1
|
Xu YJ, Zheng L, Hu YW and Wang Q:
Pyroptosis and its relationship to atherosclerosis. Clin Chim Acta.
476:28–37. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Wang Q, Wu J, Zeng Y, Chen K, Wang C, Yang
S, Sun N, Chen H, Duan K and Zeng G: Pyroptosis: A pro-inflammatory
type of cell death in cardiovascular disease. Clin Chim Acta.
510:62–72. 2020. View Article : Google Scholar : PubMed/NCBI
|
3
|
Miao EA, Rajan JV and Aderem A:
Caspase-1-induced pyroptotic cell death. Immunol Rev. 243:206–214.
2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
He X, Fan X, Bai B, Lu N, Zhang S and
Zhang L: Pyroptosis is a critical immune-inflammatory response
involved in atherosclerosis. Pharmacol Res. 165:1054472021.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Zychlinsky A, Prevost MC and Sansonetti
PJ: Shigella flexneri induces apoptosis in infected macrophages.
Nature. 358:167–169. 1992. View Article : Google Scholar : PubMed/NCBI
|
6
|
Peng X, Chen H, Li Y, Huang D, Huang B and
Sun D: Effects of NIX-mediated mitophagy on ox-LDL-induced
macrophage pyroptosis in atherosclerosis. Cell Biol Int.
44:1481–1490. 2020. View Article : Google Scholar : PubMed/NCBI
|
7
|
Hilbi H, Moss JE, Hersh D, Chen Y, Arondel
J, Banerjee S, Flavell RA, Yuan J, Sansonetti PJ and Zychlinsky A:
Shigella-induced apoptosis is dependent on caspase-1 which binds to
IpaB. J Biol Chem. 273:32895–32900. 1998. View Article : Google Scholar : PubMed/NCBI
|
8
|
He B, Nie Q, Wang F, Han Y, Yang B, Sun M,
Fan X, Ye Z, Liu P and Wen J: Role of pyroptosis in atherosclerosis
and its therapeutic implications. J Cell Physiol. 36:7159–7175.
2021. View Article : Google Scholar
|
9
|
Lin L, Zhang MX, Zhang L, Zhang D, Li C
and Li YL: Autophagy, pyroptosis, and ferroptosis: New regulatory
mechanisms for atherosclerosis. Front Cell Dev Biol. 9:8099552022.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Liu JR, Wang C, Li J, Yu Y, Liu Y, Liu H,
Peng Q and Guan X: Autophagy blockage promotes the pyroptosis of
ox-LDL-treated macrophages by modulating the p62/Nrf2/ARE axis. J
Physiol Biochem. 77:419–429. 2021. View Article : Google Scholar : PubMed/NCBI
|
11
|
Xu XD, Chen JX, Zhu L, Xu ST, Jiang J and
Ren K: The emerging role of pyroptosis-related inflammasome pathway
in atherosclerosis. Mol Med. 28:1602022. View Article : Google Scholar : PubMed/NCBI
|
12
|
Taabazuing CY, Okondo MC and Bachovchin
DA: Pyroptosis and apoptosis pathways engage in bidirectional
crosstalk in monocytes and macrophages. Cell Chem Biol.
