Differential gene methylation patterns in cancerous and non‑cancerous cells
- Authors:
- Katarzyna Kamińska
- Aneta Białkowska
- Janusz Kowalewski
- Sui Huang
- Marzena A. Lewandowska
-
Affiliations: Department of Molecular Oncology and Genetics, Innovative Medical Forum, The F. Lukaszczyk Oncology Center, Bydgoszcz, Poland, Department of Thoracic Surgery and Tumors, The Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 85‑796 Bydgoszcz, Poland, Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA - Published online on: May 15, 2019 https://doi.org/10.3892/or.2019.7159
- Pages: 43-54
-
Copyright: © Kamińska et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
The Cancer Genome Atlas-National Cancer Institute. https://cancergenome.nih.gov/2018 10 222011 | |
Baylin SB and Herman JG: DNA hypermethylation in tumorigenesis: Epigenetics joins genetics. Trends Genet. 16:168–174. 2000. View Article : Google Scholar : PubMed/NCBI | |
Yang M and Park JY: DNA methylation in promoter region as biomarkers in prostate cancer. Methods Mol Biol. 863:67–109. 2012. View Article : Google Scholar : PubMed/NCBI | |
Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, et al: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science. 286:531–537. 1999. View Article : Google Scholar : PubMed/NCBI | |
van't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, et al: Gene expression profiling predicts clinical outcome of breast cancer. Nature. 415:530–536. 2002. View Article : Google Scholar : PubMed/NCBI | |
Salazar R, Roepman P, Capella G, Moreno V, Simon I, Dreezen C, Lopez-Doriga A, Santos C, Marijnen C, Westerga J, et al: Gene expression signature to improve prognosis prediction of stage II and III colorectal cancer. J Clin Oncol. 29:17–24. 2011. View Article : Google Scholar : PubMed/NCBI | |
Guo L, Ma Y, Ward R, Castranova V, Shi X and Qian Y: Constructing molecular classifiers for the accurate prognosis of lung adenocarcinoma. Clin Cancer Res. 12:3344–3354. 2006. View Article : Google Scholar : PubMed/NCBI | |
Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB and Issa JP: CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA. 96:8681–8686. 1999. View Article : Google Scholar : PubMed/NCBI | |
Shi H, Chen J, Li Y, Li G, Zhong R, Du D, Meng R, Kong W and Lu M: Identification of a six microRNA signature as a novel potential prognostic biomarker in patients with head and neck squamous cell carcinoma. Oncotarget. 7:21579–21590. 2016.PubMed/NCBI | |
Voronkov A and Krauss S: Wnt/beta-catenin signaling and small molecule inhibitors. Curr Pharm Des. 19:634–664. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu P, Rudick M and Anderson RG: Multiple functions of caveolin-1. J Biol Chem. 277:41295–41298. 2002. View Article : Google Scholar : PubMed/NCBI | |
Rayess H, Wang MB and Srivatsan ES: Cellular senescence and tumor suppressor gene p16. Int J Cancer. 130:1715–1725. 2012. View Article : Google Scholar : PubMed/NCBI | |
Angst BD, Marcozzi C and Magee AI: The cadherin superfamily: Diversity in form and function. J Cell Sci. 114:629–641. 2001.PubMed/NCBI | |
Kim TY, Vigil D, Der CJ and Juliano RL: Role of DLC-1, a tumor suppressor protein with RhoGAP activity, in regulation of the cytoskeleton and cell motility. Cancer Metastasis Rev. 28:77–83. 2009. View Article : Google Scholar : PubMed/NCBI | |
Niehrs C: Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene. 25:7469–7481. 2006. View Article : Google Scholar : PubMed/NCBI | |
Arai H, Nakao K, Takaya K, Hosoda K, Ogawa Y, Nakanishi S and Imura H: The human endothelin-B receptor gene. Structural organization and chromosomal assignment. J Biol Chem. 268:3463–3470. 1993.PubMed/NCBI | |
