Current development of severe acute respiratory syndrome coronavirus 2 neutralizing antibodies (Review)
- Authors:
- Tong Zhang
- Di Yang
- Liang Tang
- Yu Hu
-
Affiliations: Department of Hematology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China, Department of Hematology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China - Published online on: June 26, 2024 https://doi.org/10.3892/mmr.2024.13272
- Article Number: 148
-
Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Aktas G: A comprehensive review on rational and effective treatment strategies against an invisible enemy; SARS Cov-2 infection. Exp Biomed Res. 3:293–311. 2020. View Article : Google Scholar | |
Wu Z and McGoogan JM: Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 323:1239–1242. 2020. View Article : Google Scholar : PubMed/NCBI | |
Aktas G, Balci B, Yilmaz S, Bardak H and Duman TT: Characteristics of Covid-19 infection with the original SARS-Cov-2 virus and other variants: A comparative review. J Bionic Mem. 2:96–112. 2022. | |
Ceasovschih A, Sorodoc V, Shor A, Haliga RE, Roth L, Lionte C, Onofrei Aursulesei V, Sirbu O, Culis N, Shapieva A, et al: Distinct features of vascular diseases in COVID-19. J Inflamm Res. 16:2783–2800. 2023. View Article : Google Scholar : PubMed/NCBI | |
Khalid A, Ali Jaffar M, Khan T, Abbas Lail R, Ali S, Aktas G, Waris A, Javaid A, Ijaz N and Muhammad N: Hematological and biochemical parameters as diagnostic and prognostic markers in SARS-COV-2 infected patients of Pakistan: A retrospective comparative analysis. Hematology. 26:529–542. 2021. View Article : Google Scholar : PubMed/NCBI | |
Aktas G: Hematological predictors of novel Coronavirus infection. Rev Assoc Med Bras (1992). 67 (Suppl 1):S1–S2. 2021. View Article : Google Scholar | |
Fiolet T, Kherabi Y, MacDonald CJ, Ghosn J and Peiffer-Smadja N: Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS-CoV-2 and variants of concern: A narrative review. Clin Microbiol Infect. 28:202–221. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zheng B, Zhao Q, Yang W, Feng P, Xin C, Ying Y, Yang B, Han B, Zhu J, Zhang M and Li G: Small-molecule antiviral treatments for COVID-19: A systematic review and network meta-analysis. Int J Antimicrob Agents. 63:1070962024. View Article : Google Scholar : PubMed/NCBI | |
Saul S and Einav S: Old drugs for a new virus: Repurposed approaches for combating COVID-19. ACS Infect Dis. 6:2304–2318. 2020. View Article : Google Scholar : PubMed/NCBI | |
Crawford KHD, Dingens AS, Eguia R, Wolf CR, Wilcox N, Logue JK, Shuey K, Casto AM, Fiala B, Wrenn S, et al: Dynamics of neutralizing antibody titers in the months after severe acute respiratory syndrome coronavirus 2 infection. J Infect Dis. 223:197–205. 2021. View Article : Google Scholar : PubMed/NCBI | |
Prévost J, Gasser R, Beaudoin-Bussières G, Richard J, Duerr R, Laumaea A, Anand SP, Goyette G, Benlarbi M, Ding S, et al: Cross-Sectional Evaluation of Humoral Responses against SARS-CoV-2 Spike. Cell Rep Med. 1:1001262020. View Article : Google Scholar : PubMed/NCBI | |
Li M, Wang H, Tian L, Pang Z, Yang Q, Huang T, Fan J, Song L, Tong Y and Fan H: COVID-19 vaccine development: milestones, lessons and prospects. Signal Transduct Target Ther. 7:1462022. View Article : Google Scholar : PubMed/NCBI | |
Wakefield TW, Strieter RM, Wilke CA, Kadell AM, Wrobleski SK, Burdick MD, Schmidt R, Kunkel SL and Greenfield LJ: Venous thrombosis-associated inflammation and attenuation with neutralizing antibodies to cytokines and adhesion molecules. Arterioscler Thromb Vasc Biol. 15:258–268. 1995. View Article : Google Scholar : PubMed/NCBI | |
Cagdas D: Convalescent plasma and hyperimmune globulin therapy in COVID-19. Expert Rev Clin Immunol. 17:309–316. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li L, Zhang W, Hu Y, Tong X, Zheng S, Yang J, Kong Y, Ren L, Wei Q, Mei H, et al: Effect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19: A Randomized clinical trial. JAMA. 324:460–470. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tang J, Grubbs G, Lee Y, Golding H and Khurana S: Impact of convalescent plasma therapy on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody profile in coronavirus disease 2019 (COVID-19) Patients. Clin Infect Dis. 74:327–334. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Ma Y, Xu Y, Liu J, Li X, Chen Y, Chen Y, Xie J, Xiao L, Xiang Z, et al: Resistance of SARS-CoV-2 Omicron variant to convalescent and CoronaVac vaccine plasma. Emerg Microbes Infect. 11:424–427. 2022.PubMed/NCBI | |
Cao W, Liu X, Hong K, Ma Z, Zhang Y, Lin L, Han Y, Xiong Y, Liu Z, Ruan L and Li T: High-Dose intravenous immunoglobulin in severe coronavirus disease 2019: A multicenter retrospective study in China. Front Immunol. 12:6278442021. View Article : Google Scholar : PubMed/NCBI | |
Cao W, Liu X, Bai T, Fan H, Hong K, Song H, Han Y, Lin L, Ruan L and Li T: High-Dose intravenous immunoglobulin as a therapeutic option for deteriorating patients with coronavirus disease 2019. Open Forum Infect Dis. 7:ofaa1022020. View Article : Google Scholar : PubMed/NCBI | |
Xiang HR, Cheng X, Li Y, Luo WW, Zhang QZ and Peng WX: Efficacy of IVIG (intravenous immunoglobulin) for corona virus disease 2019 (COVID-19): A meta-analysis. Int Immunopharmacol. 96:1077322021. View Article : Google Scholar : PubMed/NCBI | |
