Salinomycin induces apoptosis and differentiation in human acute promyelocytic leukemia cells

  • Authors:
    • Yi Zhao
    • Liang Zhong
    • Lu Liu
    • Shi-Fei Yao
    • Min Chen
    • Lian-Wen Li
    • Zhi-Ling Shan
    • Chun-Lan Xiao
    • Liu-Gen Gan
    • Ting Xu
    • Bei-Zhong Liu
  • View Affiliations

  • Published online on: June 20, 2018     https://doi.org/10.3892/or.2018.6513
  • Pages: 877-886
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

At present, acute promyelocytic leukemia (APL) is the most curable form of acute myeloid leukemia and can be treated using all-trans retinoic acid and arsenic trioxide. However, the current treatment of APL is associated with some issues such as drug toxicity, resistance and relapse. Therefore, other strategies are necessary for APL treatment. In the present study, we investigated the effects of salinomycin (SAL) on APL cell lines NB4 and HL-60 and determined its possible mechanisms. We observed that SAL inhibited cell proliferation, as determined by performing Cell Counting Kit-8 (CCK-8) assay, promoted cell apoptosis, as determined based on morphological changes, and increased Annexin V/propidium iodide (PI)-positive apoptotic cell percentage. Treatment with SAL increased Bax/Bcl-2 and cytochrome c expression and activated caspase-3 and -9, thus leading to poly(ADP-ribose) polymerase (PARP) cleavage and resulting in cell apoptosis. These results revealed that SAL induced cell apoptosis through activation of the intrinsic apoptosis pathway. The present study is the first to show that SAL induced the differentiation of APL cells, as determined based on mature morphological changes, increased NBT-positive cell and CD11b-positive cell percentages and increased CD11b and C/EBPβ levels. Furthermore, SAL decreased the expression of β-catenin and its targets cyclin D1 and C-myc. Results of immunofluorescence analysis revealed that SAL markedly decreased the β-catenin level in both the nucleus and cytoplasm. Combination treatment with SAL and IWR-1, an inhibitor of Wnt signaling, synergistically triggered SAL-induced differentiation of APL cells. These findings demonstrated that SAL effectively inhibited cell proliferation accompanied by induction of apoptosis and promotion of cell differentiation by inhibiting Wnt/β-catenin signaling. Collectively, these data revealed that SAL is a potential drug for treatment of APL.

References

1 

Lafage-Pochitaloff M, Alcalay M, Brunel V, Longo L, Sainty D, Simonetti J, Birg F and Pelicci PG: Acute promyelocytic leukemia cases with nonreciprocal PML/RARa or RARa/PML fusion genes. Blood. 85:1169–1174. 1995.PubMed/NCBI

2 

Rodeghiero F and Castaman G: The pathophysiology and treatment of hemorrhagic syndrome of acute promyelocytic leukemia. Leukemia. 8 (Suppl 2):S20–S26. 1994.PubMed/NCBI

3 

Wang ZY and Chen Z: Acute promyelocytic leukemia: From highly fatal to highly curable. Blood. 111:2505–2515. 2008. View Article : Google Scholar : PubMed/NCBI

4 

Wang ZY: Mechanism of action of all-trans retinoic acid and arsenic trioxide in the treatment of acute promyelocytic leukemia. Gan To Kagaku Ryoho. 29 (Suppl 1):214–218. 2002.PubMed/NCBI

5 

Tallman MS: Treatment of relapsed or refractory acute promyelocytic leukemia. Best Pract Res Clin Haematol. 20:57–65. 2007. View Article : Google Scholar : PubMed/NCBI

6 

Tomita A, Kiyoi H and Naoe T: Mechanisms of action and resistance to all-trans retinoic acid (ATRA) and arsenic trioxide (As2O 3) in acute promyelocytic leukemia. Int J Hematol. 97:717–725. 2013. View Article : Google Scholar : PubMed/NCBI

7 

Sanz MA and Montesinos P: How we prevent and treat differentiation syndrome in patients with acute promyelocytic leukemia. Blood. 123:2777–2782. 2014. View Article : Google Scholar : PubMed/NCBI

8 

Butaye P, Devriese LA and Haesebrouck F: Antimicrobial growth promoters used in animal feed: Effects of less well known antibiotics on gram-positive bacteria. Clin Microbiol Rev. 16:175–188. 2003. View Article : Google Scholar : PubMed/NCBI

9 

Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA and Lander ES: Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 138:645–659. 2009. View Article : Google Scholar : PubMed/NCBI

10 

Xiao Z, Sperl B, Ullrich A and Knyazev P: Metformin and salinomycin as the best combination for the eradication of NSCLC monolayer cells and their alveospheres (cancer stem cells) irrespective of EGFR, KRAS, EML4/ALK and LKB1 status. Oncotarget. 5:12877–12890. 2014. View Article : Google Scholar : PubMed/NCBI

11 

Li T, Liu X, Shen Q, Yang W, Huo Z, Liu Q, Jiao H and Chen J: Salinomycin exerts anti-angiogenic and anti-tumorigenic activities by inhibiting vascular endothelial growth factor receptor 2-mediated angiogenesis. Oncotarget. 7:26580–26592. 2016.PubMed/NCBI