24:507–514.e4. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Martinet W, Coornaert I, Puylaert P and De
Meyer GRY: Macrophage death as a pharmacological target in
atherosclerosis. Front Pharmacol. 10:3062019. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zeng C, Wang R and Tan H: Role of
pyroptosis in cardiovascular diseases and its therapeutic
implications. Int J Biol Sci. 15:1345–1357. 2019. View Article : Google Scholar : PubMed/NCBI
|
15
|
Humphries F, Shmuel-Galia L,
Ketelut-Carneiro N, Li S, Wang B, Nemmara VV, Wilson R, Jiang Z,
Khalighinejad F, Muneeruddin K, et al: Succination inactivates
gasdermin D and blocks pyroptosis. Science. 369:1633–1637. 2020.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Ji N, Qi Z, Wang Y, Yang X, Yan Z, Li M,
Ge Q and Zhang J: Pyroptosis: A new regulating mechanism in
cardiovascular disease. J Inflamm Res. 14:2647–2666. 2021.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Huang SS, Guo DY, Jia BB, Cai GL, Yan J,
Lu Y and Yang ZX: Dimethyl itaconate alleviates the pyroptosis of
macrophages through oxidative stress. BMC Immunol. 22:722021.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Wang K, Sun Q, Zhong X, Zeng M, Zeng H,
Shi X, Li Z, Wang Y, Zhao Q, Shao F and Ding J: Structural
mechanism for GSDMD targeting by autoprocessed caspases in
pyroptosis. Cell. 180:941–955.e20. 2020. View Article : Google Scholar : PubMed/NCBI
|
19
|
Yuan YY, Xie KX, Wang SL and Yuan LW:
Inflammatory caspase-related pyroptosis: Mechanism, regulation and
therapeutic potential for inflammatory bowel disease. Gastroenterol
Rep (Oxf). 6:167–176. 2018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Jiang M, Sun X, Liu S, Tang Y, Shi Y, Bai
Y, Wang Y, Yang Q, Yang Q, Jiang W, et al: Caspase-11-gasdermin
D-mediated pyroptosis is involved in the pathogenesis of
atherosclerosis. Front Pharmacol. 12:6574862021. View Article : Google Scholar : PubMed/NCBI
|
21
|
Puylaert P, Van Praet M, Vaes F, Neutel
CHG, Roth L, Guns PJ, De Meyer GRY and Martinet W: Gasdermin D
deficiency limits the transition of atherosclerotic plaques to an
inflammatory phenotype in ApoE knock-out mice. Biomedicines.
10:11712022. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wang R, Wang Y, Mu N, Lou X, Li W, Chen Y,
Fan D and Tan H: Activation of NLRP3 inflammasomes contributes to
hyperhomocysteinemia-aggravated inflammation and atherosclerosis in
apoE-deficient mice. Lab Invest. 97:922–934. 2017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Liu C, Jiang Z, Pan Z and Yang L: The
function, regulation and mechanism of programmed cell death of
macrophages in atherosclerosis. Front Cell Dev Biol. 9:8095162022.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Liu S, Tao J, Duan F, Li H and Tan H: HHcy
induces pyroptosis and atherosclerosis via the lipid raft-mediated
NOX-ROS-NLRP3 inflammasome pathway in apoE−/− mice.
Cells. 11:24382022. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zeng Z, Li G, Wu S and Wang Z: Role of
pyroptosis in cardiovascular disease. Cell Prolif. 52:e125632019.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Hendrikx T, Jeurissen MLJ, van Gorp PJ,
Gijbels MJ, Walenbergh SMA, Houben T, van Gorp R, Pöttgens CC,
Stienstra R, Netea MG, et al: Bone marrow-specific caspase-1/11
deficiency inhibits atherosclerosis development in Ldlr(−/-) mice.
FEBS J. 282:2327–2338. 2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Jin Y, Liu Y, Xu L, Xu J, Xiong Y, Peng Y,
Ding K, Zheng S, Yang N, Zhang Z, et al: Novel role for caspase 1
inhibitor VX765 in suppressing NLRP3 inflammasome assembly and
atherosclerosis via promoting mitophagy and efferocytosis. Cell
Death Dis. 13:5122022. View Article : Google Scholar : PubMed/NCBI
|
28
|
Liu S, Xu DS, Ma JL, Huang P, Wu D and Ren
LQ: LncRNA H19 mitigates oxidized low-density lipoprotein induced
pyroptosis via caspase-1 in Raw 264.7 Cells. Inflammation.