Kindgen-Milles D, Feldt T, Jensen BEO, Dimski T and Brandenburger T: Why the application of IVIG might be beneficial in patients with COVID-19. Lancet Respir Med. 10:e152022. View Article : Google Scholar : PubMed/NCBI | |
Breedveld FC: Therapeutic monoclonal antibodies. Lancet. 355:735–740. 2000. View Article : Google Scholar : PubMed/NCBI | |
Buss NA, Henderson SJ, McFarlane M, Shenton JM and de Haan L: Monoclonal antibody therapeutics: History and future. Curr Opin Pharmacol. 12:615–622. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ren Z, Shen C and Peng J: Status and developing strategies for neutralizing monoclonal antibody therapy in the omicron Era of COVID-19. Viruses. 15:12972023. View Article : Google Scholar : PubMed/NCBI | |
Pinto D, Park YJ, Beltramello M, Walls AC, Tortorici MA, Bianchi S, Jaconi S, Culap K, Zatta F, De Marco A, et al: Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature. 583:290–295. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hillenbrand M, Esslinger C, Seidenberg J, Weber M, Zingg A, Townsend C, Eicher B, Rutkauskaite J, Riese P, Guzman CA, et al: Fast-Track Discovery of SARS-CoV-2-neutralizing antibodies from human B Cells by direct functional screening. Viruses. 16:3392024. View Article : Google Scholar : PubMed/NCBI | |
Gottlieb RL, Nirula A, Chen P, Boscia J, Heller B, Morris J, Huhn G, Cardona J, Mocherla B, Stosor V, et al: Effect of bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19: A Randomized clinical trial. JAMA. 325:632–644. 2021. View Article : Google Scholar : PubMed/NCBI | |
Weinreich DM, Sivapalasingam S, Norton T, Ali S, Gao H, Bhore R, Musser BJ, Soo Y, Rofail D, Im J, et al: REGN-COV2, a neutralizing antibody cocktail, in outpatients with Covid-19. N Engl J Med. 384:238–251. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ji Y, Zhang Q, Cheng L, Ge J, Wang R, Fang M, Mucker EM, Chen P, Ma J, Zhang R, et al: Preclinical characterization of amubarvimab and romlusevimab, a pair of non-competing neutralizing monoclonal antibody cocktail, against SARS-CoV-2. Front Immunol. 13:9804352022. View Article : Google Scholar : PubMed/NCBI | |
Evering TH, Chew KW, Giganti MJ, Moser C, Pinilla M, Wohl DA, Currier JS, Eron JJ, Javan AC, Bender Ignacio R, et al: Safety and efficacy of combination SARS-CoV-2 neutralizing monoclonal antibodies amubarvimab plus romlusevimab in nonhospitalized patients with COVID-19. Ann Intern Med. 176:658–666. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kim C, Ryu DK, Lee J, Kim YI, Seo JM, Kim YG, Jeong JH, Kim M, Kim JI, Kim P, et al: A therapeutic neutralizing antibody targeting receptor binding domain of SARS-CoV-2 spike protein. Nat Commun. 12:2882021. View Article : Google Scholar : PubMed/NCBI | |
Wang YT, Allen RD, Kim K, Shafee N, Gonzalez AJ, Nguyen MN, Valentine KM, Cao X, Lu L, Pai CI, et al: SARS-CoV-2 monoclonal antibodies with therapeutic potential: Broad neutralizing activity and No evidence of antibody-dependent enhancement. Antiviral Res. 195:1051852021. View Article : Google Scholar : PubMed/NCBI | |
Tian D, Sun Y, Xu H and Ye Q: The emergence and epidemic characteristics of the highly mutated SARS-CoV-2 Omicron variant. J Med Virol. 94:2376–2383. 2022. View Article : Google Scholar : PubMed/NCBI | |
Guo H, Gao Y, Li T, Li T, Lu Y, Zheng L, Liu Y, Yang T, Luo F, Song S, et al: Structures of Omicron spike complexes and implications for neutralizing antibody development. Cell Rep. 39:1107702022. View Article : Google Scholar : PubMed/NCBI | |
Muyldermans S: Applications of Nanobodies. Annu Rev Anim Biosci. 9:401–421. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Xu K, Jung S, Conte A, Lieberman J, Muecksch F, Lorenzi JCC, Park S, Schmidt F, Wang Z, et al: Nanobodies from camelid mice and llamas neutralize SARS-CoV-2 variants. Nature. 595:278–282. 2021. View Article : Google Scholar : PubMed/NCBI | |
Weiss SR and Navas-Martin S: Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev. 69:635–664. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY, et al: A new coronavirus associated with human respiratory disease in China. Nature. 579:265–269. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang H and Rao Z: Structural biology of SARS-CoV-2 and implications for therapeutic development. Nat Rev Microbiol. 19:685–700. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Liu Q and Guo D: Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol. 92:418–423. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kim D, Lee JY, Yang JS, Kim JW, Kim VN and Chang H: The Architecture of SARS-CoV-2 Transcriptome. Cell. 181:914–921.e10. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, et al: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 181:271–280.e8. 2020. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Yang C, Xu XF, Xu W and Liu SW: Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin. 41:1141–1149. 2020. View Article : Google Scholar : PubMed/NCBI | |
Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT and Veesler D: Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 181:281–292.e6. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, Lu G, Qiao C, Hu Y, Yuen KY, et al: Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell. 181:894–904.e9. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cai Y, Zhang J, Xiao T, Peng H, Sterling SM, Walsh RM Jr, Rawson S, Rits-Volloch S and Chen B: Distinct conformational states of SARS-CoV-2 spike protein. Science. 369:1586–1592. 2020. View Article : Google Scholar : PubMed/NCBI | |
