Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
August-2024 Volume 30 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2024 Volume 30 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Current development of severe acute respiratory syndrome coronavirus 2 neutralizing antibodies (Review)

  • Authors:
    • Tong Zhang
    • Di Yang
    • Liang Tang
    • Yu Hu
  • View Affiliations / Copyright

    Affiliations: Department of Hematology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China, Department of Hematology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
    Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 148
    |
    Published online on: June 26, 2024
       https://doi.org/10.3892/mmr.2024.13272
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The coronavirus disease 2019 pandemic due to severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) seriously affected global public health security. Studies on vaccines, neutralizing antibodies (NAbs) and small molecule antiviral drugs are currently ongoing. In particular, NAbs have emerged as promising therapeutic agents due to their well‑defined mechanism, high specificity, superior safety profile, ease of large‑scale production and simultaneous application for both prevention and treatment of viral infection. Numerous NAb therapeutics have entered the clinical research stages, demonstrating promising therapeutic and preventive effects. These agents have been used for outbreak prevention and control under urgent authorization processes. The present review summarizes the molecular targets of SARS‑CoV‑2‑associated NAbs and screening and identification techniques for NAb development. Moreover, the current shortcomings and challenges that persist with the use of NAbs are discussed. The aim of the present review is to offer a reference for the development of NAbs for any future emergent infectious diseases, including SARS‑CoV‑2.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Aktas G: A comprehensive review on rational and effective treatment strategies against an invisible enemy; SARS Cov-2 infection. Exp Biomed Res. 3:293–311. 2020. View Article : Google Scholar

2 

Wu Z and McGoogan JM: Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 323:1239–1242. 2020. View Article : Google Scholar : PubMed/NCBI

3 

Aktas G, Balci B, Yilmaz S, Bardak H and Duman TT: Characteristics of Covid-19 infection with the original SARS-Cov-2 virus and other variants: A comparative review. J Bionic Mem. 2:96–112. 2022.

4 

Ceasovschih A, Sorodoc V, Shor A, Haliga RE, Roth L, Lionte C, Onofrei Aursulesei V, Sirbu O, Culis N, Shapieva A, et al: Distinct features of vascular diseases in COVID-19. J Inflamm Res. 16:2783–2800. 2023. View Article : Google Scholar : PubMed/NCBI

5 

Khalid A, Ali Jaffar M, Khan T, Abbas Lail R, Ali S, Aktas G, Waris A, Javaid A, Ijaz N and Muhammad N: Hematological and biochemical parameters as diagnostic and prognostic markers in SARS-COV-2 infected patients of Pakistan: A retrospective comparative analysis. Hematology. 26:529–542. 2021. View Article : Google Scholar : PubMed/NCBI

6 

Aktas G: Hematological predictors of novel Coronavirus infection. Rev Assoc Med Bras (1992). 67 (Suppl 1):S1–S2. 2021. View Article : Google Scholar

7 

Fiolet T, Kherabi Y, MacDonald CJ, Ghosn J and Peiffer-Smadja N: Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS-CoV-2 and variants of concern: A narrative review. Clin Microbiol Infect. 28:202–221. 2022. View Article : Google Scholar : PubMed/NCBI

8 

Zheng B, Zhao Q, Yang W, Feng P, Xin C, Ying Y, Yang B, Han B, Zhu J, Zhang M and Li G: Small-molecule antiviral treatments for COVID-19: A systematic review and network meta-analysis. Int J Antimicrob Agents. 63:1070962024. View Article : Google Scholar : PubMed/NCBI

9 

Saul S and Einav S: Old drugs for a new virus: Repurposed approaches for combating COVID-19. ACS Infect Dis. 6:2304–2318. 2020. View Article : Google Scholar : PubMed/NCBI

10 

Crawford KHD, Dingens AS, Eguia R, Wolf CR, Wilcox N, Logue JK, Shuey K, Casto AM, Fiala B, Wrenn S, et al: Dynamics of neutralizing antibody titers in the months after severe acute respiratory syndrome coronavirus 2 infection. J Infect Dis. 223:197–205. 2021. View Article : Google Scholar : PubMed/NCBI

11 

Prévost J, Gasser R, Beaudoin-Bussières G, Richard J, Duerr R, Laumaea A, Anand SP, Goyette G, Benlarbi M, Ding S, et al: Cross-Sectional Evaluation of Humoral Responses against SARS-CoV-2 Spike. Cell Rep Med. 1:1001262020. View Article : Google Scholar : PubMed/NCBI

12 

Li M, Wang H, Tian L, Pang Z, Yang Q, Huang T, Fan J, Song L, Tong Y and Fan H: COVID-19 vaccine development: milestones, lessons and prospects. Signal Transduct Target Ther. 7:1462022. View Article : Google Scholar : PubMed/NCBI

13 

Wakefield TW, Strieter RM, Wilke CA, Kadell AM, Wrobleski SK, Burdick MD, Schmidt R, Kunkel SL and Greenfield LJ: Venous thrombosis-associated inflammation and attenuation with neutralizing antibodies to cytokines and adhesion molecules. Arterioscler Thromb Vasc Biol. 15:258–268. 1995. View Article : Google Scholar : PubMed/NCBI

14 

Cagdas D: Convalescent plasma and hyperimmune globulin therapy in COVID-19. Expert Rev Clin Immunol. 17:309–316. 2021. View Article : Google Scholar : PubMed/NCBI

15 

Li L, Zhang W, Hu Y, Tong X, Zheng S, Yang J, Kong Y, Ren L, Wei Q, Mei H, et al: Effect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19: A Randomized clinical trial. JAMA. 324:460–470. 2020. View Article : Google Scholar : PubMed/NCBI

16 

Tang J, Grubbs G, Lee Y, Golding H and Khurana S: Impact of convalescent plasma therapy on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody profile in coronavirus disease 2019 (COVID-19) Patients. Clin Infect Dis. 74:327–334. 2022. View Article : Google Scholar : PubMed/NCBI

17 

Wang Y, Ma Y, Xu Y, Liu J, Li X, Chen Y, Chen Y, Xie J, Xiao L, Xiang Z, et al: Resistance of SARS-CoV-2 Omicron variant to convalescent and CoronaVac vaccine plasma. Emerg Microbes Infect. 11:424–427. 2022.PubMed/NCBI

18 

Cao W, Liu X, Hong K, Ma Z, Zhang Y, Lin L, Han Y, Xiong Y, Liu Z, Ruan L and Li T: High-Dose intravenous immunoglobulin in severe coronavirus disease 2019: A multicenter retrospective study in China. Front Immunol. 12:6278442021. View Article : Google Scholar : PubMed/NCBI

19 

Cao W, Liu X, Bai T, Fan H, Hong K, Song H, Han Y, Lin L, Ruan L and Li T: High-Dose intravenous immunoglobulin as a therapeutic option for deteriorating patients with coronavirus disease 2019. Open Forum Infect Dis. 7:ofaa1022020. View Article : Google Scholar : PubMed/NCBI

