Identification of biomarkers for the prediction of relapse‑free survival in pediatric B‑precursor acute lymphoblastic leukemia

  • Authors:
    • Wei Jing
    • Jing Li
  • View Affiliations

  • Published online on: November 2, 2018     https://doi.org/10.3892/or.2018.6846
  • Pages: 659-667
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

B‑precursor acute lymphoblastic leukemia (B‑ALL) is the most common cancer diagnosed in children and adolescents. Despite the fact that the 5‑year survival rate has increased from 60 to 90%, approximately a quarter of children suffer from relapse with poor outcome. To improve the clinical management of B‑ALL, there is an urgent need for prognostic biomarkers for the prediction of B‑ALL outcomes. In the present study, we performed a comprehensive analysis of the gene expression data of 456 samples from five independent cohorts. We first sought to identify B‑ALL‑associated genes by differential gene expression analysis by applying linear models. Then, the statistical modelling was applied to identify candidates related to relapse‑free survival. We identified a total of 1,273 B‑ALL‑associated genes that have functions relevant to chemokine signaling. From these genes, 59 genes were identified as prognostic biomarkers. Based on expression patterns of these genes, we successfully distinguished high‑ and low‑risk groups of B‑ALL patients (log-rank test, P‑value=0.025). We further investigated the 59‑gene expression levels in ALL chemotherapy‑treated cohorts and identified 4 genes as potential drug targets associated with drug sensitivity. Our results provided a novel biomarker panel. By leveraging the large scale of data and statistical modelling, we believe this 59‑gene biomarker could help to unveil the mechanisms underlying B‑ALL progression and become potential drug targets.

References

1 

Locatelli F, Schrappe M, Bernardo ME and Rutella S: How I treat relapsed childhood acute lymphoblastic leukemia. Blood. 120:2807–2816. 2012. View Article : Google Scholar : PubMed/NCBI

2 

Bhojwani D and Pui CH: Relapsed childhood acute lymphoblastic leukaemia. Lancet Oncol. 14:e205–e217. 2013. View Article : Google Scholar : PubMed/NCBI

3 

Hunger SP, Lu X, Devidas M, Camitta BM, Gaynon PS, Winick NJ, Reaman GH and Carroll WL: Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: A report from the children's oncology group. J Clin Oncol. 30:1663–1669. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Zhu YM, Foroni L, McQuaker IG, Papaioannou M, Haynes A and Russell HH: Mechanisms of relapse in acute leukaemia: Involvement of p53 mutated subclones in disease progression in acute lymphoblastic leukaemia. Br J Cancer. 79:1151–1157. 1999. View Article : Google Scholar : PubMed/NCBI

5 

Maloney KW, McGavran L, Odom LF and Hunger SP: Acquisition of p16INK4A and p15INK4B gene abnormalities between initial diagnosis and relapse in children with acute lymphoblastic leukemia. Blood. 93:2380–2385. 1999.PubMed/NCBI

6 

Zuna J: TEL deletion analysis supports a novel view of relapse in childhood acute lymphoblastic leukemia. Clin Cancer Res. 10:5355–5360. 2004. View Article : Google Scholar : PubMed/NCBI

7 

Sewak MS, Reddy NP and Duan ZH: Gene expression based leukemia sub-classification using committee neural networks. Bioinform Biol Insights. 3:89–98. 2009. View Article : Google Scholar : PubMed/NCBI

8 

Harvey RC, Mullighan CG, Wang X, Dobbin KK, Davidson GS, Bedrick EJ, Chen IM, Atlas SR, Kang H, Ar K, et al: Identification of novel cluster groups in pediatric high-risk B-precursor acute lymphoblastic leukemia with gene expression profiling: Correlation with genome-wide DNA copy number alterations, clinical characteristics, and outcome. Blood. 116:4874–4884. 2010. View Article : Google Scholar : PubMed/NCBI

9 

Hogan LE, Meyer JA, Yang J, Wang J, Wong N, Yang W, Condos G, Hunger SP, Raetz E, Saffery R, et al: Integrated genomic analysis of relapsed childhood acute lymphoblastic leukemia reveals therapeutic strategies. Blood. 118:5218–5226. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Staal FJ, van der Burg M, Wessels LF, Barendregt BH, Baert MR, van den Burg CM, van Huffel C, Langerak AW, van der Velden VH, Reinders MJ, et al: DNA microarrays for comparison of gene expression profiles between diagnosis and relapse in precursor-B acute lymphoblastic leukemia: Choice of technique and purification influence the identification of potential diagnostic markers. Leukemia. 17:1324–1332. 2003. View Article : Google Scholar : PubMed/NCBI