Song W, Gui M, Wang X and Xiang Y: Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog. 14:e10072362018. View Article : Google Scholar : PubMed/NCBI | |
Chi X, Yan R, Zhang J, Zhang G, Zhang Y, Hao M, Zhang Z, Fan P, Dong Y, Yang Y, et al: A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science. 369:650–655. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Wang P, Nair MS, Yu J, Rapp M, Wang Q, Luo Y, Chan JF, Sahi V, Figueroa A, et al: Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature. 584:450–456. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yao H, Song Y, Chen Y, Wu N, Xu J, Sun C, Zhang J, Weng T, Zhang Z, Wu Z, et al: Molecular Architecture of the SARS-CoV-2 Virus. Cell. 183:730–738.e13. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fantini J, Di Scala C, Chahinian H and Yahi N: Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection. Int J Antimicrob Agents. 55:1059602020. View Article : Google Scholar : PubMed/NCBI | |
Fantini J, Chahinian H and Yahi N: Synergistic antiviral effect of hydroxychloroquine and azithromycin in combination against SARS-CoV-2: What molecular dynamics studies of virus-host interactions reveal. Int J Antimicrob Agents. 56:1060202020. View Article : Google Scholar | |
Seyran M, Takayama K, Uversky VN, Adadi P, Mohamed Abd El-Aziz T, Soares AG, Kandimalla R, Tambuwala M, Hassan SS, Azad GK, et al: The structural basis of accelerated host cell entry by SARS-CoV-2†. FEBS J. 288:5010–5020. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, Zhang Q, Shi X, Wang Q, Zhang L and Wang X: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 581:215–220. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li F, Li W, Farzan M and Harrison SC: Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science. 309:1864–1868. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Cai Y, Xiao T, Lu J, Peng H, Sterling SM, Walsh RM Jr, Rits-Volloch S, Zhu H, Woosley AN, et al: Structural impact on SARS-CoV-2 spike protein by D614G substitution. Science. 372:525–530. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jackson CB, Farzan M, Chen B and Choe H: Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol. 23:3–20. 2022. View Article : Google Scholar : PubMed/NCBI | |
Benton DJ, Wrobel AG, Xu P, Roustan C, Martin SR, Rosenthal PB, Skehel JJ and Gamblin SJ: Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion. Nature. 588:327–330. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bayati A, Kumar R, Francis V and McPherson PS: SARS-CoV-2 infects cells after viral entry via clathrin-mediated endocytosis. J Biol Chem. 296:1003062021. View Article : Google Scholar : PubMed/NCBI | |
Jaimes JA, Millet JK and Whittaker GR: Proteolytic Cleavage of the SARS-CoV-2 Spike protein and the role of the novel S1/S2 Site. iScienc. 23:1012122020. View Article : Google Scholar | |
Newcombe C and Newcombe AR: Antibody production: Polyclonal-derived biotherapeutics. J Chromatogr B Analyt Technol Biomed Life Sci. 848:2–7. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ascoli CA and Aggeler B: Overlooked benefits of using polyclonal antibodies. Biotechniques. 65:127–136. 2018. View Article : Google Scholar : PubMed/NCBI | |
Leenaars M and Hendriksen CF: Critical steps in the production of polyclonal and monoclonal antibodies: Evaluation and recommendations. ILAR J. 46:269–279. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zylberman V, Sanguineti S, Pontoriero AV, Higa SV, Cerutti ML, Morrone Seijo SM, Pardo R, Muñoz L, Acuña Intrieri ME, Alzogaray VA, et al: Development of a hyperimmune equine serum therapy for COVID-19 in Argentina. Medicina (B Aires). 80 (Suppl 3):S1–S6. 2020. | |
Lopardo G, Belloso WH, Nannini E, Colonna M, Sanguineti S, Zylberman V, Muñoz L, Dobarro M, Lebersztein G, Farina J, et al: RBD-specific polyclonal F(ab´)2 fragments of equine antibodies in patients with moderate to severe COVID-19 disease: A randomized, multicenter, double-blind, placebo-controlled, adaptive phase 2/3 clinical trial. EClinicalMedicine. 34:1008432021. View Article : Google Scholar : PubMed/NCBI | |
Vanhove B, Duvaux O, Rousse J, Royer PJ, Evanno G, Ciron C, Lheriteau E, Vacher L, Gervois N, Oger R, et al: High neutralizing potency of swine glyco-humanized polyclonal antibodies against SARS-CoV-2. Eur J Immunol. 51:1412–1422. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gaborit B, Dailly E, Vanhove B, Josien R, Lacombe K, Dubee V, Ferre V, Brouard S, Ader F, Vibet MA, et al: Pharmacokinetics and Safety of XAV-19, a Swine Glyco-humanized Polyclonal Anti-SARS-CoV-2 Antibody, for COVID-19-Related Moderate Pneumonia: A Randomized, Double-Blind, Placebo-Controlled, Phase IIa Study. Antimicrob Agents Chemother. 65:e01237212021. View Article : Google Scholar : PubMed/NCBI | |
Vanhove B, Marot S, So RT, Gaborit B, Evanno G, Malet I, Lafrogne G, Mevel E, Ciron C, Royer PJ, et al: XAV-19, a swine glyco-humanized polyclonal antibody against SARS-CoV-2 spike receptor-binding domain, targets multiple epitopes and broadly neutralizes variants. Front Immunol. 12:7612502021. View Article : Google Scholar : PubMed/NCBI | |
Singh R, Chandley P and Rohatgi S: Recent advances in the development of monoclonal antibodies and next-generation antibodies. Immunohorizons. 7:886–897. 2023. View Article : Google Scholar : PubMed/NCBI | |