44:2407–2418. 2021. View Article : Google Scholar : PubMed/NCBI
|
29
|
Opoku E, Traughber CA, Zhang D, Iacano AJ,
Khan M, Han J, Smith JD and Gulshan K: Gasdermin D mediates
inflammation-induced defects in reverse cholesterol transport and
promotes atherosclerosis. Front Cell Dev Biol. 9:7152112021.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Rathkey JK, Zhao J, Liu Z, Chen Y, Yang J,
Kondolf HC, Benson BL, Chirieleison SM, Huang AY, Dubyak GR, et al:
Chemical disruption of the pyroptotic pore-forming protein
gasdermin D inhibits inflammatory cell death and sepsis. Sci
Immunol. 3:eaat27382018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Westerterp M, Fotakis P, Ouimet M, Bochem
AE, Zhang H, Molusky MM, Wang W, Abramowicz S, la Bastide-van
Gemert S, Wang N, et al: Cholesterol efflux pathways suppress
inflammasome activation, NETosis, and atherogenesis. Circulation.
138:898–912. 2018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Zeng W, Wu D, Sun Y, Suo Y, Yu Q, Zeng M,
Gao Q, Yu B, Jiang X and Wang Y: The selective NLRP3 inhibitor
MCC950 hinders atherosclerosis development by attenuating
inflammation and pyroptosis in macrophages. Sci Rep. 11:193052021.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Robinson N, Ganesan R, Hegedűs C, Kovács
K, Kufer TA and Virág L: Programmed necrotic cell death of
macrophages: Focus on pyroptosis, necroptosis, and parthanatos.
Redox Biol. 26:1012392019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Gupta R, Sahu M, Tripathi R, Ambasta RK
and Kumar P: Protein S-sulfhydration: Unraveling the prospective of
hydrogen sulfide in the brain, vasculature and neurological
manifestations. Ageing Res Rev. 76:1015792022. View Article : Google Scholar : PubMed/NCBI
|
35
|
Pang PP, Zhang HY, Zhang DC, Tang JX, Gong
Y, Guo YC and Zheng CB: Investigating the impact of protein
S-sulfhydration modification on vascular diseases: A comprehensive
review. Eur J Pharmacol. 966:1763452024. View Article : Google Scholar : PubMed/NCBI
|
36
|
Cirino G, Szabo C and Papapetropoulos A:
Physiological roles of hydrogen sulfide in mammalian cells,
tissues, and organs. Physiol Rev. 103:31–276. 2023. View Article : Google Scholar : PubMed/NCBI
|
37
|
Bibli SI, Hu J, Leisegang MS, Wittig J,
Zukunft S, Kapasakalidi A, Fisslthaler B, Tsilimigras D, Zografos
G, Filis K, et al: Shear stress regulates cystathionine γ lyase
expression to preserve endothelial redox balance and reduce
membrane lipid peroxidation. Redox Biol. 28:1013792020. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zhang H, Bai Z, Zhu L, Liang Y, Fan X, Li
J, Wen H, Shi T, Zhao Q and Wang Z: Hydrogen sulfide donors:
Therapeutic potential in anti-atherosclerosis. Eur J Med Chem.
205:1126652020. View Article : Google Scholar : PubMed/NCBI
|
39
|
Zhang L, Wang Y, Li Y, Li L, Xu S, Feng X
and Liu S: Hydrogen sulfide (H2S)-releasing compounds:
Therapeutic potential in cardiovascular diseases. Front Pharmacol.
9:10662018. View Article : Google Scholar : PubMed/NCBI
|
40
|
Castelblanco M, Lugrin J, Ehirchiou D,
Ishii I, So A, Martinon F and Busso N: Hydrogen sulfide inhibits
NLRP3 inflammasome activation and reduces cytokine production both
in vitro and in a mouse model of inflammation. J Biol Chem.
293:2546–2557. 2018. View Article : Google Scholar : PubMed/NCBI
|
41
|
Li J, Ma J, Li M, Tao J, Chen J, Yao C and
Yao S: GYY4137 alleviates sepsis-induced acute lung injury in mice
by inhibiting the PDGFRβ/Akt/NF-κB/NLRP3 pathway. Life Sci.