11 

Kang H, Chen IM, Wilson CS, Bedrick EJ, Harvey RC, Atlas SR, Devidas M, Mullighan CG, Wang X, Murphy M, et al: Gene expression classifiers for relapse-free survival and minimal residual disease improve risk classification and outcome prediction in pediatric B-precursor acute lymphoblastic leukemia. Blood. 115:1394–1405. 2010. View Article : Google Scholar : PubMed/NCBI

12 

Kohlmann A, Kipps TJ, Rassenti LZ, Downing JR, Shurtleff SA, Mills KI, Gilkes AF, Hofmann WK, Basso G, Dell'orto MC, et al: An international standardization programme towards the application of gene expression profiling in routine leukaemia diagnostics: The microarray innovations in LEukemia study prephase. Br J Haematol. 142:802–807. 2008. View Article : Google Scholar : PubMed/NCBI

13 

Haferlach T, Kohlmann A, Wieczorek L, Basso G, Kronnie GT, Béné MC, De Vos J, Hernández JM, Hofmann WK, Mills KI, et al: Clinical utility of microarray-based gene expression profiling in the diagnosis and subclassification of leukemia: Report from the international microarray innovations in leukemia Study Group. J Clin Oncol. 28:pp. 2529–2537. 2010, View Article : Google Scholar : PubMed/NCBI

14 

Beesley AH, Cummings AJ, Freitas JR, Hoffmann K, Firth MJ, Ford J, de Klerk NH and Kees UR: The gene expression signature of relapse in paediatric acute lymphoblastic leukaemia: Implications for mechanisms of therapy failure. Br J Haematol. 131:447–456. 2005. View Article : Google Scholar : PubMed/NCBI

15 

McCall MN, Jaffee HA and Irizarry RA: fRMA ST Frozen robust multiarray analysis for Affymetrix Exon and Gene ST arrays. Bioinformatics. 28:3153–3154. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W and Smyth GK: Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43:e472015. View Article : Google Scholar : PubMed/NCBI

17 

Yu G, Wang LG, Han Y and He QY: clusterProfiler: An R package for comparing biological themes among gene clusters. Omi A J Integr Biol. 16:284–287. 2012. View Article : Google Scholar

18 

Campbell DJ, Kim CH and Butcher EC: Chemokines in the systemic organization of immunity. Immunol Rev. 195:58–71. 2003. View Article : Google Scholar : PubMed/NCBI

19 

Burkle A, Niedermeier M, Schmitt-Graff A, Wierda WG, Keating MJ and Burger JA: Overexpression of the CXCR5 chemokine receptor, and its ligand, CXCL13 in B-cell chronic lymphocytic leukemia. Blood. 110:3316–3325. 2007. View Article : Google Scholar : PubMed/NCBI

20 

López-Giral S, Quintana NE, Cabrerizo M, Alfonso-Pérez M, Sala-Valdés M, De Soria VG, Fernández-Rañada JM, Fernández-Ruiz E and Muñoz C: Chemokine receptors that mediate B cell homing to secondary lymphoid tissues are highly expressed in B cell chronic lymphocytic leukemia and non-Hodgkin lymphomas with widespread nodular dissemination. J Leukoc Biol. 76:462–471. 2004. View Article : Google Scholar : PubMed/NCBI

21 

Jones D, Benjamin RJ, Shahsafaei A and Dorfman DM: The chemokine receptor CXCR3 is expressed in a subset of B-cell lymphomas and is a marker of B-cell chronic lymphocytic leukemia. Blood. 95:627–32. 2000.PubMed/NCBI

22 

Qiuping Z, Jei X, Youxin J, Wei J, Chun L, Jin W, Qun W, Yan L, Chunsong H, Mingzhen Y, et al: CC chemokine ligand 25 enhances resistance to apoptosis in CD4+ T cells from patients with T-cell lineage acute and chronic lymphocytic leukemia by means of livin activation. Cancer Res. 64:7579–7587. 2004. View Article : Google Scholar : PubMed/NCBI