12 

Mirkheshti N, Park S, Jiang S, Cropper J, Werner SL, Song CS and Chatterjee B: Dual targeting of androgen receptor and mTORC1 by salinomycin in prostate cancer. Oncotarget. 7:62240–62254. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Xipell E, Gonzalez-Huarriz M, Martinez de Irujo JJ, García-Garzón A, Lang FF, Jiang H, Fueyo J, Gomez-Manzano C and Alonso MM: Salinomycin induced ROS results in abortive autophagy and leads to regulated necrosis in glioblastoma. Oncotarget. 7:30626–30641. 2016. View Article : Google Scholar : PubMed/NCBI

14 

Lu D, Choi MY, Yu J, Castro JE, Kipps TJ and Carson DA: Salinomycin inhibits Wnt signaling and selectively induces apoptosis in chronic lymphocytic leukemia cells. Proc Natl Acad Sci USA. 108:13253–13257. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Niwa AM, D Epiro GF, Marques LA, Semprebon SC, Sartori D, Ribeiro LR and Mantovani MS: Salinomycin efficiency assessment in non-tumor (HB4a) and tumor (MCF-7) human breast cells. Naunyn Schmiedebergs Arch Pharmacol. 389:557–571. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Roulston GD, Burt CL, Kettyle LM, Matchett KB, Keenan HL, Mulgrew NM, Ramsey JM, Dougan C, McKiernan J, Grishagin IV, et al: Low-dose salinomycin induces anti-leukemic responses in AML and MLL. Oncotarget. 7:73448–73461. 2016. View Article : Google Scholar : PubMed/NCBI

17 

Singh A and Settleman J: EMT, cancer stem cells and drug resistance: An emerging axis of evil in the war on cancer. Oncogene. 29:4741–4751. 2010. View Article : Google Scholar : PubMed/NCBI

18 

Mao J, Fan S, Ma W, Fan P, Wang B, Zhang J, Wang H, Tang B, Zhang Q, Yu X, et al: Roles of Wnt/β-catenin signaling in the gastric cancer stem cells proliferation and salinomycin treatment. Cell Death Dis. 5:e10392014. View Article : Google Scholar : PubMed/NCBI

19 

Lee HG, Shin SJ and Chung HW: Salinomycin reduces stemness and induces apoptosis on human ovarian cancer stem cell. J Gynecol Oncol. 28:e142017. View Article : Google Scholar : PubMed/NCBI

20 

Fuchs D, Daniel V, Sadeghi M, Opelz G and Naujokat C: Salinomycin overcomes ABC transporter-mediated multidrug and apoptosis resistance in human leukemia stem cell-like KG-1a cells. Biochem Biophys Res Commun. 394:1098–1104. 2010. View Article : Google Scholar : PubMed/NCBI

21 

Zou ZZ, Nie PP, Li YW, Hou BX, Rui-Li, Shi XP, Ma ZK, Han BW and Luo XY: Synergistic induction of apoptosis by salinomycin and gefitinib through lysosomal and mitochondrial dependent pathway overcomes gefitinib resistance in colorectal cancer. Oncotarget. 8:22414–22432. 2017.PubMed/NCBI

22 

Hermawan A, Wagner E and Roidl A: Consecutive salinomycin treatment reduces doxorubicin resistance of breast tumor cells by diminishing drug efflux pump expression and activity. Oncol Rep. 35:1732–1740. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Li R, Dong T, Hu C, Lu J, Dai J and Liu P: Salinomycin repressed the epithelial-mesenchymal transition of epithelial ovarian cancer cells via downregulating Wnt/β-catenin pathway. Onco Targets Ther. 10:1317–1325. 2017. View Article : Google Scholar : PubMed/NCBI

24 

Clevers H: Wnt/beta-catenin signaling in development and disease. Cell. 127:469–480. 2006. View Article : Google Scholar : PubMed/NCBI

25 

Simon M, Grandage VL, Linch DC and Khwaja A: Constitutive activation of the Wnt/beta-catenin signalling pathway in acute myeloid leukaemia. Oncogene. 24:2410–2420. 2005. View Article : Google Scholar : PubMed/NCBI

26 

Luis TC, Ichii M, Brugman MH, Kincade P and Staal FJ: Wnt signaling strength regulates normal hematopoiesis and its deregulation is involved in leukemia development. Leukemia. 26:414–421. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Zang S, Liu N, Wang H, Wald DN, Shao N, Zhang J, Ma D, Ji C and Tse W: Wnt signaling is involved in 6-benzylthioinosine-induced AML cell differentiation. BMC Cancer. 14:8862014. View Article : Google Scholar : PubMed/NCBI

28 

Sheng Y, Ju W, Huang Y, Li J, Ozer H, Qiao X and Qian Z: Activation of wnt/β-catenin signaling blocks monocyte-macrophage differentiation through antagonizing PU.1-targeted gene transcription. Leukemia. 30:2106–2109. 2016. View Article : Google Scholar : PubMed/NCBI