271:1191922021. View Article : Google Scholar : PubMed/NCBI
|
42
|
Lin Z, Altaf N, Li C, Chen M, Pan L, Wang
D, Xie L, Zheng Y, Fu H, Han Y and Ji Y: Hydrogen sulfide
attenuates oxidative stress-induced NLRP3 inflammasome activation
via S-sulfhydrating c-Jun at Cys269 in macrophages. Biochim Biophys
Acta Mol Basis Dis. 1864:2890–2900. 2018. View Article : Google Scholar : PubMed/NCBI
|
43
|
Luo ZL, Ren JD, Huang Z, Wang T, Xiang K,
Cheng L and Tang LJ: The role of exogenous hydrogen sulfide in free
fatty acids induced inflammation in macrophages. Cell Physiol
Biochem. 42:1635–1644. 2017. View Article : Google Scholar : PubMed/NCBI
|
44
|
Zhang D, Du J, Tang C, Huang Y and Jin H:
H2S-induced sulfhydration: Biological function and
detection methodology. Front Pharmacol. 8:6082017. View Article : Google Scholar : PubMed/NCBI
|
45
|
Zhang XL, Tian XQ, Jia ZL, Liu BW, Liang
GY, Zhang ZC, Li L and Zhang L: Sodium hydrosulfide attenuates
pyroptosis of macrophages by inhibiting classical pyroptosis
signaling pathway. Chin J Pathophysiol. 38:1015–1023. 2022.
|
46
|
Chiu HW, Li LH, Hsieh CY, Rao YK, Chen FH,
Chen A, Ka SM and Hua KF: Glucosamine inhibits IL-1β expression by
preserving mitochondrial integrity and disrupting assembly of the
NLRP3 inflammasome. Sci Rep. 9:56032019. View Article : Google Scholar : PubMed/NCBI
|
47
|
Mayes-Hopfinger L, Enache A, Xie J, Huang
CL, Köchl R, Tybulewicz VLJ, Fernandes-Alnemri T and Alnemri ES:
Chloride sensing by WNK1 regulates NLRP3 inflammasome activation
and pyroptosis. Nat Commun. 12:45462021. View Article : Google Scholar : PubMed/NCBI
|
48
|
Xu G, Fu S, Zhan X, Wang Z, Zhang P, Shi
W, Qin N, Chen Y, Wang C, Niu M, et al: Echinatin effectively
protects against NLRP3 inflammasome-driven diseases by targeting
HSP90. JCI Insight. 6:e1346012021. View Article : Google Scholar : PubMed/NCBI
|
49
|
Chen Y, Li R, Wang Z, Hou X, Wang C, Ai Y,
Shi W, Zhan X, Wang JB, Xiao X, et al: Dehydrocostus lactone
inhibits NLRP3 inflammasome activation by blocking ASC
oligomerization and prevents LPS-mediated inflammation in vivo.
Cell Immunol. 349:1040462020. View Article : Google Scholar : PubMed/NCBI
|
50
|
Mustafa AK, Gadalla MM, Sen N, Kim S, Mu
W, Gazi SK, Barrow RK, Yang G, Wang R and Snyder SH: H2S
signals through protein S-sulfhydration. Sci Signal. 2:ra722009.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Wang XH, Wang F, You SJ, Cao YJ, Cao LD,
Han Q, Liu CF and Hu LF: Dysregulation of cystathionine γ-lyase
(CSE)/hydrogen sulfide pathway contributes to ox-LDL-induced
inflammation in macrophage. Cell Signal. 25:2255–2262. 2013.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Zhang H, Du J, Huang Y, Tang C and Jin H:
Hydrogen sulfide regulates macrophage function in cardiovascular
diseases. Antioxid Redox Signal. 38:45–56. 2023. View Article : Google Scholar : PubMed/NCBI
|
53
|
Hu HJ, Qiu J, Zhang C, Tang ZH, Qu SL and
Jiang ZS: Hydrogen sulfide improves ox-LDL-induced expression
levels of Lp-PLA2 in THP-1 monocytes via the p38MAPK
pathway. Mol Med Rep. 23:3582021. View Article : Google Scholar : PubMed/NCBI
|
54
|
Hu Q, Zhang R, Zheng J, Song M, Gu C and
Li W: Hydrogen sulfide attenuates uranium-induced kidney cells
pyroptosis via upregulation of PI3K/AKT/mTOR signaling. J Biochem
Mol Toxicol. 37:e232202023. View Article : Google Scholar : PubMed/NCBI
|
55
|
Wang L, Meng J, Wang C, Wang Y, Yang C and
Li Y: Hydrogen sulfide attenuates cigarette smoke-induced
pyroptosis through the TLR4/NF-κB signaling pathway. Int J Mol Med.
