
Potassium channels as novel molecular targets in hepatocellular carcinoma (Review)
- Authors:
- Xingyue Chen
- Li Zhang
- Ling He
- Liming Zheng
- Biguang Tuo
-
Affiliations: Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China - Published online on: August 24, 2023 https://doi.org/10.3892/or.2023.8622
- Article Number: 185
-
Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
McGlynn KA, Petrick JL and El-Serag HB: Epidemiology of hepatocellular carcinoma. Hepatology. 73 (Suppl 1):S4–S13. 2021. View Article : Google Scholar | |
Fujiwara N, Friedman S, Goossens N and Hoshida Y: Risk factors and prevention of hepatocellular carcinoma in the era of precision medicine. J Hepatol. 68:526–549. 2018. View Article : Google Scholar : PubMed/NCBI | |
Villanueva A: Hepatocellular carcinoma. N Engl J Med. 380:1450–1462. 2019. View Article : Google Scholar : PubMed/NCBI | |
Calderaro J, Ziol M, Paradis V and Zucman-Rossi J: Molecular and histological correlations in liver cancer. J Hepatol. 71:616–630. 2019. View Article : Google Scholar : PubMed/NCBI | |
Craig A, von Felden J, Garcia-Lezana T, Sarcognato S and Villanueva A: Tumour evolution in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 17:139–152. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sia D, Villanueva A, Friedman S and Llovet J: Liver cancer cell of origin, molecular class, and effects on patient prognosis. Gastroenterology. 152:745–761. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A and Roberts LR: A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 16:589–604. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bruix J, Gores GJ and Mazzaferro V: Hepatocellular carcinoma: Clinical frontiers and perspectives. Gut. 63:844–855. 2014. View Article : Google Scholar : PubMed/NCBI | |
Llovet J, Montal R, Sia D and Finn R: Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol. 15:599–616. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chan LK and Ng IO: Joining the dots for better liver cancer treatment. Nat Rev Gastroenterol Hepatol. 17:74–75. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kunzelmann K: Ion channels and cancer. J Membr Biol. 205:159–173. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lang F, Föller M, Lang KS, Lang PA, Ritter M, Gulbins E, Vereninov A and Huber SM: Ion channels in cell proliferation and apoptotic cell death. J Membr Biol. 205:147–157. 2005. View Article : Google Scholar : PubMed/NCBI | |
Prevarskaya N, Skryma R and Shuba Y: Ion channels in cancer: Are cancer hallmarks oncochannelopathies? Physiol Rev. 98:559–621. 2018. View Article : Google Scholar : PubMed/NCBI | |
Prevarskaya N, Skryma R and Shuba Y: Ion channels and the hallmarks of cancer. Trends Mol Med. 16:107–121. 2010. View Article : Google Scholar : PubMed/NCBI | |
Huang X and Jan LY: Targeting potassium channels in cancer. J Cell Biol. 206:151–162. 2014. View Article : Google Scholar : PubMed/NCBI | |
Conti M: Targeting K+ channels for cancer therapy. J Exp Ther Oncol. 4:161–166. 2004.PubMed/NCBI | |
Teisseyre A, Gąsiorowska J and Michalak K: Voltage-gated potassium channels Kv1.3-potentially new molecular target in cancer diagnostics and therapy. Adv Clin Exp Med. 24:517–524. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kale VP, Amin SG and Pandey MK: Targeting ion channels for cancer therapy by repurposing the approved drugs. Biochim Biophys Acta. 1848:2747–2755. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kuang Q, Purhonen P and Hebert H: Structure of potassium channels. Cell Mol Life Sci. 72:3677–3693. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bates E: Ion channels in development and cancer. Annu Rev Cell Dev Biol. 31:231–247. 2015. View Article : Google Scholar : PubMed/NCBI | |