Chen B, Rao X, House MG, Nephew KP, Cullen KJ and Guo Z: GPx3 promoter hypermethylation is a frequent event in human cancer and is associated with tumorigenesis and chemotherapy response. Cancer Lett. 309:37–45. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hayes JD and Pulford DJ: The glutathione S-transferase supergene family: Regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol. 30:445–600. 1995. View Article : Google Scholar : PubMed/NCBI | |
Kaina B, Christmann M, Naumann S and Roos WP: MGMT: Key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair. 6:1079–1099. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bonito NA, Borley J, Wilhelm-Benartzi CS, Ghaem-Maghami S and Brown R: Epigenetic regulation of the homeobox gene MSX1 associates with platinum-resistant disease in high-grade serous epithelial ovarian cancer. Clin Cancer Res. 22:3097–3104. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vanaja DK, Grossmann ME, Cheville JC, Gazi MH, Gong A, Zhang JS, Ajtai K, Burghardt TP and Young CY: PDLIM4, an actin binding protein, suppresses prostate cancer cell growth. Cancer Invest. 27:264–272. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chandrasekharan NV and Simmons DL: The cyclooxygenases. Genome Biol. 5:2412004. View Article : Google Scholar : PubMed/NCBI | |
Tang D, Kryvenko ON, Mitrache N, Do KC, Jankowski M, Chitale DA, Trudeau S, Rundle A, Belinsky SA and Rybicki BA: Methylation of the RARB gene increases prostate cancer risk in black Americans. J Urol. 190:317–324. 2013. View Article : Google Scholar : PubMed/NCBI | |
Volodko N, Gordon M, Salla M, Ghazaleh HA and Baksh S: RASSF tumor suppressor gene family: Biological functions and regulation. FEBS Lett. 588:2671–2684. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mo S, Su Z, Heng B, Chen W, Shi L, Du X and Lai C: SFRP1 promoter methylation and renal carcinoma risk: A systematic review and meta-analysis. J Nippon Med Sch. 85:78–86. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ganapathy V, Thangaraju M, Gopal E, Martin PM, Itagaki S, Miyauchi S and Prasad PD: Sodium-coupled monocarboxylate transporters in normal tissues and in cancer. AAPS J. 10:193–199. 2008. View Article : Google Scholar : PubMed/NCBI | |
Brew K and Nagase H: The tissue inhibitors of metalloproteinases (TIMPs): An ancient family with structural and functional diversity. Biochim Biophys Acta. 1803:55–71. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pan G, Ni J, Wei YF, Yu G, Gentz R and Dixit VM: An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science. 277:815–818. 1997. View Article : Google Scholar : PubMed/NCBI | |
Zhang JS, Gong A and Young CY: ZNF185, an actin-cytoskeleton-associated growth inhibitory LIM protein in prostate cancer. Oncogene. 26:111–122. 2007. View Article : Google Scholar : PubMed/NCBI | |
Pettaway CA, Pathak S, Greene G, Ramirez E, Wilson MR, Killion JJ and Fidler IJ: Selection of highly metastatic variants of different human prostatic carcinomas using orthotopic implantation in nude mice. Clin Cancer Res. 2:1627–1636. 1996.PubMed/NCBI | |
Wang C, Norton JT, Ghosh S, Kim J, Fushimi K, Wu JY, Stack MS and Huang S: Polypyrimidine tract-binding protein (PTB) differentially affects malignancy in a cell line-dependent manner. J Biol Chem. 283:20277–20287. 2008. View Article : Google Scholar : PubMed/NCBI | |