49:562022. View Article : Google Scholar : PubMed/NCBI
|
56
|
Zhu X, Lu R, Zhang G, Fan L, Zhan Y, Chen
G and Zhou L: Diallyl trisulfide attenuates alcohol-induced
hepatocyte pyroptosis via elevation of hydrogen sulfide. Biosci
Biotechnol Biochem. 86:1552–1561. 2022. View Article : Google Scholar : PubMed/NCBI
|
57
|
Yu J and Cui X, Zhang X, Cheng M and Cui
X: Advances in the occurrence of pyroptosis: A novel role in
atherosclerosis. Curr Pharm Biotechnol. 22:1548–1558. 2021.
View Article : Google Scholar : PubMed/NCBI
|
58
|
Ding Y, Wang H, Geng B and Xu G:
Sulfhydration of perilipin 1 is involved in the inhibitory effects
of cystathionine gamma lyase/hydrogen sulfide on adipocyte
lipolysis. Biochem Biophys Res Commun. 521:786–790. 2020.
View Article : Google Scholar : PubMed/NCBI
|
59
|
Xie L, Gu Y, Wen M, Zhao S, Wang W, Ma Y,
Meng G, Han Y, Wang Y, Liu G, et al: Hydrogen sulfide induces Keap1
S-sulfhydration and suppresses diabetes-accelerated atherosclerosis
via Nrf2 activation. Diabetes. 65:3171–3184. 2016. View Article : Google Scholar : PubMed/NCBI
|
60
|
Ye X, Li Y, Lv B, Qiu B, Zhang S, Peng H,
Kong W, Tang C, Huang Y, Du J and Jin H: Endogenous hydrogen
sulfide persulfidates Caspase-3 at cysteine 163 to inhibit
doxorubicin-induced cardiomyocyte apoptosis. Oxid Med Cell Longev.
2022:61537722022. View Article : Google Scholar : PubMed/NCBI
|
61
|
He TT, Zhang XL, Jia ZL, Wang Y, Ma KT, Li
L and Zhang L: Hydrogen sulfide inhibits oxidized low-density
lipoprotein-induced pyroptosis in vascular endothelial cells by
down-regulating NLRP3/caspase-1 signaling pathway. Chin J
Pathophysiol. 37:1738–1746. 2021.
|
62
|
Qian Z, Zhao Y, Wan C, Deng Y, Zhuang Y,
Xu Y, Zhu Y, Lu S and Bao Z: Pyroptosis in the initiation and
progression of atherosclerosis. Front Pharmacol. 12:6529632021.
View Article : Google Scholar : PubMed/NCBI
|
63
|
Yang Z, Shi J, Chen L, Fu C, Shi D and Qu
H: Role of pyroptosis and ferroptosis in the progression of
atherosclerotic plaques. Front Cell Dev Biol. 10:8111962022.
View Article : Google Scholar : PubMed/NCBI
|
64
|
Braunstein I, Engelman R, Yitzhaki O, Ziv
T, Galardon E and Benhar M: Opposing effects of polysulfides and
thioredoxin on apoptosis through caspase persulfidation. J Biol
Chem. 295:3590–3600. 2020. View Article : Google Scholar : PubMed/NCBI
|
65
|
Sun F, Luo JH, Yue TT, Wang FX, Yang CL,
Zhang S, Wang XQ and Wang CY: The role of hydrogen sulphide
signalling in macrophage activation. Immunology. 162:3–10. 2021.
