Doxycycline targets aldehyde dehydrogenase‑positive breast cancer stem cells

  • Authors:
    • Chang‑Ching Lin
    • Miao‑Chia Lo
    • Rebecca R. Moody
    • Nicholas O. Stevers
    • Samantha L. Tinsley
    • Duxin Sun
  • View Affiliations

  • Published online on: March 27, 2018     https://doi.org/10.3892/or.2018.6337
  • Pages: 3041-3047
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Targeting cancer stem cells (CSCs) is a key strategy to prevent cancers from developing drug resistance and metastasis. Mitochondria have been reported to be a vulnerability of CSCs by multiple studies. Here, we report that doxycycline, functioning as an inhibitor of mitochondrial biogenesis, can effectively target breast cancer stem cells (BCSCs). Our results revealed that doxycycline significantly decreased the frequency of aldehyde dehydrogenase‑positive (ALDH+) BCSCs as well as mammosphere formation efficiency in HER2+ and triple‑negative breast cancer (TNBC) subtypes. Doxycycline also ameliorated paclitaxel‑induced enrichment of ALDH+ BCSCs in TNBC. Mechanistically, we showed that doxycycline decreased the level of reactive oxygen species and their downstream p38 MAPK pathway. In agreement with the key role for p38 in maintaining BCSCs, a specific inhibitor targeting this MAPK pathway significantly decreased the number of ALDH+ cells. Doxycycline is a FDA‑approved drug with minor and limited side‑effects. Given doxycycline's low toxicity and strong effect on BCSC inhibition, we report that doxycycline should be safe to be used concomitantly with chemotherapy drugs to eradicate both CSCs and bulk tumor cells.

References

1 

Siegel R, Naishadham D and Jemal A: Cancer statistics, 2013. CA Cancer J Clin. 63:11–30. 2013. View Article : Google Scholar : PubMed/NCBI

2 

Guiu S, Michiels S, André F, Cortes J, Denkert C, Di Leo A, Hennessy BT, Sorlie T, Sotiriou C, Turner N, et al: Molecular subclasses of breast cancer: How do we define them? The IMPAKT 2012 working group statement. Ann Oncol. 23:2997–3006. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, Davies S, Fauron C, He X, Hu Z, et al: Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol. 27:1160–1167. 2009. View Article : Google Scholar : PubMed/NCBI

4 

Lan KH, Lu CH and Yu D: Mechanisms of trastuzumab resistance and their clinical implications. Ann N Y Acad Sci. 1059:70–75. 2005. View Article : Google Scholar : PubMed/NCBI

5 

Nahta R, Yu D, Hung MC, Hortobagyi GN and Esteva FJ: Mechanisms of disease: Understanding resistance to HER2-targeted therapy in human breast cancer. Nat Clin Pract Oncol. 3:269–280. 2006. View Article : Google Scholar : PubMed/NCBI

6 

Yu KD, Zhu R, Zhan M, Rodriguez AA, Yang W, Wong S, Makris A, Lehmann BD, Chen X, Mayer I, et al: Identification of prognosis-relevant subgroups in patients with chemoresistant triple-negative breast cancer. Clin Cancer Res. 19:2723–2733. 2013. View Article : Google Scholar : PubMed/NCBI

7 

Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA and Dick JE: A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 367:645–648. 1994. View Article : Google Scholar : PubMed/NCBI

8 

Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, et al: ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 1:555–567. 2007. View Article : Google Scholar : PubMed/NCBI

9 

Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ and Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 100:3983–3988. 2003. View Article : Google Scholar : PubMed/NCBI

10 

Korkaya H, Kim GI, Davis A, Malik F, Henry NL, Ithimakin S, Quraishi AA, Tawakkol N, D'Angelo R, Paulson AK, et al: Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population. Mol Cell. 47:570–584. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Zhou BB, Zhang H, Damelin M, Geles KG, Grindley JC and Dirks PB: Tumour-initiating cells: Challenges and opportunities for anticancer drug discovery. Nat Rev Drug Dis. 8:806–823. 2009. View Article : Google Scholar