Safdari Y, Farajnia S, Asgharzadeh M and Khalili M: Antibody humanization methods-a review and update. Biotechnol Genet Eng Rev. 29:175–186. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yu H, Borsotti C, Schickel JN, Zhu S, Strowig T, Eynon EE, Frleta D, Gurer C, Murphy AJ, Yancopoulos GD, et al: A novel humanized mouse model with significant improvement of class-switched, antigen-specific antibody production. Blood. 129:959–969. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pedrioli A and Oxenius A: Single B cell technologies for monoclonal antibody discovery. Trends Immunol. 42:1143–1158. 2021. View Article : Google Scholar : PubMed/NCBI | |
Winter G and Milstein C: Man-made antibodies. Nature. 349:293–299. 1991. View Article : Google Scholar : PubMed/NCBI | |
McCafferty J, Griffiths AD, Winter G and Chiswell DJ: Phage antibodies: Filamentous phage displaying antibody variable domains. Nature. 348:552–554. 1990. View Article : Google Scholar : PubMed/NCBI | |
Chen F, Liu Z, Kang W, Jiang F, Yang X, Yin F, Zhou Z and Li Z: Single-domain antibodies against SARS-CoV-2 RBD from a two-stage phage screening of universal and focused synthetic libraries. BMC Infect Dis. 24:1992024. View Article : Google Scholar : PubMed/NCBI | |
Barnes CO, Jette CA, Abernathy ME, Dam KA, Esswein SR, Gristick HB, Malyutin AG, Sharaf NG, Huey-Tubman KE, Lee YE, et al: SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature. 588:682–687. 2020. View Article : Google Scholar : PubMed/NCBI | |
Piccoli L, Park YJ, Tortorici MA, Czudnochowski N, Walls AC, Beltramello M, Silacci-Fregni C, Pinto D, Rosen LE, Bowen JE, et al: Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology. Cell. 183:1024–1042.e21. 2020. View Article : Google Scholar : PubMed/NCBI | |
Röltgen K, Powell AE, Wirz OF, Stevens BA, Hogan CA, Najeeb J, Hunter M, Wang H, Sahoo MK, Huang C, et al: Defining the features and duration of antibody responses to SARS-CoV-2 infection associated with disease severity and outcome. Sci Immunol. 5:eabe02402020. View Article : Google Scholar : PubMed/NCBI | |
Barnes CO, West AP Jr, Huey-Tubman KE, Hoffmann MAG, Sharaf NG, Hoffman PR, Koranda N, Gristick HB, Gaebler C, Muecksch F, et al: Structures of Human Antibodies Bound to SARS-CoV-2 spike reveal common epitopes and recurrent features of antibodies. Cell. 182:828–842.e16. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Wang F, Shen C, Peng W, Li D, Zhao C, Li Z, Li S, Bi Y, Yang Y, et al: A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2. Science. 368:1274–1278. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shi R, Shan C, Duan X, Chen Z, Liu P, Song J, Song T, Bi X, Han C, Wu L, et al: A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature. 584:120–124. 2020. View Article : Google Scholar : PubMed/NCBI | |
Banach BB, Cerutti G, Fahad AS, Shen CH, Oliveira De Souza M, Katsamba PS, Tsybovsky Y, Wang P, Nair MS, Huang Y, et al: Paired heavy- and light-chain signatures contribute to potent SARS-CoV-2 neutralization in public antibody responses. Cell Rep. 37:1097712021. View Article : Google Scholar : PubMed/NCBI | |
Starr TN, Czudnochowski N, Liu Z, Zatta F, Park YJ, Addetia A, Pinto D, Beltramello M, Hernandez P, Greaney AJ, et al: SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape. Nature. 597:97–102. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cameroni E, Bowen JE, Rosen LE, Saliba C, Zepeda SK, Culap K, Pinto D, VanBlargan LA, De Marco A, di Iulio J, et al: Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature. 602:664–670. 2022. View Article : Google Scholar : PubMed/NCBI | |
Brouwer PJM, Caniels TG, van der Straten K, Snitselaar JL, Aldon Y, Bangaru S, Torres JL, Okba NMA, Claireaux M, Kerster G, et al: Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science. 369:643–650. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kim SI, Noh J, Kim S, Choi Y, Yoo DK, Lee Y, Lee H, Jung J, Kang CK, Song KH, et al: Stereotypic neutralizing VH antibodies against SARS-CoV-2 spike protein receptor binding domain in patients with COVID-19 and healthy individuals. Sci Transl Med. 13:eabd69902021. View Article : Google Scholar : PubMed/NCBI | |
Greaney AJ, Starr TN, Barnes CO, Weisblum Y, Schmidt F, Caskey M, Gaebler C, Cho A, Agudelo M, Finkin S, et al: Mapping mutations to the SARS-CoV-2 RBD that escape binding by different classes of antibodies. Nat Commun. 12:41962021. View Article : Google Scholar : PubMed/NCBI | |
Li D, Edwards RJ, Manne K, Martinez DR, Schäfer A, Alam SM, Wiehe K, Lu X, Parks R, Sutherland LL, et al: In vitro and in vivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell. 184:4203–4219.e32. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tian X, Li C, Huang A, Xia S, Lu S, Shi Z, Lu L, Jiang S, Yang Z, Wu Y and Ying T: Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect. 9:382–385. 2020. View Article : Google Scholar : PubMed/NCBI | |
ter Meulen J, van den Brink EN, Poon LL, Marissen WE, Leung CS, Cox F, Cheung CY, Bakker AQ, Bogaards JA, van Deventer E, et al: Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. PLoS Med. 3:e2372006. View Article : Google Scholar : PubMed/NCBI | |
Yuan M, Wu NC, Zhu X, Lee CD, So RTY, Lv H, Mok CKP and Wilson IA: A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science. 368:630–633. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gupta A, Gonzalez-Rojas Y, Juarez E, Crespo Casal M, Moya J, Falci DR, Sarkis E, Solis J, Zheng H, Scott N, et al: Early Treatment for Covid-19 with SARS-CoV-2 Neutralizing Antibody Sotrovimab. N Engl J Med. 385:1941–1950. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rockett R, Basile K, Maddocks S, Fong W, Agius JE, Johnson-Mackinnon J, Arnott A, Chandra S, Gall M, Draper J, et al: Resistance Mutations in SARS-CoV-2 delta variant after sotrovimab use. N Engl J Med. 386:1477–1479. 2022. View Article : Google Scholar : PubMed/NCBI | |