View Article : Google Scholar : PubMed/NCBI
|
66
|
Chen Y, Jin S, Teng X, Hu Z, Zhang Z, Qiu
X, Tian D and Wu Y: Hydrogen sulfide attenuates LPS-induced acute
kidney injury by inhibiting inflammation and oxidative stress. Oxid
Med Cell Longev. 2018:67172122018. View Article : Google Scholar : PubMed/NCBI
|
67
|
Dilek N, Papapetropoulos A, Toliver-Kinsky
T and Szabo C: Hydrogen sulfide: An endogenous regulator of the
immune system. Pharmacol Res. 161:1051192020. View Article : Google Scholar : PubMed/NCBI
|
68
|
Zhou T, Qian H, Zheng N, Lu Q and Han Y:
GYY4137 ameliorates sepsis-induced cardiomyopathy via NLRP3
pathway. Biochim Biophys Acta Mol Basis Dis. 1868:1664972022.
View Article : Google Scholar : PubMed/NCBI
|
69
|
Wu D, Zhong P, Wang J and Wang H:
Exogenous hydrogen sulfide mitigates LPS + ATP-induced inflammation
by inhibiting NLRP3 inflammasome activation and promoting autophagy
in L02 cells. Mol Cell Biochem. 457:145–156. 2019. View Article : Google Scholar : PubMed/NCBI
|
70
|
Ni J, Jiang L, Shen G, Xia Z, Zhang L, Xu
J, Feng Q, Qu H, Xu F and Li X: Hydrogen sulfide reduces pyroptosis
and alleviates ischemia-reperfusion-induced acute kidney injury by
inhibiting NLRP3 inflammasome. Life Sci. 284:1194662021. View Article : Google Scholar : PubMed/NCBI
|
71
|
Yue LM, Gao YM and Han BH: Evaluation on
the effect of hydrogen sulfide on the NLRP3 signaling pathway and
its involvement in the pathogenesis of atherosclerosis. J Cell
Biochem. 120:481–492. 2019. View Article : Google Scholar : PubMed/NCBI
|
72
|
Zheng Q, Pan L and Ji Y: H2S
protects against diabetes-accelerated atherosclerosis by preventing
the activation of NLRP3 inflammasome. J Biomed Res. 34:94–102.
2019. View Article : Google Scholar : PubMed/NCBI
|
73
|
Du J, Huang Y, Yan H, Zhang Q, Zhao M, Zhu
M, Liu J, Chen SX, Bu D, Tang C and Jin H: Hydrogen sulfide
suppresses oxidized low-density lipoprotein (ox-LDL)-stimulated
monocyte chemoattractant protein 1 generation from macrophages via
the nuclear factor κB (NF-κB) pathway. J Biol Chem. 289:9741–9753.
2014. View Article : Google Scholar : PubMed/NCBI
|
74
|
Du HP, Li J, You SJ, Wang YL, Wang F, Cao
YJ, Hu LF and Liu CF: DNA methylation in cystathionine-γ-lyase
(CSE) gene promoter induced by ox-LDL in macrophages and in apoE
knockout mice. Biochem Biophys Res Commun. 469:776–782. 2016.
View Article : Google Scholar : PubMed/NCBI
|
75
|
Bai L, Dai J, Xia Y, He K, Xue H, Guo Q,
Tian D, Xiao L, Zhang X, Teng X, et al: Hydrogen sulfide
ameliorated high choline-induced cardiac dysfunction by inhibiting
cGAS-STING-NLRP3 inflammasome pathway. Oxid Med Cell Longev.
