the unfolded protein response pathway harbor risk alleles for primary open angle glaucoma. PLoS One. 6:e206492011. View Article : Google Scholar : PubMed/NCBI | |
Kernt M, Neubauer AS, Eibl KH, Wolf A, Ulbig MW, Kampik A and Hirneiss C: Minocycline is cytoprotective in human trabecular meshwork cells and optic nerve head astrocytes by increasing expression of XIAP, survivin, and Bcl-2. Clin Ophthalmol. 4:591–604. 2010. View Article : Google Scholar : PubMed/NCBI | |
Liu L and Yang X, Zhang J, Jiang W, Hou T, Zong Y, Bai H, Yang K and Yang X: Long non-coding RNA SNHG11 regulates the Wnt/β-catenin signaling pathway through rho/ROCK in trabecular meshwork cells. FASEB J. 37:e228732023. View Article : Google Scholar : PubMed/NCBI | |
Levkovitch-Verbin H, Makarovsky D and Vander S: Comparison between axonal and retinal ganglion cell gene expression in various optic nerve injuries including glaucoma. Mol Vis. 19:2526–2541. 2013.PubMed/NCBI | |
Murray-Zmijewski F, Lane DP and Bourdon JC: p53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death Differ. 13:962–972. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lane DP, Lu X, Hupp T and Hall PA: The role of the p53 protein in the apoptotic response. Philos Trans R Soc Lond B Biol Sci. 345:277–280. 1994. View Article : Google Scholar : PubMed/NCBI | |
Peng Q, Lao X, Chen Z, Lai H, Deng Y, Wang J, Mo C, Sui J, Wu J, Zhai L, et al: TP53 and MDM2 gene polymorphisms, gene-gene interaction, and hepatocellular carcinoma risk: evidence from an updated meta-analysis. PLoS One. 8:e827732013. View Article : Google Scholar : PubMed/NCBI | |
Lin HJ, Chen WC, Tsai FJ and Tsai SW: Distributions of p53 codon 72 polymorphism in primary open angle glaucoma. Br J Ophthalmol. 86:767–770. 2002. View Article : Google Scholar : PubMed/NCBI | |
Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M and Green DR: Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science. 303:1010–1014. 2004. View Article : Google Scholar : PubMed/NCBI | |
Acharya M, Mitra S, Mukhopadhyay A, Khan M, Roychoudhury S and Ray K: Distribution of p53 codon 72 polymorphism in Indian primary open angle glaucoma patients. Mol Vis. 8:367–371. 2002.PubMed/NCBI | |
Ara S, Lee PS, Hansen MF and Saya H: Codon 72 polymorphism of the TP53 gene. Nucleic Acids Res. 18:49611990. View Article : Google Scholar : PubMed/NCBI | |
Fan BJ, Liu K, Wang DY, Tham CC, Tam PO, Lam DS and Pang CP: Association of polymorphisms of tumor necrosis factor and tumor protein p53 with primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 51:4110–4116. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gupta S, Chatterjee S, Chandra A, Maurya OPS, Mishra RN, Mukherjee A and Mutsuddi M: TP53 codon 72 polymorphism and the risk of glaucoma in a north Indian cohort: A genetic association study. Ophthalmic Genet. 39:228–235. 2018. View Article : Google Scholar : PubMed/NCBI | |
Guo Y, Zhang H, Chen X, Yang X, Cheng W and Zhao K: Association of TP53 polymorphisms with primary open-angle glaucoma: A meta-analysis. Invest Ophthalmol Vis Sci. 53:3756–3763. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gohari M, Neámatzadeh H, Jafari MA, Mazaheri M, Zare-Shehneh M and Abbasi-Shavazi E: Association between the p53 codon 72 polymorphism and primary open-angle glaucoma risk: Meta-analysis based on 11 case-control studies. Indian J Ophthalmol. 64:756–761. 2016. View Article : Google Scholar : PubMed/NCBI | |