Martinez DR, Schaefer A, Gobeil S, Li D, De la Cruz G, Parks R, Lu X, Barr M, Manne K, Mansouri K, et al: A broadly neutralizing antibody protects against SARS-CoV, pre-emergent bat CoVs, and SARS-CoV-2 variants in mice. bioRxiv (Preprint). doi: 10.1101/2021.04.27.441655. | |
Wec AZ, Wrapp D, Herbert AS, Maurer DP, Haslwanter D, Sakharkar M, Jangra RK, Dieterle ME, Lilov A, Huang D, et al: Broad neutralization of SARS-related viruses by human monoclonal antibodies. Science. 369:731–736. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rappazzo CG, Tse LV, Kaku CI, Wrapp D, Sakharkar M, Huang D, Deveau LM, Yockachonis TJ, Herbert AS, Battles MB, et al: Broad and potent activity against SARS-like viruses by an engineered human monoclonal antibody. Science. 371:823–829. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li D, Sempowski GD, Saunders KO, Acharya P and Haynes BF: SARS-CoV-2 Neutralizing Antibodies for COVID-19 Prevention and Treatment. Annu Rev Med. 73:1–16. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hastie KM, Li H, Bedinger D, Schendel SL, Dennison SM, Li K, Rayaprolu V, Yu X, Mann C, Zandonatti M, et al: Defining variant-resistant epitopes targeted by SARS-CoV-2 antibodies: A global consortium study. Science. 374:472–478. 2021. View Article : Google Scholar : PubMed/NCBI | |
McCallum M, De Marco A, Lempp FA, Tortorici MA, Pinto D, Walls AC, Beltramello M, Chen A, Liu Z, Zatta F, et al: N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell. 184:2332–2347.e16. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chi XY, Yan RH, Zhang J, Zhang G, Zhang Y, Hao M, Zhang Z, Fan P, Dong Y, Yang Y, et al: A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science. 369:650–655. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wrapp D, De Vlieger D, Corbett KS, Torres GM, Wang N, Van Breedam W, Roose K, van Schie L; VIB-CMB COVID-19 Response Team; Hoffmann M, ; et al: Structural basis for potent neutralization of betacoronaviruses by single-domain camelid antibodies. Cell. 181:1436–1441. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hoffmann M, Kleine-Weber H and Pöhlmann S: A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 is essential for infection of human lung cells. Mol Cell. 78:779–784.e5. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cerutti G, Guo Y, Zhou T, Gorman J, Lee M, Rapp M, Reddem ER, Yu J, Bahna F, Bimela J, et al: Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite. Cell Host Microbe. 29:819–833.e7. 2021. View Article : Google Scholar : PubMed/NCBI | |
Nielsen SCA, Yang F, Jackson KJL, Hoh RA, Röltgen K, Jean GH, Stevens BA, Lee JY, Rustagi A, Rogers AJ, et al: Human B Cell Clonal Expansion and Convergent Antibody Responses to SARS-CoV-2. Cell Host Microbe. 28:516–525.e5. 2020. View Article : Google Scholar : PubMed/NCBI | |
Boyd SD, Gaëta BA, Jackson KJ, Fire AZ, Marshall EL, Merker JD, Maniar JM, Zhang LN, Sahaf B, Jones CD, et al: Individual variation in the germline Ig gene repertoire inferred from variable region gene rearrangements. J Immunol. 184:6986–6992. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang N, Sun Y, Feng R, Wang Y, Guo Y, Zhang L, Deng YQ, Wang L, Cui Z, Cao L, et al: Structure-based development of human antibody cocktails against SARS-CoV-2. Cell Res. 31:101–103. 2021. View Article : Google Scholar : PubMed/NCBI | |
Haslwanter D, Dieterle ME, Wec AZ, O'Brien CM, Sakharkar M, Florez C, Tong K, Rappazzo CG, Lasso G, Vergnolle O, et al: A Combination of Receptor-Binding Domain and N-Terminal Domain Neutralizing Antibodies Limits the Generation of SARS-CoV-2 Spike Neutralization-Escape Mutants. mBio. 12:e02473212021. View Article : Google Scholar : PubMed/NCBI | |
Nguyen-Contant P, Embong AK, Kanagaiah P, Chaves FA, Yang H, Branche AR, Topham DJ and Sangster MY: S Protein-Reactive IgG and Memory B Cell Production after Human SARS-CoV-2 Infection Includes Broad Reactivity to the S2 Subunit. mBio. 11:e01991–20. 2020. View Article : Google Scholar : PubMed/NCBI | |
Guo L, Wang Y, Kang L, Hu Y, Wang L, Zhong J, Chen H, Ren L, Gu X, Wang G, et al: Cross-reactive antibody against human coronavirus OC43 spike protein correlates with disease severity in COVID-19 patients: A retrospective study. Emerg Microbes Infect. 10:664–676. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zohar T, Loos C, Fischinger S, Atyeo C, Wang C, Slein MD, Burke J, Yu J, Feldman J, Hauser BM, et al: Compromised humoral functional evolution tracks with SARS-CoV-2 Mortality. Cell. 183:1508–1519.e12. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ma X, Zou F, Yu F, Li R, Yuan Y, Zhang Y, Zhang X, Deng J, Chen T, Song Z, et al: Nanoparticle vaccines based on the receptor binding Domain (RBD) and Heptad Repeat (HR) of SARS-CoV-2 elicit robust protective immune responses. Immunity. 53:1315–1330.e9. 2020. View Article : Google Scholar : PubMed/NCBI | |
Silva RP, Huang Y, Nguyen AW, Hsieh CL, Olaluwoye OS, Kaoud TS, Wilen RE, Qerqez AN, Park JG, Khalil AM, et al: Identification of a conserved S2 epitope present on spike proteins from all highly pathogenic coronaviruses. Elife. 12:e837102023. View Article : Google Scholar : PubMed/NCBI | |