Godthelp BC, van Buul PP, Jaspers NG, Elghalbzouri-Maghrani E, van Duijn-Goedhart A, Arwert F, Joenje H and Zdzienicka MZ: Cellular characterization of cells from the Fanconi anemia complementation group, FA-D1/BRCA2. Mutat Res. 601:191–201. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wiegant WW, Meyers M, Verkaik NS, van der Burg M, Darroudi F, Romeijn R, Bernatowska E, Wolska-Kusnierz B, Mikoluc B, Jaspers NG, et al: A novel radiosensitive SCID patient with a pronounced G2/M sensitivity. DNA Repair. 9:365–373. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bastian PJ, Ellinger J, Wellmann A, Wernert N, Heukamp LC, Müller SC and von Ruecker A: Diagnostic and prognostic information in prostate cancer with the help of a small set of hypermethylated gene loci. Clin Cancer Res. 11:4097–4106. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yu YP, Yu G, Tseng G, Cieply K, Nelson J, Defrances M, Zarnegar R, Michalopoulos G and Luo JH: Glutathione peroxidase 3, deleted or methylated in prostate cancer, suppresses prostate cancer growth and metastasis. Cancer Res. 67:8043–8050. 2007. View Article : Google Scholar : PubMed/NCBI | |
Norton JT, Pollock CB, Wang C, Schink JC, Kim JJ and Huang S: Perinucleolar Compartment prevalence is a phenotypic pancancer marker of malignancy. Cancer. 113:861–869. 2008. View Article : Google Scholar : PubMed/NCBI | |
Frycz B, Pinczewska A and Jagodziński PP: Maślan sodu obniża ekspresję dehydrogenazy 17β-hydroksysteroidowej typu 1-szego W linii komórkowej raka gruczołu krokowego LNCaP. Nowiny Lekarskie. 80:283–287. 2011. | |
Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI | |
Huang WY, Hsu SD, Huang HY, Sun YM, Chou CH, Weng SL and Huang HD: MethHC: A database of DNA methylation and gene expression in human cancer. Nucleic Acids Res. 43:D856–D861. 2015. View Article : Google Scholar : PubMed/NCBI | |
MethHC, . A database of DNA methylation and gene expression in human cancers. http://methhc.mbc.nctu.edu.tw/php/index.phpOctober 23–2018 | |
van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, et al: A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 347:1999–2009. 2002. View Article : Google Scholar : PubMed/NCBI | |
O'Connell MJ, Lavery I, Yothers G, Paik S, Clark-Langone KM, Lopatin M, Watson D, Baehner FL, Shak S, Baker J, et al: Relationship between tumor gene expression and recurrence in four independent studies of patients with stage II/III colon cancer treated with surgery alone or surgery plus adjuvant fluorouracil plus leucovorin. J Clin Oncol. 28:3937–3944. 2010. View Article : Google Scholar : PubMed/NCBI | |
Roszkowski K, Furtak J, Zurawski B, Szylberg T and Lewandowska MA: Potential role of methylation marker in glioma supporting clinical decisions. Int J Mol Sci. 17(pii): E18762016. View Article : Google Scholar : PubMed/NCBI | |
Song L, Peng X, Li Y, Xiao W, Jia J, Dong C, Gong Y, Zhou G and Han X: The SEPT9 gene methylation assay is capable of detecting colorectal adenoma in opportunistic screening. Epigenomics. 9:599–610. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jiang Q, Liu CX, Gu X, Wilt G, Shaffer J, Zhang Y and Devgan V: EpiTect Methyl II PCR Array System: A simple tool for screening regional DNA methylation of a large number of genes or samples without bisulfite conversion. Qiagen. https://www.qiagen.com/ch/resources/resourcedetail?id=39ec06aa-ec53-4acd-aa15-67b5882efbb6&lang=en(cited 2018-11-09). | |
Kang GH, Lee S, Lee HJ and Hwang KS: Aberrant CpG island hypermethylation of multiple genes in prostate cancer and prostatic intraepithelial neoplasia. J Pathol. 202:233–240. 2004. View Article : Google Scholar : PubMed/NCBI | |
Richiardi L, Fiano V, Vizzini L, De Marco L, Delsedime L, Akre O, Tos AG and Merletti F: Promoter methylation in APC, RUNX3, and GSTP1 and mortality in prostate cancer patients. J Clin Oncol. 27:3161–3168. 2009. View Article : Google Scholar : PubMed/NCBI | |