12 

Wicha MS: Targeting self-renewal, an Achilles' heel of cancer stem cells. Nat Med. 20:14–15. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

14 

Warburg O: The Metabolism of Tumor. Richard R. Smith; New York: 1931

15 

Magda D, Lecane P, Prescott J, Thiemann P, Ma X, Dranchak PK, Toleno DM, Ramaswamy K, Siegmund KD and Hacia JG: mtDNA depletion confers specific gene expression profiles in human cells grown in culture and in xenograft. BMC Genomics. 9:5212008. View Article : Google Scholar : PubMed/NCBI

16 

Morais R, Zinkewich-Péotti K, Parent M, Wang H, Babai F and Zollinger M: Tumor-forming ability in athymic nude mice of human cell lines devoid of mitochondrial DNA. Cancer Res. 54:3889–3896. 1994.PubMed/NCBI

17 

Cavalli LR, Varella-Garcia M and Liang BC: Diminished tumorigenic phenotype after depletion of mitochondrial DNA. Cell Growth Differ. 8:1189–1198. 1997.PubMed/NCBI

18 

Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, Kalyanaraman B, Mutlu GM, Budinger GR and Chandel NS: Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA. 107:8788–8793. 2010. View Article : Google Scholar : PubMed/NCBI

19 

Tan AS, Baty JW, Dong LF, Bezawork-Geleta A, Endaya B, Goodwin J, Bajzikova M, Kovarova J, Peterka M, Yan B, et al: Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab. 21:81–94. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Farnie G, Sotgia F and Lisanti MP: High mitochondrial mass identifies a sub-population of stem-like cancer cells that are chemo-resistant. Oncotarget. 6:30472–30486. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Yan B, Stantic M, Zobalova R, Bezawork-Geleta A, Stapelberg M, Stursa J, Prokopova K, Dong L and Neuzil J: Mitochondrially targeted vitamin E succinate efficiently kills breast tumour-initiating cells in a complex II-dependent manner. BMC Cancer. 15:4012015. View Article : Google Scholar : PubMed/NCBI

22 

Pasdar EA, Smits M, Stapelberg M, Bajzikova M, Stantic M, Goodwin J, Yan B, Stursa J, Kovarova J, Sachaphibulkij K, et al: Characterisation of mesothelioma-initiating cells and their susceptibility to anti-cancer agents. PLoS One. 10:e01195492015. View Article : Google Scholar : PubMed/NCBI

23 

LeBleu VS, O'Connell JT, Herrera Gonzalez KN, Wikman H, Pantel K, Haigis MC, de Carvalho FM, Damascena A, Chinen Domingos LT, Rocha RM, et al: PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat Cell Biol. 16(992–1003): 1–15. 2014.

24 

Moullan N, Mouchiroud L, Wang X, Ryu D, Williams EG, Mottis A, Jovaisaite V, Frochaux MV, Quiros PM, Deplancke B, et al: Tetracyclines disturb mitochondrial function across eukaryotic models: A call for caution in biomedical research. Cell Rep: S2211-1247(15)00180-1. 2015. View Article : Google Scholar

25 

Lamb R, Ozsvari B, Lisanti CL, Tanowitz HB, Howell A, Martinez-Outschoorn UE, Sotgia F and Lisanti MP: Antibiotics that target mitochondria effectively eradicate cancer stem cells, across multiple tumor types: Treating cancer like an infectious disease. Oncotarget. 6:4569–4584. 2015. View Article : Google Scholar : PubMed/NCBI

26 

Lamb R, Fiorillo M, Chadwick A, Ozsvari B, Reeves KJ, Smith DL, Clarke RB, Howell SJ, Cappello AR, Martinez-Outschoorn UE, et al: Doxycycline down-regulates DNA-PK and radiosensitizes tumor initiating cells: Implications for more effective radiation therapy. Oncotarget. 6:14005–14025. 2015. View Article : Google Scholar : PubMed/NCBI