23 

Burger JA and Peled A: CXCR4 antagonists: Targeting the microenvironment in leukemia and other cancers. Leukemia. 23:43–52. 2009. View Article : Google Scholar : PubMed/NCBI

24 

Stam RW, Den Boer ML, Schneider P, de Boer J, Hagelstein J, Valsecchi MG, de Lorenzo P, Sallan SE, Brady HJ, Armstrong SA, et al: Association of high-level MCL-1 expression with in vitro and in vivo prednisone resistance in MLL-rearranged infant acute lymphoblastic leukemia. Blood. 115:1018–1125. 2010. View Article : Google Scholar : PubMed/NCBI

25 

Spijkers-Hagelstein JA, Schneider P, Hulleman E, de Boer J, Williams O, Pieters R and Stam RW: Elevated S100A8/S100A9 expression causes glucocorticoid resistance in MLL-rearranged infant acute lymphoblastic leukemia. Leukemia. 26:1255–1165. 2012. View Article : Google Scholar : PubMed/NCBI

26 

Zhou H, Ma H, Wei W, Ji D, Song X, Sun J, Zhang J and Jia L: B4GALT family mediates the multidrug resistance of human leukemia cells by regulating the hedgehog pathway and the expression of p-glycoprotein and multidrug resistance-associated protein 1. Cell Death Dis. 4:e6542013. View Article : Google Scholar : PubMed/NCBI

27 

Epstein J, Xiao HQ and He XY: Markers of multiple hematopoietic-cell lineages in multiple myeloma. N Engl J Med. 322:664–668. 1990. View Article : Google Scholar : PubMed/NCBI

28 

Dunphy CH, Gardner LJ, Evans HL and Javadi N: CD15+ acute lymphoblastic leukemia and subsequent monoblastic leukemia: Persistence of t(4;11) abnormality and B-cell gene rearrangement. Arch Pathol Lab Med. 125:1227–1230. 2001.PubMed/NCBI

29 

Rozovskaia T, Feinstein E, Mor O, Foa R, Blechman J, Nakamura T, Croce CM, Cimino G and Canaani E: Upregulation of Meis1 and HoxA9 in acute lymphocytic leukemias with the t(4:11) abnormality. Oncogene. 20:874–878. 2001. View Article : Google Scholar : PubMed/NCBI

30 

Burmeister T, Meyer C, Schwartz S, Hofmann J, Molkentin M, Kowarz E, Schneider B, Raff T, Reinhardt R, Gökbuget N, et al: The MLL recombinome of adult CD10-negative B-cell precursor acute lymphoblastic leukemia: Results from the GMALL study group. Blood. 113:4011–4015. 2009. View Article : Google Scholar : PubMed/NCBI

31 

Gleissner B, Goekbuget N, Rieder H, Arnold R, Schwartz S, Diedrich H, Schoch C, Heinze B, Fonatsch C, Bartram CR, et al: CD10 pre-B acute lymphoblastic leukemia (ALL) is a distinct high-risk subgroup of adult ALL associated with a high frequency of MLL aberrations: Results of the german multicenter trials for adult ALL (GMALL). Blood. 106:4054–4056. 2005. View Article : Google Scholar : PubMed/NCBI

32 

Ha K, Hozumi N, Hrincu A and Gelfand EW: Lineage specific classification of leukaemia: Results of the analysis of sixty cases of childhood leukaemia. Br J Haematol. 61:237–249. 1985. View Article : Google Scholar : PubMed/NCBI

33 

Suzuki R, Sakamoto H, Yasukawa H, Masuhara M, Wakioka T, Sasaki A, Yuge K, Komiya S, Inoue A and Yoshimura A: CI S3 and JAB have different regulatory roles in interleukin-6 mediated differentiation and STAT3 activation in M1 leukemia cells. Oncogene. 17:2271–2278. 1998. View Article : Google Scholar : PubMed/NCBI

34 

Chen C, Yu K, Yan QX, Xing CY, Chen Y, Yan Z, Shi YF, Zhao KW and Gao SM: Pure curcumin increases the expression of SOCS1 and SOCS3 in myeloproliferative neoplasms through suppressing class I histone deacetylases. Carcinogenesis. 34:1442–1449. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Komyod W, Böhm M, Metze D, Heinrich PC and Behrmann I: Constitutive suppressor of cytokine signaling 3 expression confers a growth advantage to a human melanoma cell line. Mol Cancer Res. 5:271–281. 2007. View Article : Google Scholar : PubMed/NCBI