Comes N, Serrano-Albarrás A, Capera J, Serrano-Novillo C, Condom E, Ramón Y Cajal S, Ferreres JC and Felipe A: Involvement of potassium channels in the progression of cancer to a more malignant phenotype. Biochim Biophys Acta. 1848:2477–2492. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zúñiga L, Cayo A, Gonzalez W, Vilos C and Zúñiga R: Potassium channels as a target for cancer therapy: Current perspectives. Onco Targets Ther. 15:783–797. 2022. View Article : Google Scholar : PubMed/NCBI | |
Taylor MD, Northcott PA, Korshunov A, Remke M, Cho YJ, Clifford SC, Eberhart CG, Parsons DW, Rutkowski S, Gajjar A, et al: Molecular subgroups of medulloblastoma: The current consensus. Acta Neuropathol. 123:465–472. 2012. View Article : Google Scholar : PubMed/NCBI | |
Comes N, Bielanska J, Vallejo-Gracia A, Serrano-Albarrás A, Marruecos L, Gómez D, Soler C, Condom E, Ramón Y Cajal S, Hernández-Losa J, et al: The voltage-dependent K(+) channels Kv1.3 and Kv1.5 in human cancer. Front Physiol. 4:2832013. View Article : Google Scholar : PubMed/NCBI | |
Pillozzi S, Masselli M, De Lorenzo E, Accordi B, Cilia E, Crociani O, Amedei A, Veltroni M, D'Amico M, Basso G, et al: Chemotherapy resistance in acute lymphoblastic leukemia requires hERG1 channels and is overcome by hERG1 blockers. Blood. 117:902–914. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hemmerlein B, Weseloh RM, Mello de Queiroz F, Knötgen H, Sánchez A, Rubio ME, Martin S, Schliephacke T, Jenke M, Heinz-Joachim-Radzun, et al: Overexpression of Eag1 potassium channels in clinical tumours. Mol Cancer. 5:412006. View Article : Google Scholar : PubMed/NCBI | |
Pardo LA and Stühmer W: The roles of K(+) channels in cancer. Nat Rev Cancer. 14:39–48. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bachmann M, Li W, Edwards MJ, Ahmad SA, Patel S, Szabo I and Gulbins E: Voltage-gated potassium channels as regulators of cell death. Front Cell Dev Biol. 8:6118532020. View Article : Google Scholar : PubMed/NCBI | |
Shen Z, Yang Q and You Q: Researches toward potassium channels on tumor progressions. Curr Top Med Chem. 9:322–329. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang Z: Roles of K+ channels in regulating tumour cell proliferation and apoptosis. Pflugers Arch. 448:274–286. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ben-Moshe S and Itzkovitz S: Spatial heterogeneity in the mammalian liver. Nat Rev Gastroenterol Hepatol. 16:395–410. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Lv XW, Zhang L, Wang H, Li J and Wu B: Review on biological characteristics of Kv1.3 and its role in liver diseases. Front Pharmacol. 12:6525082021. View Article : Google Scholar : PubMed/NCBI | |
Sevelsted Møller L, Fialla AD, Schierwagen R, Biagini M, Liedtke C, Laleman W, Klein S, Reul W, Koch Hansen L, Rabjerg M, et al: The calcium-activated potassium channel KCa3.1 is an important modulator of hepatic injury. Sci Rep. 6:287702016. View Article : Google Scholar : PubMed/NCBI | |
Kondo R, Deguchi A, Kawata N, Suzuki Y and Yamamura H: Involvement of TREK1 channels in the proliferation of human hepatic stellate LX-2 cells. J Pharmacol Sci. 148:286–294. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xia Z, Huang X, Chen K, Wang H, Xiao J, He K, Huang R, Duan X, Liu H, Zhang J and Xiang G: Proapoptotic role of potassium ions in liver cells. Biomed Res Int. 2016:17291352016. View Article : Google Scholar : PubMed/NCBI | |