20 

Xiang HR, Cheng X, Li Y, Luo WW, Zhang QZ and Peng WX: Efficacy of IVIG (intravenous immunoglobulin) for corona virus disease 2019 (COVID-19): A meta-analysis. Int Immunopharmacol. 96:1077322021. View Article : Google Scholar : PubMed/NCBI

21 

Kindgen-Milles D, Feldt T, Jensen BEO, Dimski T and Brandenburger T: Why the application of IVIG might be beneficial in patients with COVID-19. Lancet Respir Med. 10:e152022. View Article : Google Scholar : PubMed/NCBI

22 

Breedveld FC: Therapeutic monoclonal antibodies. Lancet. 355:735–740. 2000. View Article : Google Scholar : PubMed/NCBI

23 

Buss NA, Henderson SJ, McFarlane M, Shenton JM and de Haan L: Monoclonal antibody therapeutics: History and future. Curr Opin Pharmacol. 12:615–622. 2012. View Article : Google Scholar : PubMed/NCBI

24 

Ren Z, Shen C and Peng J: Status and developing strategies for neutralizing monoclonal antibody therapy in the omicron Era of COVID-19. Viruses. 15:12972023. View Article : Google Scholar : PubMed/NCBI

25 

Pinto D, Park YJ, Beltramello M, Walls AC, Tortorici MA, Bianchi S, Jaconi S, Culap K, Zatta F, De Marco A, et al: Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature. 583:290–295. 2020. View Article : Google Scholar : PubMed/NCBI

26 

Hillenbrand M, Esslinger C, Seidenberg J, Weber M, Zingg A, Townsend C, Eicher B, Rutkauskaite J, Riese P, Guzman CA, et al: Fast-Track Discovery of SARS-CoV-2-neutralizing antibodies from human B Cells by direct functional screening. Viruses. 16:3392024. View Article : Google Scholar : PubMed/NCBI

27 

Gottlieb RL, Nirula A, Chen P, Boscia J, Heller B, Morris J, Huhn G, Cardona J, Mocherla B, Stosor V, et al: Effect of bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19: A Randomized clinical trial. JAMA. 325:632–644. 2021. View Article : Google Scholar : PubMed/NCBI

28 

Weinreich DM, Sivapalasingam S, Norton T, Ali S, Gao H, Bhore R, Musser BJ, Soo Y, Rofail D, Im J, et al: REGN-COV2, a neutralizing antibody cocktail, in outpatients with Covid-19. N Engl J Med. 384:238–251. 2021. View Article : Google Scholar : PubMed/NCBI

29 

Ji Y, Zhang Q, Cheng L, Ge J, Wang R, Fang M, Mucker EM, Chen P, Ma J, Zhang R, et al: Preclinical characterization of amubarvimab and romlusevimab, a pair of non-competing neutralizing monoclonal antibody cocktail, against SARS-CoV-2. Front Immunol. 13:9804352022. View Article : Google Scholar : PubMed/NCBI

30 

Evering TH, Chew KW, Giganti MJ, Moser C, Pinilla M, Wohl DA, Currier JS, Eron JJ, Javan AC, Bender Ignacio R, et al: Safety and efficacy of combination SARS-CoV-2 neutralizing monoclonal antibodies amubarvimab plus romlusevimab in nonhospitalized patients with COVID-19. Ann Intern Med. 176:658–666. 2023. View Article : Google Scholar : PubMed/NCBI

31 

Kim C, Ryu DK, Lee J, Kim YI, Seo JM, Kim YG, Jeong JH, Kim M, Kim JI, Kim P, et al: A therapeutic neutralizing antibody targeting receptor binding domain of SARS-CoV-2 spike protein. Nat Commun. 12:2882021. View Article : Google Scholar : PubMed/NCBI

32 

Wang YT, Allen RD, Kim K, Shafee N, Gonzalez AJ, Nguyen MN, Valentine KM, Cao X, Lu L, Pai CI, et al: SARS-CoV-2 monoclonal antibodies with therapeutic potential: Broad neutralizing activity and No evidence of antibody-dependent enhancement. Antiviral Res. 195:1051852021. View Article : Google Scholar : PubMed/NCBI

33 

Tian D, Sun Y, Xu H and Ye Q: The emergence and epidemic characteristics of the highly mutated SARS-CoV-2 Omicron variant. J Med Virol. 94:2376–2383. 2022. View Article : Google Scholar : PubMed/NCBI

34 

Guo H, Gao Y, Li T, Li T, Lu Y, Zheng L, Liu Y, Yang T, Luo F, Song S, et al: Structures of Omicron spike complexes and implications for neutralizing antibody development. Cell Rep. 39:1107702022. View Article : Google Scholar : PubMed/NCBI

35 

Muyldermans S: Applications of Nanobodies. Annu Rev Anim Biosci. 9:401–421. 2021. View Article : Google Scholar : PubMed/NCBI

36 

Xu J, Xu K, Jung S, Conte A, Lieberman J, Muecksch F, Lorenzi JCC, Park S, Schmidt F, Wang Z, et al: Nanobodies from camelid mice and llamas neutralize SARS-CoV-2 variants. Nature. 595:278–282. 2021. View Article : Google Scholar : PubMed/NCBI

37 

Weiss SR and Navas-Martin S: Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev. 69:635–664. 2005. View Article : Google Scholar : PubMed/NCBI

38 

Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY, et al: A new coronavirus associated with human respiratory disease in China. Nature. 579:265–269. 2020. View Article : Google Scholar : PubMed/NCBI

39 

Yang H and Rao Z: Structural biology of SARS-CoV-2 and implications for therapeutic development. Nat Rev Microbiol. 19:685–700. 2021. View Article : Google Scholar : PubMed/NCBI

40 

Chen Y, Liu Q and Guo D: Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol. 92:418–423. 2020. View Article : Google Scholar : PubMed/NCBI

41 

Kim D, Lee JY, Yang JS, Kim JW, Kim VN and Chang H: The Architecture of SARS-CoV-2 Transcriptome. Cell. 181:914–921.e10. 2020. View Article : Google Scholar : PubMed/NCBI

42 

Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, et al: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 181:271–280.e8. 2020. View Article : Google Scholar : PubMed/NCBI

43 

Huang Y, Yang C, Xu XF, Xu W and Liu SW: Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin. 41:1141–1149. 2020. View Article : Google Scholar : PubMed/NCBI

44 

Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT and Veesler D: Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 181:281–292.e6. 2020. View Article : Google Scholar : PubMed/NCBI

45 

Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, Lu G, Qiao C, Hu Y, Yuen KY, et al: Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell. 181:894–904.e9. 2020. View Article : Google Scholar : PubMed/NCBI

46 

Cai Y, Zhang J, Xiao T, Peng H, Sterling SM, Walsh RM Jr, Rawson S, Rits-Volloch S and Chen B: Distinct conformational states of SARS-CoV-2 spike protein. Science. 369:1586–1592. 2020. View Article : Google Scholar : PubMed/NCBI

47 

Song W, Gui M, Wang X and Xiang Y: Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog. 14:e10072362018. View Article : Google Scholar : PubMed/NCBI

48 

Chi X, Yan R, Zhang J, Zhang G, Zhang Y, Hao M, Zhang Z, Fan P, Dong Y, Yang Y, et al: A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science. 369:650–655. 2020. View Article : Google Scholar : PubMed/NCBI