Llorca-Cardeñosa MJ, Fleitas T, Ibarrola-Villava M, Peña-Chilet M, Mongort C, Martinez-Ciarpaglini C, Navarro L, Gambardella V, Castillo J, Roselló S, et al: Epigenetic changes in localized gastric cancer: The role of RUNX3 in tumor progression and the immune microenvironment. Oncotarget. 7:63424–63436. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gu YM, Ma YH, Zhao WG and Chen J: Dickkopf3 overexpression inhibits pancreatic cancer cell growth in vitro. World J Gastroenterol. 17:3810–3817. 2011. View Article : Google Scholar : PubMed/NCBI | |
Veeck J, Wild PJ, Fuchs T, Schüffler PJ, Hartmann A, Knüchel R and Dahl E: Prognostic relevance of Wnt-inhibitory factor-1 (WIF1) and Dickkopf-3 (DKK3) promoter methylation in human breast cancer. BMC Cancer. 9:2172009. View Article : Google Scholar : PubMed/NCBI | |
Romero D and Kypta R: Dickkopf-3 function in the prostate: Implications for epithelial homeostasis and tumor progression. Bioarchitecture. 3:42–44. 2013. View Article : Google Scholar : PubMed/NCBI | |
Romero D, Kawano Y, Bengoa N, Walker MM, Maltry N, Niehrs C, Waxman J and Kypta R: Downregulation of Dickkopf-3 disrupts prostate acinar morphogenesis through TGF-β/Smad signalling. J Cell Sci. 126:1858–1867. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lodygin D, Epanchintsev A, Menssen A, Diebold J and Hermeking H: Functional epigenomics identifies genes frequently silenced in prostate cancer. Cancer Res. 65:4218–4227. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yu YP, Paranjpe S, Nelson J, Finkelstein S, Ren B, Kokkinakis D, Michalopoulos G and Luo JH: High throughput screening of methylation status of genes in prostate cancer using an oligonucleotide methylation array. Carcinogenesis. 26:471–479. 2005. View Article : Google Scholar : PubMed/NCBI | |
Falck E, Karlsson S, Carlsson J, Helenius G, Karlsson M and Klinga-Levan K: Loss of glutathione peroxidase 3 expression is correlated with epigenetic mechanisms in endometrial adenocarcinoma. Cancer Cell Int. 10:462010. View Article : Google Scholar : PubMed/NCBI | |
Yegnasubramanian S, Kowalski J, Gonzalgo ML, Zahurak M, Piantadosi S, Walsh PC, Bova GS, De Marzo AM, Isaacs WB and Nelson WG: Hypermethylation of CpG islands in primary and metastatic human prostate cancer. Cancer Res. 64:1975–1986. 2004. View Article : Google Scholar : PubMed/NCBI | |
Strand SH, Orntoft TF and Sorensen KD: Prognostic DNA methylation markers for prostate cancer. Int J Mol Sci. 15:16544–16576. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rosenbaum E, Hoque MO, Cohen Y, Zahurak M, Eisenberger MA, Epstein JI, Partin AW and Sidransky D: Promoter hypermethylation as an independent prognostic factor for relapse in patients with prostate cancer following radical prostatectomy. Clin Cancer Res. 11:8321–8325. 2005. View Article : Google Scholar : PubMed/NCBI | |
Richiardi L, Fiano V, Grasso C, Zugna D, Delsedime L, Gillio-Tos A and Merletti F: Methylation of APC and GSTP1 in non-neoplastic tissue adjacent to prostate tumour and mortality from prostate cancer. PLoS One. 8:e681622013. View Article : Google Scholar : PubMed/NCBI | |
Bastian PJ, Palapattu GS, Lin X, Yegnasubramanian S, Mangold LA, Trock B, Eisenberger MA, Partin AW and Nelson WG: Preoperative serum DNA GSTP1 CpG island hypermethylation and the risk of early prostate-specific antigen recurrence following radical prostatectomy. Clin Cancer Res. 11:4037–4043. 2005. View Article : Google Scholar : PubMed/NCBI | |