Craig A and Villanueva A: Liver capsule: Molecular-based signatures in hepatocellular carcinoma. Hepatology. 63:20182016. View Article : Google Scholar : PubMed/NCBI | |
Ghatta S, Nimmagadda D, Xu X and O'Rourke ST: Large-conductance, calcium-activated potassium channels: Structural and functional implications. Pharmacol Ther. 110:103–116. 2006. View Article : Google Scholar : PubMed/NCBI | |
Marty A: Ca-dependent K channels with large unitary conductance in chromaffin cell membranes. Nature. 291:497–500. 1981. View Article : Google Scholar : PubMed/NCBI | |
Knaus HG, Schwarzer C, Koch RO, Eberhart A, Kaczorowski GJ, Glossmann H, Wunder F, Pongs O, Garcia ML and Sperk G: Distribution of high-conductance Ca(2+)-activated K+ channels in rat brain: Targeting to axons and nerve terminals. J Neurosci. 16:955–963. 1996. View Article : Google Scholar : PubMed/NCBI | |
He Y, Lin Y and He F, Shao L, Ma W and He F: Role for calcium-activated potassium channels (BK) in migration control of human hepatocellular carcinoma cells. J Cell Mol Med. 25:9685–9696. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wulff H and Castle N: Therapeutic potential of KCa3.1 blockers: Recent advances and promising trends. Expert Rev Clin Pharmacol. 3:385–396. 2010. View Article : Google Scholar : PubMed/NCBI | |
Todesca LM, Maskri S, Brömmel K, Thale I, Wünsch B, Koch O and Schwab A: Targeting Kca3.1 channels in cancer. Cell Physiol Biochem. 55:131–144. 2021. View Article : Google Scholar : PubMed/NCBI | |
Song P, Du Y, Song W, Chen H, Xuan Z, Zhao L, Chen J, Chen J, Guo D, Jin C, et al: KCa3.1 as an effective target for inhibition of growth and progression of intrahepatic cholangiocarcinoma. J Cancer. 8:1568–1578. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fan J, Tian R, Yang X, Wang H, Shi Y, Fan X, Zhang J, Chen Y, Zhang K, Chen Z and Li L: KCNN4 promotes the stemness potentials of liver cancer stem cells by enhancing glucose metabolism. Int J Mol Sci. 23:69582022. View Article : Google Scholar : PubMed/NCBI | |
Du Y, Song W, Chen J, Chen H, Xuan Z, Zhao L, Chen J, Jin C, Zhou M, Tuo B, et al: The potassium channel KCa3.1 promotes cell proliferation by activating SKP2 and metastasis through the EMT pathway in hepatocellular carcinoma. Int J Cancer. 145:503–516. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li QT, Feng YM, Ke ZH, Qiu MJ, He XX, Wang MM, Li YN, Xu J, Shi LL and Xiong ZF: KCNN4 promotes invasion and metastasis through the MAPK/ERK pathway in hepatocellular carcinoma. J Investig Med. 68:68–74. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ranjan A, Iyer SV, Ward C, Link T, Diaz FJ, Dhar A, Tawfik OW, Weinman SA, Azuma Y, Izumi T and Iwakuma T: MTBP inhibits the Erk1/2-Elk-1 signaling in hepatocellular carcinoma. Oncotarget. 9:21429–21443. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rodríguez-Rasgado J, Acuña-Macías I and Camacho J: Eag1 channels as potential cancer biomarkers. Sensors (Basel). 12:5986–5995. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chávez-López MG, Zúñiga-García V, Pérez-Carreón JI, Avalos-Fuentes A, Escobar Y and Camacho J: Eag1 channels as potential early-stage biomarkers of hepatocellular carcinoma. Biologics. 10:139–148. 2016.PubMed/NCBI | |