49 

Liu L, Wang P, Nair MS, Yu J, Rapp M, Wang Q, Luo Y, Chan JF, Sahi V, Figueroa A, et al: Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature. 584:450–456. 2020. View Article : Google Scholar : PubMed/NCBI

50 

Yao H, Song Y, Chen Y, Wu N, Xu J, Sun C, Zhang J, Weng T, Zhang Z, Wu Z, et al: Molecular Architecture of the SARS-CoV-2 Virus. Cell. 183:730–738.e13. 2020. View Article : Google Scholar : PubMed/NCBI

51 

Fantini J, Di Scala C, Chahinian H and Yahi N: Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection. Int J Antimicrob Agents. 55:1059602020. View Article : Google Scholar : PubMed/NCBI

52 

Fantini J, Chahinian H and Yahi N: Synergistic antiviral effect of hydroxychloroquine and azithromycin in combination against SARS-CoV-2: What molecular dynamics studies of virus-host interactions reveal. Int J Antimicrob Agents. 56:1060202020. View Article : Google Scholar

53 

Seyran M, Takayama K, Uversky VN, Adadi P, Mohamed Abd El-Aziz T, Soares AG, Kandimalla R, Tambuwala M, Hassan SS, Azad GK, et al: The structural basis of accelerated host cell entry by SARS-CoV-2†. FEBS J. 288:5010–5020. 2021. View Article : Google Scholar : PubMed/NCBI

54 

Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, Zhang Q, Shi X, Wang Q, Zhang L and Wang X: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 581:215–220. 2020. View Article : Google Scholar : PubMed/NCBI

55 

Li F, Li W, Farzan M and Harrison SC: Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science. 309:1864–1868. 2005. View Article : Google Scholar : PubMed/NCBI

56 

Zhang J, Cai Y, Xiao T, Lu J, Peng H, Sterling SM, Walsh RM Jr, Rits-Volloch S, Zhu H, Woosley AN, et al: Structural impact on SARS-CoV-2 spike protein by D614G substitution. Science. 372:525–530. 2021. View Article : Google Scholar : PubMed/NCBI

57 

Jackson CB, Farzan M, Chen B and Choe H: Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol. 23:3–20. 2022. View Article : Google Scholar : PubMed/NCBI

58 

Benton DJ, Wrobel AG, Xu P, Roustan C, Martin SR, Rosenthal PB, Skehel JJ and Gamblin SJ: Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion. Nature. 588:327–330. 2020. View Article : Google Scholar : PubMed/NCBI

59 

Bayati A, Kumar R, Francis V and McPherson PS: SARS-CoV-2 infects cells after viral entry via clathrin-mediated endocytosis. J Biol Chem. 296:1003062021. View Article : Google Scholar : PubMed/NCBI

60 

Jaimes JA, Millet JK and Whittaker GR: Proteolytic Cleavage of the SARS-CoV-2 Spike protein and the role of the novel S1/S2 Site. iScienc. 23:1012122020. View Article : Google Scholar

61 

Newcombe C and Newcombe AR: Antibody production: Polyclonal-derived biotherapeutics. J Chromatogr B Analyt Technol Biomed Life Sci. 848:2–7. 2007. View Article : Google Scholar : PubMed/NCBI

62 

Ascoli CA and Aggeler B: Overlooked benefits of using polyclonal antibodies. Biotechniques. 65:127–136. 2018. View Article : Google Scholar : PubMed/NCBI

63 

Leenaars M and Hendriksen CF: Critical steps in the production of polyclonal and monoclonal antibodies: Evaluation and recommendations. ILAR J. 46:269–279. 2005. View Article : Google Scholar : PubMed/NCBI

64 

Zylberman V, Sanguineti S, Pontoriero AV, Higa SV, Cerutti ML, Morrone Seijo SM, Pardo R, Muñoz L, Acuña Intrieri ME, Alzogaray VA, et al: Development of a hyperimmune equine serum therapy for COVID-19 in Argentina. Medicina (B Aires). 80 (Suppl 3):S1–S6. 2020.

65 

Lopardo G, Belloso WH, Nannini E, Colonna M, Sanguineti S, Zylberman V, Muñoz L, Dobarro M, Lebersztein G, Farina J, et al: RBD-specific polyclonal F(ab´)2 fragments of equine antibodies in patients with moderate to severe COVID-19 disease: A randomized, multicenter, double-blind, placebo-controlled, adaptive phase 2/3 clinical trial. EClinicalMedicine. 34:1008432021. View Article : Google Scholar : PubMed/NCBI

66 

Vanhove B, Duvaux O, Rousse J, Royer PJ, Evanno G, Ciron C, Lheriteau E, Vacher L, Gervois N, Oger R, et al: High neutralizing potency of swine glyco-humanized polyclonal antibodies against SARS-CoV-2. Eur J Immunol. 51:1412–1422. 2021. View Article : Google Scholar : PubMed/NCBI

67 

Gaborit B, Dailly E, Vanhove B, Josien R, Lacombe K, Dubee V, Ferre V, Brouard S, Ader F, Vibet MA, et al: Pharmacokinetics and Safety of XAV-19, a Swine Glyco-humanized Polyclonal Anti-SARS-CoV-2 Antibody, for COVID-19-Related Moderate Pneumonia: A Randomized, Double-Blind, Placebo-Controlled, Phase IIa Study. Antimicrob Agents Chemother. 65:e01237212021. View Article : Google Scholar : PubMed/NCBI

68 

Vanhove B, Marot S, So RT, Gaborit B, Evanno G, Malet I, Lafrogne G, Mevel E, Ciron C, Royer PJ, et al: XAV-19, a swine glyco-humanized polyclonal antibody against SARS-CoV-2 spike receptor-binding domain, targets multiple epitopes and broadly neutralizes variants. Front Immunol. 12:7612502021. View Article : Google Scholar : PubMed/NCBI

69 

Singh R, Chandley P and Rohatgi S: Recent advances in the development of monoclonal antibodies and next-generation antibodies. Immunohorizons. 7:886–897. 2023. View Article : Google Scholar : PubMed/NCBI

70 

Safdari Y, Farajnia S, Asgharzadeh M and Khalili M: Antibody humanization methods-a review and update. Biotechnol Genet Eng Rev. 29:175–186. 2013. View Article : Google Scholar : PubMed/NCBI

71 

Yu H, Borsotti C, Schickel JN, Zhu S, Strowig T, Eynon EE, Frleta D, Gurer C, Murphy AJ, Yancopoulos GD, et al: A novel humanized mouse model with significant improvement of class-switched, antigen-specific antibody production. Blood. 129:959–969. 2017. View Article : Google Scholar : PubMed/NCBI

72 

Pedrioli A and Oxenius A: Single B cell technologies for monoclonal antibody discovery. Trends Immunol. 42:1143–1158. 2021. View Article : Google Scholar : PubMed/NCBI

73 

Winter G and Milstein C: Man-made antibodies. Nature. 349:293–299. 1991. View Article : Google Scholar : PubMed/NCBI