Hsieh CL, Werner AP, Leist SR, Stevens LJ, Falconer E, Goldsmith JA, Chou CW, Abiona OM, West A, Westendorf K, et al: Stabilized coronavirus spike stem elicits a broadly protective antibody. Cell Rep. 37:1099292021. View Article : Google Scholar : PubMed/NCBI | |
Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, Bendahman N and Hamers R: Naturally occurring antibodies devoid of light chains. Nature. 363:446–448. 1993. View Article : Google Scholar : PubMed/NCBI | |
Tanaka Y, Nishikawa M, Kamisaki K, Hachiya S, Nakamura M, Kuwazuru T, Tanimura S, Soyano K and Takeda K: Marine-derived microbes and molecules for drug discovery. Inflamm Regen. 42:182022. View Article : Google Scholar : PubMed/NCBI | |
Muyldermans S: Nanobodies: Natural single-domain antibodies. Annu Rev Biochem. 82:775–797. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jovčevska I and Muyldermans S: The therapeutic potential of nanobodies. BioDrugs. 34:11–26. 2020. View Article : Google Scholar : PubMed/NCBI | |
Muyldermans S, Baral TN, Retamozzo VC, De Baetselier P, De Genst E, Kinne J, Leonhardt H, Magez S, Nguyen VK, Revets H, et al: Camelid immunoglobulins and nanobody technology. Vet Immunol Immunopathol. 128:178–183. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zielonka S, Empting M, Grzeschik J, Könning D, Barelle CJ and Kolmar H: Structural insights and biomedical potential of IgNAR scaffolds from sharks. MAbs. 7:15–25. 2015. View Article : Google Scholar : PubMed/NCBI | |
Transue TR, De Genst E, Ghahroudi MA, Wyns L and Muyldermans S: Camel single-domain antibody inhibits enzyme by mimicking carbohydrate substrate. Proteins. 32:515–522. 1998. View Article : Google Scholar : PubMed/NCBI | |
Bachmann MF, Mohsen MO, Zha L, Vogel M and Speiser DE: SARS-CoV-2 structural features may explain limited neutralizing-antibody responses. NPJ Vaccines. 6:22021. View Article : Google Scholar : PubMed/NCBI | |
Steeland S, Vandenbroucke RE and Libert C: Nanobodies as therapeutics: Big opportunities for small antibodies. Drug Discov Today. 21:1076–1113. 2016. View Article : Google Scholar : PubMed/NCBI | |
Holliger P and Hudson PJ: Engineered antibody fragments and the rise of single domains. Nat Biotechnol. 23:1126–1136. 2005. View Article : Google Scholar : PubMed/NCBI | |
Vu KB, Ghahroudi MA, Wyns L and Muyldermans S: Comparison of llama VH sequences from conventional and heavy chain antibodies. Mol Immunol. 34:1121–1131. 1997. View Article : Google Scholar : PubMed/NCBI | |
Zhang YF, Sun Y, Hong J and Ho M: Humanization of the Shark VNAR Single Domain Antibody Using CDR Grafting. Curr Protoc. 3:e6302023. View Article : Google Scholar : PubMed/NCBI | |
Almagro JC and Fransson J: Humanization of antibodies. Front Biosci. 13:1619–1633. 2008.PubMed/NCBI | |
Wu Y, Li C, Xia S, Tian X, Kong Y, Wang Z, Gu C, Zhang R, Tu C, Xie Y, et al: Identification of Human Single-Domain Antibodies against SARS-CoV-2. Cell Host Microbe. 27:891–898.e5. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hassanzadeh-Ghassabeh G, Devoogdt N, De Pauw P, Vincke C and Muyldermans S: Nanobodies and their potential applications. Nanomedicine (Lond). 8:1013–1026. 2013. View Article : Google Scholar : PubMed/NCBI | |
Harmsen MM and De Haard HJ: Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol. 77:13–22. 2007. View Article : Google Scholar : PubMed/NCBI | |
Schoof M, Faust B, Saunders RA, Sangwan S, Rezelj V, Hoppe N, Boone M, Billesbølle CB, Puchades C, Azumaya CM, et al: An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike. Science. 370:1473–1479. 2020. View Article : Google Scholar : PubMed/NCBI | |
Van Heeke G, Allosery K, De Brabandere V, De Smedt T, Detalle L and de Fougerolles A: Nanobodies® as inhaled biotherapeutics for lung diseases. Pharmacol Ther. 169:47–56. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xiang Y, Nambulli S, Xiao Z, Liu H, Sang Z, Duprex WP, Schneidman-Duhovny D, Zhang C and Shi Y: Versatile and multivalent nanobodies efficiently neutralize SARS-CoV-2. Science. 370:1479–1484. 2020. View Article : Google Scholar : PubMed/NCBI | |
Nambulli S, Xiang Y, Tilston-Lunel NL, Rennick LJ, Sang Z, Klimstra WB, Reed DS, Crossland NA, Shi Y and Duprex WP: Inhalable Nanobody (PiN-21) prevents and treats SARS-CoV-2 infections in Syrian hamsters at ultra-low doses. Sci Adv. 7:eabh03192021. View Article : Google Scholar : PubMed/NCBI | |
Gai J, Ma L, Li G, Zhu M, Qiao P, Li X, Zhang H, Zhang Y, Chen Y, Ji W, et al: A potent neutralizing nanobody against SARS-CoV-2 with inhaled delivery potential. MedComm (2020). 2:101–113. 2021.PubMed/NCBI | |
Li C, Zhan W, Yang Z, Tu C, Hu G, Zhang X, Song W, Du S, Zhu Y, Huang K, et al: Broad neutralization of SARS-CoV-2 variants by an inhalable bispecific single-domain antibody. Cell. 185:1389–1401.e18. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ma H, Zhang X, Zeng W, Zhou J, Chi X, Chen S, Zheng P, Wang M, Wu Y, Zhao D, et al: A bispecific nanobody dimer broadly neutralizes SARS-CoV-1 & 2 variants of concern and offers substantial protection against Omicron via low-dose intranasal administration. Cell Discov. 8:1322022. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Wang Y, Cheng L, Ni F, Zhu L, Ma S, Huang B, Ji M, Hu H, Li Y, et al: Short-Term Instantaneous Prophylaxis and Efficient Treatment Against SARS-CoV-2 in hACE2 Mice Conferred by an Intranasal Nanobody (Nb22). Front Immunol. 13:8654012022. View Article : Google Scholar : PubMed/NCBI | |