Chen J, Xuan Z, Song W, Han W, Chen H, Du Y, Xie H, Zhao Y, Zheng S and Song P: EAG1 enhances hepatocellular carcinoma proliferation by modulating SKP2 and metastasis through pseudopod formation. Oncogene. 40:163–176. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lotshaw D: Biophysical, pharmacological, and functional characteristics of cloned and native mammalian two-pore domain K+ channels. Cell Biochem Biophys. 47:209–256. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kheradpezhouh E, Ma L, Morphett A, Barritt GJ and Rychkov GY: TRPM2 channels mediate acetaminophen-induced liver damage. Proc Natl Acad Sci USA. 111:3176–3181. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li WC, Xiong ZY, Huang PZ, Liao YJ, Li QX, Yao ZC, Liao YD, Xu SL, Zhou H, Wang QL, et al: KCNK levels are prognostic and diagnostic markers for hepatocellular carcinoma. Aging (Albany NY). 11:8169–8182. 2019. View Article : Google Scholar : PubMed/NCBI | |
Innamaa A, Jackson L, Asher V, van Schalkwyk G, Warren A, Keightley A, Hay D, Bali A, Sowter H and Khan R: Expression and effects of modulation of the K2P potassium channels TREK-1 (KCNK2) and TREK-2 (KCNK10) in the normal human ovary and epithelial ovarian cancer. Clin Transl Oncol. 15:910–918. 2013. View Article : Google Scholar : PubMed/NCBI | |
He Y, Hu H, Wang Y, Yuan H, Lu Z, Wu P, Liu D, Tian L, Yin J, Jiang K and Miao Y: ALKBH5 inhibits pancreatic cancer motility by decreasing long non-coding RNA KCNK15-AS1 methylation. Cell Physiol Biochem. 48:838–846. 2018. View Article : Google Scholar : PubMed/NCBI | |
Alvarez-Baron C, Jonsson P, Thomas C, Dryer S and Williams C: The two-pore domain potassium channel KCNK5: Induction by estrogen receptor alpha and role in proliferation of breast cancer cells. Mol Endocrinol. 25:1326–1336. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kim CJ, Cho YG, Jeong SW, Kim YS, Kim SY, Nam SW, Lee SH, Yoo NJ, Lee JY and Park WS: Altered expression of KCNK9 in colorectal cancers. APMIS. 112:588–594. 2004. View Article : Google Scholar : PubMed/NCBI | |
Peroz D, Rodriguez N, Choveau F, Baró I, Mérot J and Loussouarn G: Kv7.1 (KCNQ1) properties and channelopathies. J Physiol. 586:1785–1789. 2008. View Article : Google Scholar : PubMed/NCBI | |
White BD, Chien AJ and Dawson DW: Dysregulation of Wnt/β-catenin signaling in gastrointestinal cancers. Gastroenterology. 142:219–232. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fan H, Zhang M and Liu W: Hypermethylated KCNQ1 acts as a tumor suppressor in hepatocellular carcinoma. Biochem Biophys Res Commun. 503:3100–3107. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li C, Miao R, Zhang J, Qu K and Liu C: Long non-coding RNA KCNQ1OT1 mediates the growth of hepatocellular carcinoma by functioning as a competing endogenous RNA of miR-504. Int J Oncol. 52:1603–1612. 2018.PubMed/NCBI | |
Wan J, Huang M, Zhao H, Wang C, Zhao X, Jiang X, Bian S, He Y and Gao Y: A novel tetranucleotide repeat polymorphism within KCNQ1OT1 confers risk for hepatocellular carcinoma. DNA Cell Biol. 32:628–634. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhong W, Dai Q and Huang Q: Effect of lncRNA KCNQ1OT1 on autophagy and drug resistance of hepatocellular carcinoma cells by targeting miR-338-3p. Cell Mol Biol (Noisy-le-grand). 66:191–196. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jiang M, Cui BW, Wu YL, Zhang Y, Shang Y, Liu J, Yang HX, Qiao CY, Zhan ZY, Ye H, et al: P2X7R orchestrates the progression of murine hepatic fibrosis by making a feedback loop from macrophage to hepatic stellate cells. Toxicol Lett. 333:22–32. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang G, Zhou L, Xu Q, Meng F, Wan Y, Meng X, Wang L and Zhang L: LncRNA KCNQ1OT1 inhibits the radiosensitivity and promotes the tumorigenesis of hepatocellular carcinoma via the miR-146a-5p/ACER3 axis. Cell Cycle. 19:2519–2529. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Zhao X, Ma X, Yuan Z and Hu M: KCNQ1OT1 contributes to sorafenib resistance and programmed death-ligand-1-mediated immune escape via sponging miR-506 in hepatocellular carcinoma cells. Int J Mol Med. 46:1794–1804. 2020.PubMed/NCBI | |