74 

McCafferty J, Griffiths AD, Winter G and Chiswell DJ: Phage antibodies: Filamentous phage displaying antibody variable domains. Nature. 348:552–554. 1990. View Article : Google Scholar : PubMed/NCBI

75 

Chen F, Liu Z, Kang W, Jiang F, Yang X, Yin F, Zhou Z and Li Z: Single-domain antibodies against SARS-CoV-2 RBD from a two-stage phage screening of universal and focused synthetic libraries. BMC Infect Dis. 24:1992024. View Article : Google Scholar : PubMed/NCBI

76 

Barnes CO, Jette CA, Abernathy ME, Dam KA, Esswein SR, Gristick HB, Malyutin AG, Sharaf NG, Huey-Tubman KE, Lee YE, et al: SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature. 588:682–687. 2020. View Article : Google Scholar : PubMed/NCBI

77 

Piccoli L, Park YJ, Tortorici MA, Czudnochowski N, Walls AC, Beltramello M, Silacci-Fregni C, Pinto D, Rosen LE, Bowen JE, et al: Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology. Cell. 183:1024–1042.e21. 2020. View Article : Google Scholar : PubMed/NCBI

78 

Röltgen K, Powell AE, Wirz OF, Stevens BA, Hogan CA, Najeeb J, Hunter M, Wang H, Sahoo MK, Huang C, et al: Defining the features and duration of antibody responses to SARS-CoV-2 infection associated with disease severity and outcome. Sci Immunol. 5:eabe02402020. View Article : Google Scholar : PubMed/NCBI

79 

Barnes CO, West AP Jr, Huey-Tubman KE, Hoffmann MAG, Sharaf NG, Hoffman PR, Koranda N, Gristick HB, Gaebler C, Muecksch F, et al: Structures of Human Antibodies Bound to SARS-CoV-2 spike reveal common epitopes and recurrent features of antibodies. Cell. 182:828–842.e16. 2020. View Article : Google Scholar : PubMed/NCBI

80 

Wu Y, Wang F, Shen C, Peng W, Li D, Zhao C, Li Z, Li S, Bi Y, Yang Y, et al: A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2. Science. 368:1274–1278. 2020. View Article : Google Scholar : PubMed/NCBI

81 

Shi R, Shan C, Duan X, Chen Z, Liu P, Song J, Song T, Bi X, Han C, Wu L, et al: A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature. 584:120–124. 2020. View Article : Google Scholar : PubMed/NCBI

82 

Banach BB, Cerutti G, Fahad AS, Shen CH, Oliveira De Souza M, Katsamba PS, Tsybovsky Y, Wang P, Nair MS, Huang Y, et al: Paired heavy- and light-chain signatures contribute to potent SARS-CoV-2 neutralization in public antibody responses. Cell Rep. 37:1097712021. View Article : Google Scholar : PubMed/NCBI

83 

Starr TN, Czudnochowski N, Liu Z, Zatta F, Park YJ, Addetia A, Pinto D, Beltramello M, Hernandez P, Greaney AJ, et al: SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape. Nature. 597:97–102. 2021. View Article : Google Scholar : PubMed/NCBI

84 

Cameroni E, Bowen JE, Rosen LE, Saliba C, Zepeda SK, Culap K, Pinto D, VanBlargan LA, De Marco A, di Iulio J, et al: Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature. 602:664–670. 2022. View Article : Google Scholar : PubMed/NCBI

85 

Brouwer PJM, Caniels TG, van der Straten K, Snitselaar JL, Aldon Y, Bangaru S, Torres JL, Okba NMA, Claireaux M, Kerster G, et al: Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science. 369:643–650. 2020. View Article : Google Scholar : PubMed/NCBI

86 

Kim SI, Noh J, Kim S, Choi Y, Yoo DK, Lee Y, Lee H, Jung J, Kang CK, Song KH, et al: Stereotypic neutralizing VH antibodies against SARS-CoV-2 spike protein receptor binding domain in patients with COVID-19 and healthy individuals. Sci Transl Med. 13:eabd69902021. View Article : Google Scholar : PubMed/NCBI

87 

Greaney AJ, Starr TN, Barnes CO, Weisblum Y, Schmidt F, Caskey M, Gaebler C, Cho A, Agudelo M, Finkin S, et al: Mapping mutations to the SARS-CoV-2 RBD that escape binding by different classes of antibodies. Nat Commun. 12:41962021. View Article : Google Scholar : PubMed/NCBI

88 

Li D, Edwards RJ, Manne K, Martinez DR, Schäfer A, Alam SM, Wiehe K, Lu X, Parks R, Sutherland LL, et al: In vitro and in vivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell. 184:4203–4219.e32. 2021. View Article : Google Scholar : PubMed/NCBI

89 

Tian X, Li C, Huang A, Xia S, Lu S, Shi Z, Lu L, Jiang S, Yang Z, Wu Y and Ying T: Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect. 9:382–385. 2020. View Article : Google Scholar : PubMed/NCBI

90 

ter Meulen J, van den Brink EN, Poon LL, Marissen WE, Leung CS, Cox F, Cheung CY, Bakker AQ, Bogaards JA, van Deventer E, et al: Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. PLoS Med. 3:e2372006. View Article : Google Scholar : PubMed/NCBI

91 

Yuan M, Wu NC, Zhu X, Lee CD, So RTY, Lv H, Mok CKP and Wilson IA: A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science. 368:630–633. 2020. View Article : Google Scholar : PubMed/NCBI

92 

Gupta A, Gonzalez-Rojas Y, Juarez E, Crespo Casal M, Moya J, Falci DR, Sarkis E, Solis J, Zheng H, Scott N, et al: Early Treatment for Covid-19 with SARS-CoV-2 Neutralizing Antibody Sotrovimab. N Engl J Med. 385:1941–1950. 2021. View Article : Google Scholar : PubMed/NCBI

93 

Rockett R, Basile K, Maddocks S, Fong W, Agius JE, Johnson-Mackinnon J, Arnott A, Chandra S, Gall M, Draper J, et al: Resistance Mutations in SARS-CoV-2 delta variant after sotrovimab use. N Engl J Med. 386:1477–1479. 2022. View Article : Google Scholar : PubMed/NCBI

94 

Martinez DR, Schaefer A, Gobeil S, Li D, De la Cruz G, Parks R, Lu X, Barr M, Manne K, Mansouri K, et al: A broadly neutralizing antibody protects against SARS-CoV, pre-emergent bat CoVs, and SARS-CoV-2 variants in mice. bioRxiv (Preprint). doi: 10.1101/2021.04.27.441655.