36 

Lesinski GB, Zimmerer JM, Kreiner M, Trefry J, Bill MA, Young GS, Becknell B and Carson WE III: Modulation of SOCS protein expression influences the interferon responsiveness of human melanoma cells. BMC Cancer. 10:1422010. View Article : Google Scholar : PubMed/NCBI

37 

Tokita T, Maesawa C, Kimura T, Kotani K, Takahashi K, Akasaka T and Masuda T: Methylation status of the SOCS3 gene in human malignant melanomas. Int J Oncol. 30:689–694. 2007.PubMed/NCBI

38 

Fojtova M, Boudny V, Kovarik A, Lauerova L, Adamkova L, Souckova K, Jarkovsky J and Kovarik J: Development of IFN-gamma resistance is associated with attenuation of SOCS genes induction and constitutive expression of SOCS 3 in melanoma cells. Br J Cancer. 97:231–237. 2007. View Article : Google Scholar : PubMed/NCBI

39 

Shivapurkar N, Sherman ME, Stastny V, Echebiri C, Rader JS, Nayar R, Bonfiglio TA, Gazdar AF and Wang SS: Evaluation of candidate methylation markers to detect cervical neoplasia. Gynecol Oncol. 107:549–553. 2007. View Article : Google Scholar : PubMed/NCBI

40 

Zhang P, Yang B, Yao YY, Zhong LX, Chen XY, Kong QY, Wu ML, Li C, Li H and Liu J: PIA S3SH P2 and SOCS3 Expression patterns in Cervical Cancers: Relevance with activation and resveratrol-caused inactivation of STAT3 signaling. Gynecol Oncol. 139:529–535. 2015. View Article : Google Scholar : PubMed/NCBI

41 

Kim MH, Kim MS, Kim W, Kang MA, Cacalano NA, Kang SB, Shin YJ and Jeong JH: Suppressor of cytokine signaling (SOCS) genes are silenced by DNA hypermethylation and histone deacetylation and regulate response to radiotherapy in cervical cancer cells. PLoS One. 10:e01231332015. View Article : Google Scholar : PubMed/NCBI

42 

Urbschat A, Stumpf S, Hänze J, Paulus P, Maier TJ, Weipert C, Hofmann R and Hegele A: Expression of the anti-inflammatory suppressor of cytokine signaling 3 (SOCS3) in human clear cell renal cell carcinoma. Tumour Biol. 37:9649–9656. 2016. View Article : Google Scholar : PubMed/NCBI

43 

Stofas A, Levidou G, Piperi C, Adamopoulos C, Dalagiorgou G, Bamias A, Karadimou A, Lainakis GA, Papadoukakis S, Stravodimos K, et al: The role of CXC-chemokine receptor CXCR2 and suppressor of cytokine signaling-3 (SOCS-3) in renal cell carcinoma. BMC Cancer. 14:1492014. View Article : Google Scholar : PubMed/NCBI

44 

Tomita S, Ishibashi K, Hashimoto K, Sugino T, Yanagida T, Kushida N, Shishido K, Aikawa K, Sato Y, Suzutani T, et al: Suppression of SOCS3 increases susceptibility of renal cell carcinoma to interferon-α. Cancer Sci. 102:57–63. 2011. View Article : Google Scholar : PubMed/NCBI

45 

Oguro T, Ishibashi K, Sugino T, Hashimoto K, Tomita S, Takahashi N, Yanagida T, Haga N, Aikawa K, Suzutani T, et al: Humanised antihuman IL-6R antibody with interferon inhibits renal cell carcinoma cell growth in vitro and in vivo through suppressed SOCS3 expression. Eur J Cancer. 49:1715–1724. 2013. View Article : Google Scholar : PubMed/NCBI

46 

Neuwirt H, Puhr M, Cavarretta IT, Mitterberger M, Hobisch A and Culig Z: Suppressor of cytokine signalling-3 is up-regulated by androgen in prostate cancer cell lines and inhibits androgen-mediated proliferation and secretion. Endocr Relat Cancer. 14:1007–1019. 2007. View Article : Google Scholar : PubMed/NCBI