Xiang Y, Huang W, Liu H, Sang Z, Nambulli S, Tubiana J, Williams KL Jr, Duprex WP, Schneidman-Duhovny D, Wilson IA, et al: Superimmunity by pan-sarbecovirus nanobodies. Cell Rep. 39:1110042022. View Article : Google Scholar : PubMed/NCBI | |
Nagata K, Utsumi D, Asaka MN, Maeda R, Shirakawa K, Kazuma Y, Nomura R, Horisawa Y, Yanagida Y, Kawai Y, et al: Intratracheal trimerized nanobody cocktail administration suppresses weight loss and prolongs survival of SARS-CoV-2 infected mice. Commun Med (Lond). 2:1522022. View Article : Google Scholar : PubMed/NCBI | |
Maeda R, Fujita J, Konishi Y, Kazuma Y, Yamazaki H, Anzai I, Watanabe T, Yamaguchi K, Kasai K, Nagata K, et al: A panel of nanobodies recognizing conserved hidden clefts of all SARS-CoV-2 spike variants including Omicron. Commun Biol. 5:6692022. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Wu L, Liu B, Xu K, Lei W, Deng J, Rong X, Du P, Wang L, Wang D, et al: Two pan-SARS-CoV-2 nanobodies and their multivalent derivatives effectively prevent Omicron infections in mice. Cell Rep Med. 4:1009182023. View Article : Google Scholar : PubMed/NCBI | |
Bournazos S, Gupta A and Ravetch JV: The role of IgG Fc receptors in antibody-dependent enhancement. Nat Rev Immunol. 20:633–643. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang TT, Sewatanon J, Memoli MJ, Wrammert J, Bournazos S, Bhaumik SK, Pinsky BA, Chokephaibulkit K, Onlamoon N, Pattanapanyasat K, et al: IgG antibodies to dengue enhanced for FcγRIIIA binding determine disease severity. Science. 355:395–398. 2017. View Article : Google Scholar : PubMed/NCBI | |
Iwasaki A and Yang Y: The potential danger of suboptimal antibody responses in COVID-19. Nat Rev Immunol. 20:339–341. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ubol S and Halstead SB: How innate immune mechanisms contribute to antibody-enhanced viral infections. Clin Vaccine Immunol. 17:1829–1835. 2010. View Article : Google Scholar : PubMed/NCBI | |
Haynes BF, Corey L, Fernandes P, Gilbert PB, Hotez PJ, Rao S, Santos MR, Schuitemaker H, Watson M and Arvin A: Prospects for a safe COVID-19 vaccine. Sci Transl Med. 12:eabe09482020. View Article : Google Scholar : PubMed/NCBI | |
Yang Y and Xu F: Evolving understanding of antibody-dependent enhancement (ADE) of SARS-CoV-2. Front Immunol. 13:10082852022. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Peng Y, Wang R, Jiao S, Wang M, Huang W, Shan C, Jiang W, Li Z, Gu C, et al: Characterization of neutralizing antibody with prophylactic and therapeutic efficacy against SARS-CoV-2 in rhesus monkeys. Nat Commun. 11:57522020. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Soh WT, Kishikawa JI, Hirose M, Nakayama EE, Li S, Sasai M, Suzuki T, Tada A, Arakawa A, et al: An infectivity-enhancing site on the SARS-CoV-2 spike protein targeted by antibodies. Cell. 184:3452–3466.e18. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Deng T, Zhang Y, Niu W, Nie Q, Yang S, Liu P, Pei P, Chen L, Li H and Cao B: ACE2 can act as the secondary receptor in the FcγR-dependent ADE of SARS-CoV-2 infection. iScience. 25:1037202022. View Article : Google Scholar : PubMed/NCBI | |
Tkaczyk C, Okayama Y, Woolhiser MR, Hagaman DD, Gilfillan AM and Metcalfe DD: Activation of human mast cells through the high affinity IgG receptor. Mol Immunol. 38:1289–1293. 2002. View Article : Google Scholar : PubMed/NCBI | |
Darrell DO, Gherlone N, Fremont-Smith P, Tisdall P and Fremont-Smith M: Kawasaki Disease, Multisystem Inflammatory Syndrome in Children: Antibody-Induced Mast Cell Activation Hypothesis. J Pediatrics & Pediatr Med. 4:1–7. 2020. View Article : Google Scholar | |
Ricke DO: Two Different Antibody-Dependent Enhancement (ADE) Risks for SARS-CoV-2 Antibodies. Front Immunol. 12:6400932021. View Article : Google Scholar : PubMed/NCBI | |
Yahi N, Chahinian H and Fantini J: Infection-enhancing anti-SARS-CoV-2 antibodies recognize both the original Wuhan/D614G strain and Delta variants. A potential risk for mass vaccination? J Infect. 83:607–635. 2021.PubMed/NCBI | |
Zhou Y, Liu Z, Li S, Xu W, Zhang Q, Silva IT, Li C, Wu Y, Jiang Q, Liu Z, et al: Enhancement versus neutralization by SARS-CoV-2 antibodies from a convalescent donor associates with distinct epitopes on the RBD. Cell Rep. 34:1086992021. View Article : Google Scholar : PubMed/NCBI | |
Hachmann NP, Miller J, Collier AY, Ventura JD, Yu J, Rowe M, Bondzie EA, Powers O, Surve N, Hall K and Barouch DH: Neutralization Escape by SARS-CoV-2 Omicron Subvariants BA.2.12.1, BA.4, and BA.5. N Engl J Med. 387:86–88. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jiang XL, Zhu KL, Wang XJ, Wang GL, Li YK, He XJ, Sun WK, Huang PX, Zhang JZ, Gao HX, et al: Omicron BQ.1 and BQ.1.1 escape neutralisation by omicron subvariant breakthrough infection. Lancet Infect Dis. 23:28–30. 2023. View Article : Google Scholar : PubMed/NCBI | |
Cao Y, Jian F, Wang J, Yu Y, Song W, Yisimayi A, Wang J, An R, Chen X, Zhang N, et al: Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution. Nature. 614:521–529. 2023.PubMed/NCBI | |