2022:13928962022. View Article : Google Scholar : PubMed/NCBI
|
76
|
Gong W, Zhang S, Chen Y, Shen J, Zheng Y,
Liu X, Zhu M and Meng G: Protective role of hydrogen sulfide
against diabetic cardiomyopathy via alleviating necroptosis. Free
Radic Biol Med. 181:29–42. 2022. View Article : Google Scholar : PubMed/NCBI
|
77
|
Qin M, Long F, Wu W, Yang D, Huang M, Xiao
C, Chen X, Liu X and Zhu YZ: Hydrogen sulfide protects against
DSS-induced colitis by inhibiting NLRP3 inflammasome. Free Radic
Biol Med. 137:99–109. 2019. View Article : Google Scholar : PubMed/NCBI
|
78
|
Gao Y, Zhang H, Wang Y, Han T, Jin J, Li
J, Tang Y and Liu C: L-cysteine alleviates myenteric neuron injury
induced by intestinal ischemia/reperfusion via inhibitin the
macrophage NLRP3-IL-1β pathway. Front Pharmacol. 13:8991692022.
View Article : Google Scholar : PubMed/NCBI
|
79
|
Zhang N, Zhou Z, Huang Y, Wang G, Tang Z,
Lu J, Wang C and Ni X: Reduced hydrogen sulfide production
contributes to adrenal insufficiency induced by hypoxia via
modulation of NLRP3 inflammasome activation. Redox Rep.
28:21633542023. View Article : Google Scholar : PubMed/NCBI
|
80
|
Fan J, Zheng F, Li S, Cui C, Jiang S,
Zhang J, Cai J, Cui Q, Yang J, Tang X, et al: Hydrogen sulfide
lowers hyperhomocysteinemia dependent on cystathionine γ lyase
S-sulfhydration in ApoE-knockout atherosclerotic mice. Br J
Pharmacol. 176:3180–3192. 2019. View Article : Google Scholar : PubMed/NCBI
|
81
|
Yang K, Coburger I, Langner JM, Peter N,
Hoshi T, Schönherr R and Heinemann SH: Modulation of K+
channel N-type inactivation by sulfhydration through hydrogen
sulfide and polysulfides. Pflugers Arch. 471:557–571. 2019.
View Article : Google Scholar : PubMed/NCBI
|
82
|
Luo S, Kong C, Ye D, Liu X, Wang Y, Meng
G, Han Y, Xie L and Ji Y: Protein persulfidation: Recent progress
and future directions. Antioxid Redox Signal. 39:829–852. 2023.
View Article : Google Scholar : PubMed/NCBI
|
83
|
Wu Q, Zhao B, Weng Y, Shan Y, Li X, Hu Y,
Liang Z, Yuan H, Zhang L and Zhang Y: Site site-specific
quantification of persulfidome by combining an isotope-coded
affinity tag with strong cation-exchange-based fractionation. Anal
Chem. 91:14860–14864. 2019. View Article : Google Scholar : PubMed/NCBI
|
84
|
Bibli SI, Hu J, Sigala F, Wittig I,
Heidler J, Zukunft S, Tsilimigras DI, Randriamboavonjy V, Wittig J,
Kojonazarov B, et al: Cystathionine γ lyase sulfhydrates the RNA
binding protein human antigen r to preserve endothelial cell
function and delay atherogenesis. Circulation. 139:101–114. 2019.
View Article : Google Scholar : PubMed/NCBI
|
85
|
Luo S, Kong C, Zhao S, Tang X, Wang Y,
Zhou X, Li R, Liu X, Tang X, Sun S, et al: Endothelial
HDAC1-ZEB2-NuRD complex drives aortic aneurysm and dissection
through regulation of protein S-sulfhydration. Circulation.
147:1382–1403. 2023. View Article : Google Scholar : PubMed/NCBI
|
86
|
Wu D, Tan B, Sun Y and Hu Q: Cystathionine
γ lyase S-sulfhydrates Drp1 to ameliorate heart dysfunction. Redox
Biol. 58:1025192022. View Article : Google Scholar : PubMed/NCBI
|
87
|
Altaany Z, Ju Y, Yang G and Wang R: The
coordination of S-sulfhydration, S-nitrosylation, and
phosphorylation of endothelial nitric oxide synthase by hydrogen
sulfide. Sci Signal. 7:ra872014. View Article : Google Scholar : PubMed/NCBI
|