47 

Kneitz B, Krebs M, Kalogirou C, Schubert M, Joniau S, van Poppel H, Lerut E, Kneitz S, Scholz CJ, Ströbel P, et al: Survival in patients with high-risk prostate cancer is predicted by miR-221, which regulates proliferation, apoptosis, and invasion of prostate cancer cells by inhibiting IRF2 and SOCS3. Cancer Res. 74:2591–2603. 2014. View Article : Google Scholar : PubMed/NCBI

48 

Li G, Xu J, Wang Z, Yuan Y, Li Y, Cai S and He Y: Low expression of SOCS-1 and SOCS-3 is a poor prognostic indicator for gastric cancer patients. J Cancer Res Clin Oncol. 141:443–452. 2015. View Article : Google Scholar : PubMed/NCBI

49 

Lien HC, Lin CW, Huang PH, Chang ML and Hsu SM: Expression of cyclin-dependent kinase 6 (cdk6) and frequent loss of CD44 in nasal-nasopharyngeal NK/T-cell lymphomas: Comparison with CD56-negative peripheral T-cell lymphomas. Lab Invest. 80:893–900. 2000. View Article : Google Scholar : PubMed/NCBI

50 

Lee YH, Judge AD, Seo D, Kitade M, Gómez-Quiroz LE, Ishikawa T, Andersen JB, Kim BK, Marquardt JU, Raggi C, et al: Molecular targeting of CSN5 in human hepatocellular carcinoma: A mechanism of therapeutic response. Oncogene. 30:4175–4184. 2011. View Article : Google Scholar : PubMed/NCBI

51 

Ouyang Q, Chen G, Zhou J, Li L, Dong Z, Yang R, Xu L, Cui H, Xu M and Yi L: Neurotensin signaling stimulates glioblastoma cell proliferation by upregulating c-Myc and inhibiting miR-29b-1 and miR-129-3p. Neuro Oncol. 18:216–226. 2016. View Article : Google Scholar : PubMed/NCBI

52 

Easton J, Wei T, Lahti JM and Kidd VJ: Disruption of the cyclin D/cyclin-dependent kinase/INK4/retinoblastoma protein regulatory pathway in human neuroblastoma. Cancer Res. 58:2624–2632. 1998.PubMed/NCBI

53 

Brandi G, Paiardini M, Cervasi B, Fiorucci C, Filippone P, De Marco C, Zaffaroni N and Magnani M: A new indole-3- carbinol tetrameric derivative inhibits cyclin-dependent kinase 6 expression, and induces G1 cell cycle arrest in both estrogen-dependent and estrogen-independent breast cancer cell lines. Cancer Res. 63:4028–4036. 2003.PubMed/NCBI

54 

Ye Y, Yang H, Grossman HB, Dinney C, Wu X and Gu J: Genetic variants in cell cycle control pathway confer susceptibility to bladder cancer. Cancer. 112:2467–2474. 2008. View Article : Google Scholar : PubMed/NCBI

55 

Raffini LJ, Slater DJ, Rappaport EF, Lo Nigro L, Cheung NK, Biegel JA, Nowell PC, Lange BJ and Felix CA: Panhandle and reverse-panhandle PCR enable cloning of der(11) and der(other) genomic breakpoint junctions of MLL translocations and identify complex translocation of MLL, AF-4, and CDK6. Proc Natl Acad Sci USA. 99:4568–4573. 2002. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

January 2019
Volume 41 Issue 1

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Jing, W., & Jing, W. (2019). Identification of biomarkers for the prediction of relapse‑free survival in pediatric B‑precursor acute lymphoblastic leukemia. Oncology Reports, 41, 659-667. https://doi.org/10.3892/or.2018.6846
MLA
Jing, W., Li, J."Identification of biomarkers for the prediction of relapse‑free survival in pediatric B‑precursor acute lymphoblastic leukemia". Oncology Reports 41.1 (2019): 659-667.
Chicago
Jing, W., Li, J."Identification of biomarkers for the prediction of relapse‑free survival in pediatric B‑precursor acute lymphoblastic leukemia". Oncology Reports 41, no. 1 (2019): 659-667. https://doi.org/10.3892/or.2018.6846