29 

Gandillet A, Park S, Lassailly F, Griessinger E, Vargaftig J, Filby A, Lister TA and Bonnet D: Heterogeneous sensitivity of human acute myeloid leukemia to β-catenin down-modulation. Leukemia. 25:770–780. 2011. View Article : Google Scholar : PubMed/NCBI

30 

Lee SC, Kim OH, Lee SK and Kim SJ: IWR-1 inhibits epithelial-mesenchymal transition of colorectal cancer cells through suppressing Wnt/β-catenin signaling as well as survivin expression. Oncotarget. 6:27146–27159. 2015.PubMed/NCBI

31 

McCubrey JA, Steelman LS, Bertrand FE, Davis NM, Abrams SL, Montalto G, D'Assoro AB, Libra M, Nicoletti F, Maestro R, et al: Multifaceted roles of GSK-3 and Wnt/β-catenin in hematopoiesis and leukemogenesis: Opportunities for therapeutic intervention. Leukemia. 28:15–33. 2014. View Article : Google Scholar : PubMed/NCBI

32 

Xu G and Shi Y: Apoptosis signaling pathways and lymphocyte homeostasis. Cell Res. 17:759–771. 2007. View Article : Google Scholar : PubMed/NCBI

33 

Chen Y, Liu ZH, Xia J, Li XP, Li KQ, Xiong W, Li J and Chen DL: 20(S)-ginsenoside Rh2 inhibits the proliferation and induces the apoptosis of KG-1a cells through the Wnt/β-catenin signaling pathway. Oncol Rep. 36:137–146. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Staal FJ, Famili F, Garcia Perez L and Pike-Overzet K: Aberrant Wnt Signaling in Leukemia. Cancers (Basel). 8:82016. View Article : Google Scholar :

35 

King TD, Suto MJ and Li Y: The Wnt/β-catenin signaling pathway: A potential therapeutic target in the treatment of triple negative breast cancer. J Cell Biochem. 113:13–18. 2012. View Article : Google Scholar : PubMed/NCBI

36 

Ahmadzadeh A, Norozi F, Shahrabi S, Shahjahani M and Saki N: Wnt/β-catenin signaling in bone marrow niche. Cell Tissue Res. 363:321–335. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Lu W and Li Y: Salinomycin suppresses LRP6 expression and inhibits both Wnt/β-catenin and mTORC1 signaling in breast and prostate cancer cells. J Cell Biochem. 115:1799–1807. 2014. View Article : Google Scholar : PubMed/NCBI

38 

Chen B, Dodge ME, Tang W, Lu J, Ma Z, Fan CW, Wei S, Hao W, Kilgore J, Williams NS, et al: Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat Chem Biol. 5:100–107. 2009. View Article : Google Scholar : PubMed/NCBI

39 

Kühn K, Cott C, Bohler S, Aigal S, Zheng S, Villringer S, Imberty A, Claudinon J and Römer W: The interplay of autophagy and β-Catenin signaling regulates differentiation in acute myeloid leukemia. Cell Death Discov. 1:150312015. View Article : Google Scholar : PubMed/NCBI

40 

Orfali N, O'Donovan TR, Nyhan MJ, Britschgi A, Tschan MP, Cahill MR, Mongan NP, Gudas LJ and McKenna SL: Induction of autophagy is a key component of all-trans-retinoic acid-induced differentiation in leukemia cells and a potential target for pharmacologic modulation. Exp Hematol. 43:781–793. 2015. View Article : Google Scholar : PubMed/NCBI

41 

Wang Z, Cao L, Kang R, Yang M, Liu L, Zhao Y, Yu Y, Xie M, Yin X, Livesey KM, et al: Autophagy regulates myeloid cell differentiation by p62/SQSTM1-mediated degradation of PML-RARα oncoprotein. Autophagy. 7:401–411. 2011. View Article : Google Scholar : PubMed/NCBI

42 

Ignatz-Hoover JJ, Wang H, Moreton SA, Chakrabarti A, Agarwal MK, Sun K, Gupta K and Wald DN: The role of TLR8 signaling in acute myeloid leukemia differentiation. Leukemia. 29:918–926. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

August 2018
Volume 40 Issue 2

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Zhao, Y., Zhong, L., Liu, L., Yao, S., Chen, M., Li, L. ... Liu, B. (2018). Salinomycin induces apoptosis and differentiation in human acute promyelocytic leukemia cells. Oncology Reports, 40, 877-886. https://doi.org/10.3892/or.2018.6513
MLA
Zhao, Y., Zhong, L., Liu, L., Yao, S., Chen, M., Li, L., Shan, Z., Xiao, C., Gan, L., Xu, T., Liu, B."Salinomycin induces apoptosis and differentiation in human acute promyelocytic leukemia cells". Oncology Reports 40.2 (2018): 877-886.
Chicago
Zhao, Y., Zhong, L., Liu, L., Yao, S., Chen, M., Li, L., Shan, Z., Xiao, C., Gan, L., Xu, T., Liu, B."Salinomycin induces apoptosis and differentiation in human acute promyelocytic leukemia cells". Oncology Reports 40, no. 2 (2018): 877-886. https://doi.org/10.3892/or.2018.6513