27 

De Francesco EM, Maggiolini M, Tanowitz HB, Sotgia F and Lisanti MP: Targeting hypoxic cancer stem cells (CSCs) with Doxycycline: Implications for optimizing anti-angiogenic therapy. Oncotarget. 8:56126–56142. 2017. View Article : Google Scholar : PubMed/NCBI

28 

De Francesco EM, Bonuccelli G, Maggiolini M, Sotgia F and Lisanti MP: Vitamin C and Doxycycline: A synthetic lethal combination therapy targeting metabolic flexibility in cancer stem cells (CSCs). Oncotarget. 8:67269–67286. 2017. View Article : Google Scholar : PubMed/NCBI

29 

Liu S, Cong Y, Wang D, Sun Y, Deng L, Liu Y, Martin-Trevino R, Shang L, McDermott SP, Landis MD, et al: Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Reports. 2:78–91. 2013. View Article : Google Scholar : PubMed/NCBI

30 

Brooks MD, Burness ML and Wicha MS: Therapeutic implications of cellular heterogeneity and plasticity in breast cancer. Cell Stem Cell. 17:260–271. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Burnett JP, Korkaya H, Ouzounova MD, Jiang H, Conley SJ, Newman BW, Sun L, Connarn JN, Chen CS, Zhang N, et al: Trastuzumab resistance induces EMT to transform HER2+ PTEN to a triple negative breast cancer that requires unique treatment options. Sci Rep. 5:158212015. View Article : Google Scholar : PubMed/NCBI

32 

Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ and Wicha MS: In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 17:1253–1270. 2003. View Article : Google Scholar : PubMed/NCBI

33 

Xu X, Chai S, Wang P, Zhang C, Yang Y, Yang Y and Wang K: Aldehyde dehydrogenases and cancer stem cells. Cancer Lett. 369:50–57. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Ahler E, Sullivan WJ, Cass A, Braas D, York AG, Bensinger SJ, Graeber TG and Christofk HR: Doxycycline alters metabolism and proliferation of human cell lines. PLoS One. 8:e645612013. View Article : Google Scholar : PubMed/NCBI

35 

Samanta D, Gilkes DM, Chaturvedi P, Xiang L and Semenza GL: Hypoxia-inducible factors are required for chemotherapy resistance of breast cancer stem cells. Proc Natl Acad Sci USA. 111:E5429–E5438. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, et al: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 133:704–715. 2008. View Article : Google Scholar : PubMed/NCBI

37 

Liu S, Clouthier SG and Wicha MS: Role of microRNAs in the regulation of breast cancer stem cells. J Mammary Gland Biol Neoplasia. 17:15–21. 2012. View Article : Google Scholar : PubMed/NCBI

38 

Murphy MP: How mitochondria produce reactive oxygen species. Biochem J. 417:1–13. 2009. View Article : Google Scholar : PubMed/NCBI

39 

Iriondo O, Rábano M, Domenici G, Carlevaris O, López-Ruiz JA, Zabalza I, Berra E and Vivanco M: Distinct breast cancer stem/progenitor cell populations require either HIF1α or loss of PHD3 to expand under hypoxic conditions. Oncotarget. 6:31721–31739. 2015. View Article : Google Scholar : PubMed/NCBI

40 

Conley SJ, Gheordunescu E, Kakarala P, Newman B, Korkaya H, Heath AN, Clouthier SG and Wicha MS: Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc Natl Acad Sci USA. 109:2784–2789. 2012. View Article : Google Scholar : PubMed/NCBI

41 

Gao N, Jiang BH, Leonard SS, Corum L, Zhang Z, Roberts JR, Antonini J, Zheng JZ, Flynn DC, Castranova V and Shi X: p38 signaling-mediated hypoxia-inducible factor 1alpha and vascular endothelial growth factor induction by Cr(VI) in DU145 human prostate carcinoma cells. J Biol Chem. 277:45041–45048. 2002. View Article : Google Scholar : PubMed/NCBI