95 

Wec AZ, Wrapp D, Herbert AS, Maurer DP, Haslwanter D, Sakharkar M, Jangra RK, Dieterle ME, Lilov A, Huang D, et al: Broad neutralization of SARS-related viruses by human monoclonal antibodies. Science. 369:731–736. 2020. View Article : Google Scholar : PubMed/NCBI

96 

Rappazzo CG, Tse LV, Kaku CI, Wrapp D, Sakharkar M, Huang D, Deveau LM, Yockachonis TJ, Herbert AS, Battles MB, et al: Broad and potent activity against SARS-like viruses by an engineered human monoclonal antibody. Science. 371:823–829. 2021. View Article : Google Scholar : PubMed/NCBI

97 

Li D, Sempowski GD, Saunders KO, Acharya P and Haynes BF: SARS-CoV-2 Neutralizing Antibodies for COVID-19 Prevention and Treatment. Annu Rev Med. 73:1–16. 2022. View Article : Google Scholar : PubMed/NCBI

98 

Hastie KM, Li H, Bedinger D, Schendel SL, Dennison SM, Li K, Rayaprolu V, Yu X, Mann C, Zandonatti M, et al: Defining variant-resistant epitopes targeted by SARS-CoV-2 antibodies: A global consortium study. Science. 374:472–478. 2021. View Article : Google Scholar : PubMed/NCBI

99 

McCallum M, De Marco A, Lempp FA, Tortorici MA, Pinto D, Walls AC, Beltramello M, Chen A, Liu Z, Zatta F, et al: N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell. 184:2332–2347.e16. 2021. View Article : Google Scholar : PubMed/NCBI

100 

Chi XY, Yan RH, Zhang J, Zhang G, Zhang Y, Hao M, Zhang Z, Fan P, Dong Y, Yang Y, et al: A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science. 369:650–655. 2020. View Article : Google Scholar : PubMed/NCBI

101 

Wrapp D, De Vlieger D, Corbett KS, Torres GM, Wang N, Van Breedam W, Roose K, van Schie L; VIB-CMB COVID-19 Response Team; Hoffmann M, ; et al: Structural basis for potent neutralization of betacoronaviruses by single-domain camelid antibodies. Cell. 181:1436–1441. 2020. View Article : Google Scholar : PubMed/NCBI

102 

Hoffmann M, Kleine-Weber H and Pöhlmann S: A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 is essential for infection of human lung cells. Mol Cell. 78:779–784.e5. 2020. View Article : Google Scholar : PubMed/NCBI

103 

Cerutti G, Guo Y, Zhou T, Gorman J, Lee M, Rapp M, Reddem ER, Yu J, Bahna F, Bimela J, et al: Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite. Cell Host Microbe. 29:819–833.e7. 2021. View Article : Google Scholar : PubMed/NCBI

104 

Nielsen SCA, Yang F, Jackson KJL, Hoh RA, Röltgen K, Jean GH, Stevens BA, Lee JY, Rustagi A, Rogers AJ, et al: Human B Cell Clonal Expansion and Convergent Antibody Responses to SARS-CoV-2. Cell Host Microbe. 28:516–525.e5. 2020. View Article : Google Scholar : PubMed/NCBI

105 

Boyd SD, Gaëta BA, Jackson KJ, Fire AZ, Marshall EL, Merker JD, Maniar JM, Zhang LN, Sahaf B, Jones CD, et al: Individual variation in the germline Ig gene repertoire inferred from variable region gene rearrangements. J Immunol. 184:6986–6992. 2010. View Article : Google Scholar : PubMed/NCBI

106 

Wang N, Sun Y, Feng R, Wang Y, Guo Y, Zhang L, Deng YQ, Wang L, Cui Z, Cao L, et al: Structure-based development of human antibody cocktails against SARS-CoV-2. Cell Res. 31:101–103. 2021. View Article : Google Scholar : PubMed/NCBI

107 

Haslwanter D, Dieterle ME, Wec AZ, O'Brien CM, Sakharkar M, Florez C, Tong K, Rappazzo CG, Lasso G, Vergnolle O, et al: A Combination of Receptor-Binding Domain and N-Terminal Domain Neutralizing Antibodies Limits the Generation of SARS-CoV-2 Spike Neutralization-Escape Mutants. mBio. 12:e02473212021. View Article : Google Scholar : PubMed/NCBI

108 

Nguyen-Contant P, Embong AK, Kanagaiah P, Chaves FA, Yang H, Branche AR, Topham DJ and Sangster MY: S Protein-Reactive IgG and Memory B Cell Production after Human SARS-CoV-2 Infection Includes Broad Reactivity to the S2 Subunit. mBio. 11:e01991–20. 2020. View Article : Google Scholar : PubMed/NCBI

109 

Guo L, Wang Y, Kang L, Hu Y, Wang L, Zhong J, Chen H, Ren L, Gu X, Wang G, et al: Cross-reactive antibody against human coronavirus OC43 spike protein correlates with disease severity in COVID-19 patients: A retrospective study. Emerg Microbes Infect. 10:664–676. 2021. View Article : Google Scholar : PubMed/NCBI

110 

Zohar T, Loos C, Fischinger S, Atyeo C, Wang C, Slein MD, Burke J, Yu J, Feldman J, Hauser BM, et al: Compromised humoral functional evolution tracks with SARS-CoV-2 Mortality. Cell. 183:1508–1519.e12. 2020. View Article : Google Scholar : PubMed/NCBI

111 

Ma X, Zou F, Yu F, Li R, Yuan Y, Zhang Y, Zhang X, Deng J, Chen T, Song Z, et al: Nanoparticle vaccines based on the receptor binding Domain (RBD) and Heptad Repeat (HR) of SARS-CoV-2 elicit robust protective immune responses. Immunity. 53:1315–1330.e9. 2020. View Article : Google Scholar : PubMed/NCBI

112 

Silva RP, Huang Y, Nguyen AW, Hsieh CL, Olaluwoye OS, Kaoud TS, Wilen RE, Qerqez AN, Park JG, Khalil AM, et al: Identification of a conserved S2 epitope present on spike proteins from all highly pathogenic coronaviruses. Elife. 12:e837102023. View Article : Google Scholar : PubMed/NCBI

113 

Hsieh CL, Werner AP, Leist SR, Stevens LJ, Falconer E, Goldsmith JA, Chou CW, Abiona OM, West A, Westendorf K, et al: Stabilized coronavirus spike stem elicits a broadly protective antibody. Cell Rep. 37:1099292021. View Article : Google Scholar : PubMed/NCBI

114 

Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, Bendahman N and Hamers R: Naturally occurring antibodies devoid of light chains. Nature. 363:446–448. 1993. View Article : Google Scholar : PubMed/NCBI

115 

Tanaka Y, Nishikawa M, Kamisaki K, Hachiya S, Nakamura M, Kuwazuru T, Tanimura S, Soyano K and Takeda K: Marine-derived microbes and molecules for drug discovery. Inflamm Regen. 42:182022. View Article : Google Scholar : PubMed/NCBI

116 

Muyldermans S: Nanobodies: Natural single-domain antibodies. Annu Rev Biochem. 82:775–797. 2013. View Article : Google Scholar : PubMed/NCBI

117 

Jovčevska I and Muyldermans S: The therapeutic potential of nanobodies. BioDrugs. 34:11–26. 2020. View Article : Google Scholar : PubMed/NCBI

118 

Muyldermans S, Baral TN, Retamozzo VC, De Baetselier P, De Genst E, Kinne J, Leonhardt H, Magez S, Nguyen VK, Revets H, et al: Camelid immunoglobulins and nanobody technology. Vet Immunol Immunopathol. 128:178–183. 2009. View Article : Google Scholar : PubMed/NCBI