Konishi N, Nakamura M, Kishi M, Nishimine M, Ishida E and Shimada K: DNA hypermethylation status of multiple genes in prostate adenocarcinomas. Jpn J Cancer Res. 93:767–773. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ellinger J, Bastian PJ, Haan KI, Heukamp LC, Buettner R, Fimmers R, Mueller SC and von Ruecker A: Noncancerous PTGS2 DNA fragments of apoptotic origin in sera of prostate cancer patients qualify as diagnostic and prognostic indicators. Int J Cancer. 122:138–143. 2008. View Article : Google Scholar : PubMed/NCBI | |
Vasiljević N, Wu K, Brentnall AR, Kim DC, Thorat MA, Kudahetti SC, Mao X, Xue L, Yu Y, Shaw GL, et al: Absolute quantitation of DNA methylation of 28 candidate genes in prostate cancer using pyrosequencing. Dis Markers. 30:151–161. 2011. View Article : Google Scholar : PubMed/NCBI | |
Morris MR, Ricketts C, Gentle D, Abdulrahman M, Clarke N, Brown M, Kishida T, Yao M, Latif F and Maher ER: Identification of candidate tumour suppressor genes frequently methylated in renal cell carcinoma. Oncogene. 29:2104–2117. 2010. View Article : Google Scholar : PubMed/NCBI | |
Boumber YA, Kondo Y, Chen X, Shen L, Gharibyan V, Konishi K, Estey E, Kantarjian H, Garcia-Manero G and Issa JP: RIL, a LIM gene on 5q31, is silenced by methylation in cancer and sensitizes cancer cells to apoptosis. Cancer Res. 67:1997–2005. 2007. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Yoon JH, Dammann R and Pfeifer GP: Frequent hypermethylation of the RASSF1A gene in prostate cancer. Oncogene. 21:6835–6840. 2002. View Article : Google Scholar : PubMed/NCBI | |
Maruyama R, Toyooka S, Toyooka KO, Virmani AK, Zöchbauer- Müller S, Farinas AJ, Minna JD, McConnell J, Frenkel EP and Gazdar AF: Aberrant promoter methylation profile of prostate cancers and its relationship to clinicopathological features. Clin Cancer Res. 8:514–519. 2002.PubMed/NCBI | |
Imren S, Kohn DB, Shimada H, Blavier L and DeClerck YA: Overexpression of tissue inhibitor of metalloproteinases-2 retroviral-mediated gene transfer in vivo inhibits tumor growth and invasion. Cancer Res. 56:2891–2895. 1996.PubMed/NCBI | |
Pulukuri SM, Patibandla S, Patel J, Estes N and Rao JS: Epigenetic inactivation of the tissue inhibitor of metalloproteinase-2 (TIMP-2) gene in human prostate tumors. Oncogene. 26:5229–5237. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ross JS, Kaur P, Sheehan CE, Fisher HA, Kaufman RA Jr and Kallakury BV: Prognostic significance of matrix metalloproteinase 2 and tissue inhibitor of metalloproteinase 2 expression in prostate cancer. Mod Pathol. 16:198–205. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ratzinger G, Mitteregger S, Wolf B, Berger R, Zelger B, Weinlich G, Fritsch P, Goebel G and Fiegl H: Association of TNFRSF10D DNA-methylation with the survival of melanoma patients. Int J Mol Sci. 15:11984–11995. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hornstein M, Hoffmann MJ, Alexa A, Yamanaka M, Müller M, Jung V, Rahnenführer J and Schulz WA: Protein phosphatase and TRAIL receptor genes as new candidate tumor genes on chromosome 8p in prostate cancer. Cancer Genomics Proteomics. 5:123–136. 2008.PubMed/NCBI | |
Catalanotto C, Cogoni C and Zardo G: MicroRNA in control of gene expression: An overview of nuclear functions. Int J Mol Sci. 17(pii): E17122016. View Article : Google Scholar : PubMed/NCBI | |
Kubiak M and Lewandowska MA: Can chromatin conformation technologies bring light into human molecular pathology? Acta Biochim Pol. 62:483–489. 2015. View Article : Google Scholar : PubMed/NCBI | |
Audia JE and Campbell RM: Histone modifications and cancer. Cold Spring Harb Perspect Biol. 8:a0195212016. View Article : Google Scholar : PubMed/NCBI |