42 

Kwon SJ, Song JJ and Lee YJ: Signal pathway of hypoxia-inducible factor-1alpha phosphorylation and its interaction with von Hippel-Lindau tumor suppressor protein during ischemia in MiaPaCa-2 pancreatic cancer cells. Clin Cancer Res. 11:7607–7613. 2005. View Article : Google Scholar : PubMed/NCBI

43 

Xu M, Ren Z, Wang X, Comer A, Frank JA, Ke ZJ, Huang Y, Zhang Z, Shi X, Wang S and Luo J: ErbB2 and p38gamma MAPK mediate alcohol-induced increase in breast cancer stem cells and metastasis. Mol Cancer. 15:522016. View Article : Google Scholar : PubMed/NCBI

44 

Xu M, Wang S, Ren Z, Frank JA, Yang XH, Zhang Z, Ke ZJ, Shi X and Luo J: Chronic ethanol exposure enhances the aggressiveness of breast cancer: The role of p38γ. Oncotarget. 7:3489–3505. 2016.PubMed/NCBI

45 

Silvera D and Schneider RJ: Inflammatory breast cancer cells are constitutively adapted to hypoxia. Cell Cycle. 8:3091–3096. 2009. View Article : Google Scholar : PubMed/NCBI

46 

Wynn ML, Yates JA, Evans CR, Van Wassenhove LD, Wu ZF, Bridges S, Bao L, Fournier C, Ashrafzadeh S, Merrins MJ, et al: RhoC GTPase is a potent regulator of glutamine metabolism and N-acetylaspartate production in inflammatory breast cancer cells. J Biol Chem. 291:13715–13729. 2016. View Article : Google Scholar : PubMed/NCBI

47 

Ferreri AJ, Ponzoni M, Guidoboni M, Resti AG, Politi LS, Cortelazzo S, Demeter J, Zallio F, Palmas A, Muti G, et al: Bacteria-eradicating therapy with doxycycline in ocular adnexal MALT lymphoma: A multicenter prospective trial. J Natl Cancer Inst. 98:1375–1382. 2006. View Article : Google Scholar : PubMed/NCBI

48 

Shen LC, Chen YK, Lin LM and Shaw SY: Anti-invasion and anti-tumor growth effect of doxycycline treatment for human oral squamous-cell carcinoma-in vitro and in vivo studies. Oral Oncol. 46:178–184. 2010. View Article : Google Scholar : PubMed/NCBI

49 

Duivenvoorden WC, Popović SV, Lhoták S, Seidlitz E, Hirte HW, Tozer RG and Singh G: Doxycycline decreases tumor burden in a bone metastasis model of human breast cancer. Cancer Res. 62:1588–1591. 2002.PubMed/NCBI

Related Articles

Journal Cover

June 2018
Volume 39 Issue 6

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Lin, C., Lo, M., Moody, R.R., Stevers, N.O., Tinsley, S.L., & Sun, D. (2018). Doxycycline targets aldehyde dehydrogenase‑positive breast cancer stem cells. Oncology Reports, 39, 3041-3047. https://doi.org/10.3892/or.2018.6337
MLA
Lin, C., Lo, M., Moody, R. R., Stevers, N. O., Tinsley, S. L., Sun, D."Doxycycline targets aldehyde dehydrogenase‑positive breast cancer stem cells". Oncology Reports 39.6 (2018): 3041-3047.
Chicago
Lin, C., Lo, M., Moody, R. R., Stevers, N. O., Tinsley, S. L., Sun, D."Doxycycline targets aldehyde dehydrogenase‑positive breast cancer stem cells". Oncology Reports 39, no. 6 (2018): 3041-3047. https://doi.org/10.3892/or.2018.6337