119 

Zielonka S, Empting M, Grzeschik J, Könning D, Barelle CJ and Kolmar H: Structural insights and biomedical potential of IgNAR scaffolds from sharks. MAbs. 7:15–25. 2015. View Article : Google Scholar : PubMed/NCBI

120 

Transue TR, De Genst E, Ghahroudi MA, Wyns L and Muyldermans S: Camel single-domain antibody inhibits enzyme by mimicking carbohydrate substrate. Proteins. 32:515–522. 1998. View Article : Google Scholar : PubMed/NCBI

121 

Bachmann MF, Mohsen MO, Zha L, Vogel M and Speiser DE: SARS-CoV-2 structural features may explain limited neutralizing-antibody responses. NPJ Vaccines. 6:22021. View Article : Google Scholar : PubMed/NCBI

122 

Steeland S, Vandenbroucke RE and Libert C: Nanobodies as therapeutics: Big opportunities for small antibodies. Drug Discov Today. 21:1076–1113. 2016. View Article : Google Scholar : PubMed/NCBI

123 

Holliger P and Hudson PJ: Engineered antibody fragments and the rise of single domains. Nat Biotechnol. 23:1126–1136. 2005. View Article : Google Scholar : PubMed/NCBI

124 

Vu KB, Ghahroudi MA, Wyns L and Muyldermans S: Comparison of llama VH sequences from conventional and heavy chain antibodies. Mol Immunol. 34:1121–1131. 1997. View Article : Google Scholar : PubMed/NCBI

125 

Zhang YF, Sun Y, Hong J and Ho M: Humanization of the Shark VNAR Single Domain Antibody Using CDR Grafting. Curr Protoc. 3:e6302023. View Article : Google Scholar : PubMed/NCBI

126 

Almagro JC and Fransson J: Humanization of antibodies. Front Biosci. 13:1619–1633. 2008.PubMed/NCBI

127 

Wu Y, Li C, Xia S, Tian X, Kong Y, Wang Z, Gu C, Zhang R, Tu C, Xie Y, et al: Identification of Human Single-Domain Antibodies against SARS-CoV-2. Cell Host Microbe. 27:891–898.e5. 2020. View Article : Google Scholar : PubMed/NCBI

128 

Hassanzadeh-Ghassabeh G, Devoogdt N, De Pauw P, Vincke C and Muyldermans S: Nanobodies and their potential applications. Nanomedicine (Lond). 8:1013–1026. 2013. View Article : Google Scholar : PubMed/NCBI

129 

Harmsen MM and De Haard HJ: Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol. 77:13–22. 2007. View Article : Google Scholar : PubMed/NCBI

130 

Schoof M, Faust B, Saunders RA, Sangwan S, Rezelj V, Hoppe N, Boone M, Billesbølle CB, Puchades C, Azumaya CM, et al: An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike. Science. 370:1473–1479. 2020. View Article : Google Scholar : PubMed/NCBI

131 

Van Heeke G, Allosery K, De Brabandere V, De Smedt T, Detalle L and de Fougerolles A: Nanobodies® as inhaled biotherapeutics for lung diseases. Pharmacol Ther. 169:47–56. 2017. View Article : Google Scholar : PubMed/NCBI

132 

Xiang Y, Nambulli S, Xiao Z, Liu H, Sang Z, Duprex WP, Schneidman-Duhovny D, Zhang C and Shi Y: Versatile and multivalent nanobodies efficiently neutralize SARS-CoV-2. Science. 370:1479–1484. 2020. View Article : Google Scholar : PubMed/NCBI

133 

Nambulli S, Xiang Y, Tilston-Lunel NL, Rennick LJ, Sang Z, Klimstra WB, Reed DS, Crossland NA, Shi Y and Duprex WP: Inhalable Nanobody (PiN-21) prevents and treats SARS-CoV-2 infections in Syrian hamsters at ultra-low doses. Sci Adv. 7:eabh03192021. View Article : Google Scholar : PubMed/NCBI

134 

Gai J, Ma L, Li G, Zhu M, Qiao P, Li X, Zhang H, Zhang Y, Chen Y, Ji W, et al: A potent neutralizing nanobody against SARS-CoV-2 with inhaled delivery potential. MedComm (2020). 2:101–113. 2021.PubMed/NCBI

135 

Li C, Zhan W, Yang Z, Tu C, Hu G, Zhang X, Song W, Du S, Zhu Y, Huang K, et al: Broad neutralization of SARS-CoV-2 variants by an inhalable bispecific single-domain antibody. Cell. 185:1389–1401.e18. 2022. View Article : Google Scholar : PubMed/NCBI

136 

Ma H, Zhang X, Zeng W, Zhou J, Chi X, Chen S, Zheng P, Wang M, Wu Y, Zhao D, et al: A bispecific nanobody dimer broadly neutralizes SARS-CoV-1 & 2 variants of concern and offers substantial protection against Omicron via low-dose intranasal administration. Cell Discov. 8:1322022. View Article : Google Scholar : PubMed/NCBI

137 

Wu X, Wang Y, Cheng L, Ni F, Zhu L, Ma S, Huang B, Ji M, Hu H, Li Y, et al: Short-Term Instantaneous Prophylaxis and Efficient Treatment Against SARS-CoV-2 in hACE2 Mice Conferred by an Intranasal Nanobody (Nb22). Front Immunol. 13:8654012022. View Article : Google Scholar : PubMed/NCBI

138 

Xiang Y, Huang W, Liu H, Sang Z, Nambulli S, Tubiana J, Williams KL Jr, Duprex WP, Schneidman-Duhovny D, Wilson IA, et al: Superimmunity by pan-sarbecovirus nanobodies. Cell Rep. 39:1110042022. View Article : Google Scholar : PubMed/NCBI

139 

Nagata K, Utsumi D, Asaka MN, Maeda R, Shirakawa K, Kazuma Y, Nomura R, Horisawa Y, Yanagida Y, Kawai Y, et al: Intratracheal trimerized nanobody cocktail administration suppresses weight loss and prolongs survival of SARS-CoV-2 infected mice. Commun Med (Lond). 2:1522022. View Article : Google Scholar : PubMed/NCBI

140 

Maeda R, Fujita J, Konishi Y, Kazuma Y, Yamazaki H, Anzai I, Watanabe T, Yamaguchi K, Kasai K, Nagata K, et al: A panel of nanobodies recognizing conserved hidden clefts of all SARS-CoV-2 spike variants including Omicron. Commun Biol. 5:6692022. View Article : Google Scholar : PubMed/NCBI

141 

Liu H, Wu L, Liu B, Xu K, Lei W, Deng J, Rong X, Du P, Wang L, Wang D, et al: Two pan-SARS-CoV-2 nanobodies and their multivalent derivatives effectively prevent Omicron infections in mice. Cell Rep Med. 4:1009182023. View Article : Google Scholar : PubMed/NCBI

142 

Bournazos S, Gupta A and Ravetch JV: The role of IgG Fc receptors in antibody-dependent enhancement. Nat Rev Immunol. 20:633–643. 2020. View Article : Google Scholar : PubMed/NCBI