Röltgen K, Nielsen SCA, Silva O, Younes SF, Zaslavsky M, Costales C, Yang F, Wirz OF, Solis D, Hoh RA, et al: Immune imprinting, breadth of variant recognition, and germinal center response in human SARS-CoV-2 infection and vaccination. Cell. 185:1025–1040.e14. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Iketani S, Guo Y, Chan JF, Wang M, Liu L, Luo Y, Chu H, Huang Y, Nair MS, et al: Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature. 602:676–681. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Duan H, Liu X, Zhang X, Pan S, Zhang F, Gao P, Liu B, Yang J, Chi X and Yang W: Broad sarbecovirus neutralizing antibodies obtained by computational design and synthetic library screening. J Virol. 97:e00610232023. View Article : Google Scholar : PubMed/NCBI | |
Cao Y, Jian F, Zhang Z, Yisimayi A, Hao X, Bao L, Yuan F, Yu Y, Du S, Wang J, et al: Rational identification of potent and broad sarbecovirus-neutralizing antibody cocktails from SARS convalescents. Cell Rep. 41:1118452022. View Article : Google Scholar : PubMed/NCBI | |
Ma H, Zhang X, Zheng P, Dube PH, Zeng W, Chen S, Cheng Q, Yang Y, Wu Y, Zhou J, et al: Hetero-bivalent nanobodies provide broad-spectrum protection against SARS-CoV-2 variants of concern including Omicron. Cell Res. 32:831–842. 2022. View Article : Google Scholar : PubMed/NCBI | |
Mendon N, Ganie RA, Kesarwani S, Dileep D, Sasi S, Lama P, Chandra A and Sirajuddin M: Nanobody derived using a peptide epitope from the spike protein receptor-binding motif inhibits entry of SARS-CoV-2 variants. J Biol Chem. 299:1027322023. View Article : Google Scholar : PubMed/NCBI | |
Ettich J, Werner J, Weitz HT, Mueller E, Schwarzer R, Lang PA, Scheller J and Moll JM: A Hybrid Soluble gp130/Spike-Nanobody Fusion Protein Simultaneously Blocks Interleukin-6 trans-Signaling and Cellular Infection with SARS-CoV-2. J Virol. 96:e01622212022. View Article : Google Scholar : PubMed/NCBI | |
Lyu X, Imai S, Yamano T and Hanayama R: Preventing SARS-CoV-2 Infection Using Anti-spike Nanobody-IFN-β Conjugated Exosomes. Pharm Res. 40:927–935. 2023. View Article : Google Scholar : PubMed/NCBI | |
Gruell H, Vanshylla K, Weber T, Barnes CO, Kreer C and Klein F: Antibody-mediated neutralization of SARS-CoV-2. Immunity. 55:925–944. 2022. View Article : Google Scholar : PubMed/NCBI | |
Suryadevara N, Shrihari S, Gilchuk P, VanBlargan LA, Binshtein E, Zost SJ, Nargi RS, Sutton RE, Winkler ES, Chen EC, et al: Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein. Cell. 184:2316–2331.e15. 2021. View Article : Google Scholar : PubMed/NCBI | |
Voss WN, Hou YJ, Johnson NV, Delidakis G, Kim JE, Javanmardi K, Horton AP, Bartzoka F, Paresi CJ, Tanno Y, et al: Prevalent, protective, and convergent IgG recognition of SARS-CoV-2 non-RBD spike epitopes. Science. 372:1108–1112. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cerutti G, Guo Y, Wang P, Nair MS, Huang Y, Yu J, Liu L, Katsamba PS, Bahna F, Reddem ER, et al: Neutralizing antibody 5–7 defines a distinct site of vulnerability in SARS-CoV-2 spike N-terminal domain. Cell Rep. 37:1099282021. View Article : Google Scholar : PubMed/NCBI | |
Graham C, Seow J, Huettner I, Khan H, Kouphou N, Acors S, Winstone H, Pickering S, Galao RP, Dupont L, et al: Neutralization potency of monoclonal antibodies recognizing dominant and subdominant epitopes on SARS-CoV-2 Spike is impacted by the B.1.1.7 variant. Immunity. 54:1276–1289.e6. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Muecksch F, Cho A, Gaebler C, Hoffmann HH, Ramos V, Zong S, Cipolla M, Johnson B, Schmidt F, et al: Analysis of memory B cells identifies conserved neutralizing epitopes on the N-terminal domain of variant SARS-Cov-2 spike proteins. Immunity. 55:998–1012.e8. 2022. View Article : Google Scholar : PubMed/NCBI | |
Pinto D, Sauer MM, Czudnochowski N, Low JS, Tortorici MA, Housley MP, Noack J, Walls AC, Bowen JE, Guarino B, et al: Broad betacoronavirus neutralization by a stem helix-specific human antibody. Science. 373:1109–1116. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhou P, Yuan M, Song G, Beutler N, Shaabani N, Huang D, He WT, Zhu X, Callaghan S, Yong P, et al: A human antibody reveals a conserved site on beta-coronavirus spike proteins and confers protection against SARS-CoV-2 infection. Sci Transl Med. 14:eabi92152022. View Article : Google Scholar : PubMed/NCBI | |
Shi W, Wang L, Zhou T, Sastry M, Yang ES, Zhang Y, Chen M, Chen X, Choe M, Creanga A, et al: Vaccine-elicited murine antibody WS6 neutralizes diverse beta-coronaviruses by recognizing a helical stem supersite of vulnerability. Structure. 30:1233–1244.e7. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li W, Chen Y, Prévost J, Ullah I, Lu M, Gong SY, Tauzin A, Gasser R, Vézina D, Anand SP and Goyette G: Structural basis and mode of action for two broadly neutralizing antibodies against SARS-CoV-2 emerging variants of concern. Cell Rep. 38:1102102022. View Article : Google Scholar : PubMed/NCBI | |
Dacon C, Tucker C, Peng L, Lee CD, Lin TH, Yuan M, Cong Y, Wang L, Purser L, Williams JK, et al: Broadly neutralizing antibodies target the coronavirus fusion peptide. Science. 377:728–735. 2022. View Article : Google Scholar : PubMed/NCBI | |
Low JS, Jerak J, Tortorici MA, McCallum M, Pinto D, Cassotta A, Foglierini M, Mele F, Abdelnabi R, Weynand B, et al: ACE2-binding exposes the SARS-CoV-2 fusion peptide to broadly neutralizing coronavirus antibodies. Science. 377:735–742. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Yi C, Zhu Y, Ding L, Xia S, Chen X, Liu M, Gu C, Lu X, Fu Y, et al: Neutralization mechanism of a human antibody with pan-coronavirus reactivity including SARS-CoV-2. Nat Microbiol. 7:1063–1074. 2022. View Article : Google Scholar : PubMed/NCBI |