Blanco-Marchite C, Sánchez-Sánchez F, López-Garrido MP, Iñigez-de-Onzoño M, López-Martínez F, López-Sánchez E, Alvarez L, Rodríguez-Calvo PP, Méndez-Hernández C, Fernández-Vega L, et al: WDR36 and P53 gene variants and susceptibility to primary open-angle glaucoma: analysis of gene-gene interactions. Invest Ophthalmol Vis Sci. 52:8467–8478. 2011. View Article : Google Scholar : PubMed/NCBI | |
Neamatzadeh H, Soleimanizad R, Atefi A, Zare-Shehneh M, Gharibi S, Shekari A and Rahimzadeh AB: Association between p53 codon 72 (Arg72Pro) polymorphism and primary open-angle glaucoma in Iranian patients. Iran Biomed J. 19:51–56. 2015.PubMed/NCBI | |
Wiggs JL, Hewitt AW, Fan BJ, Wang DY, Figueiredo Sena DR, O'Brien C, Realini A, Craig JE, Dimasi DP, Mackey DA, et al: The p53 codon 72 PRO/PRO genotype may be associated with initial central visual field defects in caucasians with primary open angle glaucoma. PLoS One. 7:e456132012. View Article : Google Scholar : PubMed/NCBI | |
Jeong BS, Hu W, Belyi V, Rabadan R and Levine AJ: Differential levels of transcription of p53-regulated genes by the arginine/proline polymorphism: p53 with arginine at codon 72 favors apoptosis. FASEB J. 24:1347–1353. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dimasi DP, Hewitt AW, Green CM, Mackey DA and Craig JE: Lack of association of p53 polymorphisms and haplotypes in high and normal tension open angle glaucoma. J Med Genet. 42:e552005. View Article : Google Scholar : PubMed/NCBI | |
Silva RE, Arruda JT, Rodrigues FW and Moura KKVO: Primary open angle glaucoma was not found to be associated with p53 codon 72 polymorphism in a Brazilian cohort. Genet Mol Res. 8:268–272. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mabuchi F, Sakurada Y, Kashiwagi K, Yamagata Z, Iijima H and Tsukahara S: Lack of association between p53 gene polymorphisms and primary open angle glaucoma in the Japanese population. Mol Vis. 15:1045–1049. 2009.PubMed/NCBI | |
Saglar E, Yucel D, Bozkurt B, Ozgul RK, Irkec M and Ogus A: Association of polymorphisms in APOE, p53, and p21 with primary open-angle glaucoma in Turkish patients. Mol Vis. 15:1270–1276. 2009.PubMed/NCBI | |
Chen SD, Wang L and Zhang XL: Neuroprotection in glaucoma: Present and future. Chin Med J (Engl). 126:1567–1577. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tahzib NG, Ransom NL, Reitsamer HA and McKinnon SJ: Alpha-fodrin is cleaved by caspase-3 in a chronic ocular hypertensive (COH) rat model of glaucoma. Brain Res Bull. 62:491–495. 2004. View Article : Google Scholar : PubMed/NCBI | |
Vigneswara V, Berry M, Logan A and Ahmed Z: Pharmacological inhibition of caspase-2 protects axotomised retinal ganglion cells from apoptosis in adult rats. PLoS One. 7:e534732012. View Article : Google Scholar : PubMed/NCBI | |
Monnier PP, D'Onofrio PM, Magharious M, Hollander AC, Tassew N, Szydlowska K, Tymianski M and Koeberle PD: Involvement of caspase-6 and caspase-8 in neuronal apoptosis and the regenerative failure of injured retinal ganglion cells. J Neurosci. 31:10494–10505. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Yan H, Chen S and Sabel BA: Caspase-3 inhibitor Z-DEVD-FMK enhances retinal ganglion cell survival and vision restoration after rabbit traumatic optic nerve injury. Restor Neurol Neurosci. 33:205–220. 2015.PubMed/NCBI | |
Sánchez-Migallón MC, Valiente-Soriano FJ, Nadal-Nicolás FM, Vidal-Sanz M and Agudo-Barriuso M: Apoptotic retinal ganglion cell death after optic nerve transection or crush in mice: Delayed RGC loss with BDNF or a caspase 3 inhibitor. Invest Ophthalmol Vis Sci. 57:81–93. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nakazawa T, Tamai M and Mori N: Brain-derived neurotrophic factor prevents axotomized retinal ganglion cell death through MAPK and PI3K signaling pathways. Invest Ophthalmol Vis Sci. 43:3319–3326. 2002.PubMed/NCBI | |