143 

Wang TT, Sewatanon J, Memoli MJ, Wrammert J, Bournazos S, Bhaumik SK, Pinsky BA, Chokephaibulkit K, Onlamoon N, Pattanapanyasat K, et al: IgG antibodies to dengue enhanced for FcγRIIIA binding determine disease severity. Science. 355:395–398. 2017. View Article : Google Scholar : PubMed/NCBI

144 

Iwasaki A and Yang Y: The potential danger of suboptimal antibody responses in COVID-19. Nat Rev Immunol. 20:339–341. 2020. View Article : Google Scholar : PubMed/NCBI

145 

Ubol S and Halstead SB: How innate immune mechanisms contribute to antibody-enhanced viral infections. Clin Vaccine Immunol. 17:1829–1835. 2010. View Article : Google Scholar : PubMed/NCBI

146 

Haynes BF, Corey L, Fernandes P, Gilbert PB, Hotez PJ, Rao S, Santos MR, Schuitemaker H, Watson M and Arvin A: Prospects for a safe COVID-19 vaccine. Sci Transl Med. 12:eabe09482020. View Article : Google Scholar : PubMed/NCBI

147 

Yang Y and Xu F: Evolving understanding of antibody-dependent enhancement (ADE) of SARS-CoV-2. Front Immunol. 13:10082852022. View Article : Google Scholar : PubMed/NCBI

148 

Wang S, Peng Y, Wang R, Jiao S, Wang M, Huang W, Shan C, Jiang W, Li Z, Gu C, et al: Characterization of neutralizing antibody with prophylactic and therapeutic efficacy against SARS-CoV-2 in rhesus monkeys. Nat Commun. 11:57522020. View Article : Google Scholar : PubMed/NCBI

149 

Liu Y, Soh WT, Kishikawa JI, Hirose M, Nakayama EE, Li S, Sasai M, Suzuki T, Tada A, Arakawa A, et al: An infectivity-enhancing site on the SARS-CoV-2 spike protein targeted by antibodies. Cell. 184:3452–3466.e18. 2021. View Article : Google Scholar : PubMed/NCBI

150 

Wang Z, Deng T, Zhang Y, Niu W, Nie Q, Yang S, Liu P, Pei P, Chen L, Li H and Cao B: ACE2 can act as the secondary receptor in the FcγR-dependent ADE of SARS-CoV-2 infection. iScience. 25:1037202022. View Article : Google Scholar : PubMed/NCBI

151 

Tkaczyk C, Okayama Y, Woolhiser MR, Hagaman DD, Gilfillan AM and Metcalfe DD: Activation of human mast cells through the high affinity IgG receptor. Mol Immunol. 38:1289–1293. 2002. View Article : Google Scholar : PubMed/NCBI

152 

Darrell DO, Gherlone N, Fremont-Smith P, Tisdall P and Fremont-Smith M: Kawasaki Disease, Multisystem Inflammatory Syndrome in Children: Antibody-Induced Mast Cell Activation Hypothesis. J Pediatrics & Pediatr Med. 4:1–7. 2020. View Article : Google Scholar

153 

Ricke DO: Two Different Antibody-Dependent Enhancement (ADE) Risks for SARS-CoV-2 Antibodies. Front Immunol. 12:6400932021. View Article : Google Scholar : PubMed/NCBI

154 

Yahi N, Chahinian H and Fantini J: Infection-enhancing anti-SARS-CoV-2 antibodies recognize both the original Wuhan/D614G strain and Delta variants. A potential risk for mass vaccination? J Infect. 83:607–635. 2021.PubMed/NCBI

155 

Zhou Y, Liu Z, Li S, Xu W, Zhang Q, Silva IT, Li C, Wu Y, Jiang Q, Liu Z, et al: Enhancement versus neutralization by SARS-CoV-2 antibodies from a convalescent donor associates with distinct epitopes on the RBD. Cell Rep. 34:1086992021. View Article : Google Scholar : PubMed/NCBI

156 

Hachmann NP, Miller J, Collier AY, Ventura JD, Yu J, Rowe M, Bondzie EA, Powers O, Surve N, Hall K and Barouch DH: Neutralization Escape by SARS-CoV-2 Omicron Subvariants BA.2.12.1, BA.4, and BA.5. N Engl J Med. 387:86–88. 2022. View Article : Google Scholar : PubMed/NCBI

157 

Jiang XL, Zhu KL, Wang XJ, Wang GL, Li YK, He XJ, Sun WK, Huang PX, Zhang JZ, Gao HX, et al: Omicron BQ.1 and BQ.1.1 escape neutralisation by omicron subvariant breakthrough infection. Lancet Infect Dis. 23:28–30. 2023. View Article : Google Scholar : PubMed/NCBI

158 

Cao Y, Jian F, Wang J, Yu Y, Song W, Yisimayi A, Wang J, An R, Chen X, Zhang N, et al: Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution. Nature. 614:521–529. 2023.PubMed/NCBI

159 

Röltgen K, Nielsen SCA, Silva O, Younes SF, Zaslavsky M, Costales C, Yang F, Wirz OF, Solis D, Hoh RA, et al: Immune imprinting, breadth of variant recognition, and germinal center response in human SARS-CoV-2 infection and vaccination. Cell. 185:1025–1040.e14. 2022. View Article : Google Scholar : PubMed/NCBI

160 

Liu L, Iketani S, Guo Y, Chan JF, Wang M, Liu L, Luo Y, Chu H, Huang Y, Nair MS, et al: Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature. 602:676–681. 2022. View Article : Google Scholar : PubMed/NCBI

161 

Yang X, Duan H, Liu X, Zhang X, Pan S, Zhang F, Gao P, Liu B, Yang J, Chi X and Yang W: Broad sarbecovirus neutralizing antibodies obtained by computational design and synthetic library screening. J Virol. 97:e00610232023. View Article : Google Scholar : PubMed/NCBI

162 

Cao Y, Jian F, Zhang Z, Yisimayi A, Hao X, Bao L, Yuan F, Yu Y, Du S, Wang J, et al: Rational identification of potent and broad sarbecovirus-neutralizing antibody cocktails from SARS convalescents. Cell Rep. 41:1118452022. View Article : Google Scholar : PubMed/NCBI

163 

Ma H, Zhang X, Zheng P, Dube PH, Zeng W, Chen S, Cheng Q, Yang Y, Wu Y, Zhou J, et al: Hetero-bivalent nanobodies provide broad-spectrum protection against SARS-CoV-2 variants of concern including Omicron. Cell Res. 32:831–842. 2022. View Article : Google Scholar : PubMed/NCBI

164 

Mendon N, Ganie RA, Kesarwani S, Dileep D, Sasi S, Lama P, Chandra A and Sirajuddin M: Nanobody derived using a peptide epitope from the spike protein receptor-binding motif inhibits entry of SARS-CoV-2 variants. J Biol Chem. 299:1027322023. View Article : Google Scholar : PubMed/NCBI