Tawfik M, Zhang X, Grigartzik L, Heiduschka P, Hintz W, Henrich-Noack P, van Wachem B and Sabel BA: Gene therapy with caspase-3 small interfering RNA-nanoparticles is neuroprotective after optic nerve damage. Neural Regen Res. 16:2534–2541. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ahmed Z, Kalinski H, Berry M, Almasieh M, Ashush H, Slager N, Brafman A, Spivak I, Prasad N, Mett I, et al: Ocular neuroprotection by siRNA targeting caspase-2. Cell Death Dis. 2:e1732011. View Article : Google Scholar : PubMed/NCBI | |
Elewa HF, Hilali H, Hess DC, Machado LS and Fagan SC: Minocycline for short-term neuroprotection. Pharmacotherapy. 26:515–521. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bosco A, Inman DM, Steele MR, Wu G, Soto I, Marsh-Armstrong N, Hubbard WC, Calkins DJ, Horner PJ and Vetter ML: Reduced retina microglial activation and improved optic nerve integrity with minocycline treatment in the DBA/2J mouse model of glaucoma. Invest Ophthalmol Vis Sci. 49:1437–1446. 2008. View Article : Google Scholar : PubMed/NCBI | |
Huang W, Gao F, Hu F, Huang J, Wang M, Xu P, Zhang R, Chen J, Sun X, Zhang S and Wu J: Asiatic acid prevents retinal ganglion cell apoptosis in a rat model of glaucoma. Front Neurosci. 12:4892018. View Article : Google Scholar : PubMed/NCBI | |
Hu X, Zhuang D, Zhang R, Sun X, Lu Q and Dai Y: The small molecule inhibitor PR-619 protects retinal ganglion cells against glutamate excitotoxicity. Neuroreport. 31:1134–1141. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Pang Y, Zhang Z, Li X, Wang C, Lei Y, Li A, Yu L and Ye J: Mitochondria-targeted antioxidant peptide SS-31 mediates neuroprotection in a rat experimental glaucoma model. Acta Biochim Biophys Sin (Shanghai). 51:411–421. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shi Y, Ye D, Huang R, Xu Y, Lu P, Chen H and Huang J: Down syndrome critical region 1 reduces oxidative stress-induced retinal ganglion cells apoptosis via CREB-Bcl-2 pathway. Invest Ophthalmol Vis Sci. 61:232020. View Article : Google Scholar : PubMed/NCBI | |
Dai Y, Lawrence TS and Xu L: Overcoming cancer therapy resistance by targeting inhibitors of apoptosis proteins and nuclear factor-kappa B. Am J Transl Res. 1:1–15. 2009.PubMed/NCBI | |
McKinnon SJ, Lehman DM, Tahzib NG, Ransom NL, Reitsamer HA, Liston P, LaCasse E, Li Q, Korneluk RG and Hauswirth WW: Baculoviral IAP repeat-containing-4 protects optic nerve axons in a rat glaucoma model. Mol Ther. 5:780–787. 2002. View Article : Google Scholar : PubMed/NCBI | |
Visuvanathan S, Baker AN, Lagali PS, Coupland SG, Miller G, Hauswirth WW and Tsilfidis C: XIAP gene therapy effects on retinal ganglion cell structure and function in a mouse model of glaucoma. Gene Ther. 29:147–156. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang XC, Wang T, Zhang Y, Wang LL, Zhao RY and Tan W: Tacrolimus inhibits proliferation and induces apoptosis by decreasing survivin in scar fibroblasts after glaucoma surgery. Eur Rev Med Pharmacol Sci. 22:2934–2940. 2018.PubMed/NCBI | |
Lee J, Choi JH and Joo CK: TGF-β1 regulates cell fate during epithelial-mesenchymal transition by upregulating survivin. Cell Death Dis. 4:e7142013. View Article : Google Scholar : PubMed/NCBI | |
Honjo M and Tanihara H: Impact of the clinical use of ROCK inhibitor on the pathogenesis and treatment of glaucoma. Jpn J Ophthalmol. 62:109–126. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Wang H and Dang Y: Rho-kinase inhibitors as emerging targets for glaucoma therapy. Ophthalmol Ther. 12:2943–2957. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen W and Yang X, Fang J, Zhang Y, Zhu W and Yang X: Rho-associated protein kinase inhibitor treatment promotes proliferation and phagocytosis in trabecular meshwork cells. Front Pharmacol. 11:3022020. View Article : Google Scholar : PubMed/NCBI | |
Garnock-Jones KP: Ripasudil: First global approval. Drugs. 74:2211–2215. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sturdivant JM, Royalty SM, Lin CW, Moore LA, Yingling JD, Laethem CL, Sherman B, Heintzelman GR, Kopczynski CC and de Long MA: Discovery of the ROCK inhibitor netarsudil for the treatment of open-angle glaucoma. Bioorg Med Chem Lett. 26:2475–2480. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tanna AP and Johnson M: Rho kinase inhibitors as a novel treatment for glaucoma and ocular hypertension. Ophthalmology. 125:1741–1756. 2018. View Article : Google Scholar : PubMed/NCBI | |
Testa V, Ferro Desideri L, Della Giustina P, Traverso CE and Iester M: An update on ripasudil for the treatment of glaucoma and ocular hypertension. Drugs Today (Barc). 56:599–608. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li DW, Liu JP, Schmid PC, Schlosser R, Feng H, Liu WB, Yan Q, Gong L, Sun SM, Deng M and Liu Y: Protein serine/threonine phosphatase-1 dephosphorylates p53 at Ser-15 and Ser-37 to modulate its transcriptional and apoptotic activities. Oncogene. 25:3006–3022. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Ge J, Yin W, Shen H, Liu H and Guo Y: The expression of p53, MDM2 and Ref1 gene in cultured retina neurons of SD rats treated with vitamin B1 and/or elevated pressure. Yan Ke Xue Bao. 20:259–263. 2004.(In Chinese). PubMed/NCBI | |
Johnson KT, Rödicker F, Heise K, Heinz C, Steuhl KP, Pützer BM and Hudde T: Adenoviral p53 gene transfer inhibits human Tenon's capsule fibroblast proliferation. Br J Ophthalmol. 89:508–512. 2005. View Article : Google Scholar : PubMed/NCBI | |
Husain S, Ahmad A, Singh S, Peterseim C, Abdul Y and Nutaitis MJ: PI3K/Akt pathway: A role in δ-opioid receptor-mediated RGC neuroprotection. Invest Ophthalmol Vis Sci. 58:6489–6499. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao N, Shi J, Xu H, Luo Q, Li Q and Liu M: Baicalin suppresses glaucoma pathogenesis by regulating the PI3K/AKT signaling in vitro and in vivo. Bioengineered. 12:10187–10198. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xi X, Chen Q, Ma J, Wang X, Xia Y, Wen X, Cai B and Li Y: Acteoside protects retinal ganglion cells from experimental glaucoma by activating the PI3K/AKT signaling pathway via caveolin 1 upregulation. Ann Transl Med. 10:3122022. View Article : Google Scholar : PubMed/NCBI | |
Nie XG, Fan DS, Huang YX, He YY, Dong BL and Gao F: Downregulation of microRNA-149 in retinal ganglion cells suppresses apoptosis through activation of the PI3K/Akt signaling pathway in mice with glaucoma. Am J Physiol Cell Physiol. 315:C839–C849. 2018. View Article : Google Scholar : PubMed/NCBI | |
Perkins TW, Faha B, Ni M, Kiland JA, Poulsen GL, Antelman D, Atencio I, Shinoda J, Sinha D, Brumback L, et al: Adenovirus-mediated gene therapy using human p21WAF-1/Cip-1 to prevent wound healing in a rabbit model of glaucoma filtration surgery. Arch Ophthalmol. 120:941–949. 2002. View Article : Google Scholar : PubMed/NCBI | |
Heatley G, Kiland J, Faha B, Seeman J, Schlamp CL, Dawson DG, Gleiser J, Maneval D, Kaufman PL and Nickells RW: Gene therapy using p21WAF-1/Cip-1 to modulate wound healing after glaucoma trabeculectomy surgery in a primate model of ocular hypertension. Gene Ther. 11:949–955. 2004. View Article : Google Scholar : PubMed/NCBI |