165 

Ettich J, Werner J, Weitz HT, Mueller E, Schwarzer R, Lang PA, Scheller J and Moll JM: A Hybrid Soluble gp130/Spike-Nanobody Fusion Protein Simultaneously Blocks Interleukin-6 trans-Signaling and Cellular Infection with SARS-CoV-2. J Virol. 96:e01622212022. View Article : Google Scholar : PubMed/NCBI

166 

Lyu X, Imai S, Yamano T and Hanayama R: Preventing SARS-CoV-2 Infection Using Anti-spike Nanobody-IFN-β Conjugated Exosomes. Pharm Res. 40:927–935. 2023. View Article : Google Scholar : PubMed/NCBI

167 

Gruell H, Vanshylla K, Weber T, Barnes CO, Kreer C and Klein F: Antibody-mediated neutralization of SARS-CoV-2. Immunity. 55:925–944. 2022. View Article : Google Scholar : PubMed/NCBI

168 

Suryadevara N, Shrihari S, Gilchuk P, VanBlargan LA, Binshtein E, Zost SJ, Nargi RS, Sutton RE, Winkler ES, Chen EC, et al: Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein. Cell. 184:2316–2331.e15. 2021. View Article : Google Scholar : PubMed/NCBI

169 

Voss WN, Hou YJ, Johnson NV, Delidakis G, Kim JE, Javanmardi K, Horton AP, Bartzoka F, Paresi CJ, Tanno Y, et al: Prevalent, protective, and convergent IgG recognition of SARS-CoV-2 non-RBD spike epitopes. Science. 372:1108–1112. 2021. View Article : Google Scholar : PubMed/NCBI

170 

Cerutti G, Guo Y, Wang P, Nair MS, Huang Y, Yu J, Liu L, Katsamba PS, Bahna F, Reddem ER, et al: Neutralizing antibody 5–7 defines a distinct site of vulnerability in SARS-CoV-2 spike N-terminal domain. Cell Rep. 37:1099282021. View Article : Google Scholar : PubMed/NCBI

171 

Graham C, Seow J, Huettner I, Khan H, Kouphou N, Acors S, Winstone H, Pickering S, Galao RP, Dupont L, et al: Neutralization potency of monoclonal antibodies recognizing dominant and subdominant epitopes on SARS-CoV-2 Spike is impacted by the B.1.1.7 variant. Immunity. 54:1276–1289.e6. 2021. View Article : Google Scholar : PubMed/NCBI

172 

Wang Z, Muecksch F, Cho A, Gaebler C, Hoffmann HH, Ramos V, Zong S, Cipolla M, Johnson B, Schmidt F, et al: Analysis of memory B cells identifies conserved neutralizing epitopes on the N-terminal domain of variant SARS-Cov-2 spike proteins. Immunity. 55:998–1012.e8. 2022. View Article : Google Scholar : PubMed/NCBI

173 

Pinto D, Sauer MM, Czudnochowski N, Low JS, Tortorici MA, Housley MP, Noack J, Walls AC, Bowen JE, Guarino B, et al: Broad betacoronavirus neutralization by a stem helix-specific human antibody. Science. 373:1109–1116. 2021. View Article : Google Scholar : PubMed/NCBI

174 

Zhou P, Yuan M, Song G, Beutler N, Shaabani N, Huang D, He WT, Zhu X, Callaghan S, Yong P, et al: A human antibody reveals a conserved site on beta-coronavirus spike proteins and confers protection against SARS-CoV-2 infection. Sci Transl Med. 14:eabi92152022. View Article : Google Scholar : PubMed/NCBI

175 

Shi W, Wang L, Zhou T, Sastry M, Yang ES, Zhang Y, Chen M, Chen X, Choe M, Creanga A, et al: Vaccine-elicited murine antibody WS6 neutralizes diverse beta-coronaviruses by recognizing a helical stem supersite of vulnerability. Structure. 30:1233–1244.e7. 2022. View Article : Google Scholar : PubMed/NCBI

176 

Li W, Chen Y, Prévost J, Ullah I, Lu M, Gong SY, Tauzin A, Gasser R, Vézina D, Anand SP and Goyette G: Structural basis and mode of action for two broadly neutralizing antibodies against SARS-CoV-2 emerging variants of concern. Cell Rep. 38:1102102022. View Article : Google Scholar : PubMed/NCBI

177 

Dacon C, Tucker C, Peng L, Lee CD, Lin TH, Yuan M, Cong Y, Wang L, Purser L, Williams JK, et al: Broadly neutralizing antibodies target the coronavirus fusion peptide. Science. 377:728–735. 2022. View Article : Google Scholar : PubMed/NCBI

178 

Low JS, Jerak J, Tortorici MA, McCallum M, Pinto D, Cassotta A, Foglierini M, Mele F, Abdelnabi R, Weynand B, et al: ACE2-binding exposes the SARS-CoV-2 fusion peptide to broadly neutralizing coronavirus antibodies. Science. 377:735–742. 2022. View Article : Google Scholar : PubMed/NCBI

179 

Sun X, Yi C, Zhu Y, Ding L, Xia S, Chen X, Liu M, Gu C, Lu X, Fu Y, et al: Neutralization mechanism of a human antibody with pan-coronavirus reactivity including SARS-CoV-2. Nat Microbiol. 7:1063–1074. 2022. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang T, Yang D, Tang L and Hu Y: Current development of severe acute respiratory syndrome coronavirus 2 neutralizing antibodies (Review). Mol Med Rep 30: 148, 2024.
APA
Zhang, T., Yang, D., Tang, L., & Hu, Y. (2024). Current development of severe acute respiratory syndrome coronavirus 2 neutralizing antibodies (Review). Molecular Medicine Reports, 30, 148. https://doi.org/10.3892/mmr.2024.13272
MLA
Zhang, T., Yang, D., Tang, L., Hu, Y."Current development of severe acute respiratory syndrome coronavirus 2 neutralizing antibodies (Review)". Molecular Medicine Reports 30.2 (2024): 148.
Chicago
Zhang, T., Yang, D., Tang, L., Hu, Y."Current development of severe acute respiratory syndrome coronavirus 2 neutralizing antibodies (Review)". Molecular Medicine Reports 30, no. 2 (2024): 148. https://doi.org/10.3892/mmr.2024.13272
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang T, Yang D, Tang L and Hu Y: Current development of severe acute respiratory syndrome coronavirus 2 neutralizing antibodies (Review). Mol Med Rep 30: 148, 2024.
APA
Zhang, T., Yang, D., Tang, L., & Hu, Y. (2024). Current development of severe acute respiratory syndrome coronavirus 2 neutralizing antibodies (Review). Molecular Medicine Reports, 30, 148. https://doi.org/10.3892/mmr.2024.13272
MLA
Zhang, T., Yang, D., Tang, L., Hu, Y."Current development of severe acute respiratory syndrome coronavirus 2 neutralizing antibodies (Review)". Molecular Medicine Reports 30.2 (2024): 148.
Chicago
Zhang, T., Yang, D., Tang, L., Hu, Y."Current development of severe acute respiratory syndrome coronavirus 2 neutralizing antibodies (Review)". Molecular Medicine Reports 30, no. 2 (2024): 148. https://doi.org/10.3892/mmr.2024.13272
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team