Xie Z and Askari A: Na(+)/K(+)-ATPase as a signal transducer. Eur J Biochem. 269:2434–2439. 2002. View Article : Google Scholar : PubMed/NCBI | |
Rajasekaran SA, Palmer LG, Quan K, Harper JF, Ball WJ Jr, Bander NH, Peralta Soler A and Rajasekaran AK: Na,K-ATPase beta-subunit is required for epithelial polarization, suppression of invasion, and cell motility. Mol Biol Cell. 12:279–295. 2001. View Article : Google Scholar : PubMed/NCBI | |
Zhuang L, Xu L, Wang P, Jiang Y, Yong P, Zhang C, Zhang H, Meng Z and Yang P: Na+/K+-ATPase α1 subunit, a novel therapeutic target for hepatocellular carcinoma. Oncotarget. 6:28183–28193. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xu ZW, Wang FM, Gao MJ, Chen XY, Hu WL and Xu RC: Targeting the Na(+)/K(+)-ATPase alpha1 subunit of hepatoma HepG2 cell line to induce apoptosis and cell cycle arresting. Biol Pharm Bull. 33:743–751. 2010. View Article : Google Scholar : PubMed/NCBI | |
Udoh US, Banerjee M, Rajan PK, Sanabria JD, Smith G, Schade M, Sanabria JA, Nakafuku Y, Sodhi K, Pierre SV, et al: Tumor-suppressor role of the α1-Na/K-ATPase signalosome in NASH related hepatocellular carcinoma. Int J Mol Sci. 23:73592022. View Article : Google Scholar : PubMed/NCBI | |
Tang S, Yang X, Zhou C, Mei Y, Ye J, Zhang X, Feng G, Zhang W, Zhang X and Fan W: Sodium pump Na + /K + ATPase subunit α1-targeted positron emission tomography imaging of hepatocellular carcinoma in mouse models. Mol Imaging Biol. 24:384–393. 2022. View Article : Google Scholar : PubMed/NCBI | |
Garty H and Karlish SJD: Role of FXYD proteins in ion transport. Annu Rev Physiol. 68:431–459. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gao Q, Chen X, Duan H, Wang Z, Feng J, Yang D, Song L, Zhou N and Yan X: FXYD6: A novel therapeutic target toward hepatocellular carcinoma. Protein Cell. 5:532–543. 2014. View Article : Google Scholar : PubMed/NCBI | |
Feske S, Wulff H and Skolnik EY: Ion channels in innate and adaptive immunity. Annu Rev Immunol. 33:291–353. 2015. View Article : Google Scholar : PubMed/NCBI | |
Teisseyre A, Palko-Labuz A, Sroda-Pomianek K and Michalak K: Voltage-gated potassium channel Kv1.3 as a target in therapy of cancer. Front Oncol. 9:9332019. View Article : Google Scholar : PubMed/NCBI | |
Zúñiga-García V, Chávez-López Mde G, Quintanar-Jurado V, Gabiño-López NB, Hernández-Gallegos E, Soriano-Rosas J, Pérez-Carreón JI and Camacho J: Differential expression of ion channels and transporters during hepatocellular carcinoma development. Dig Dis Sci. 60:2373–2383. 2015. View Article : Google Scholar : PubMed/NCBI | |
Prosdocimi E, Checchetto V and Leanza L: Targeting the mitochondrial potassium channel Kv1.3 to kill cancer cells: Drugs, strategies, and new perspectives. SLAS Discov. 24:882–892. 2019. View Article : Google Scholar : PubMed/NCBI | |
Na W, Ma B, Shi S, Chen Y, Zhang H, Zhan Y and An H: Procyanidin B1, a novel and specific inhibitor of Kv10.1 channel, suppresses the evolution of hepatoma. Biochem Pharmacol. 178:1140892020. View Article : Google Scholar : PubMed/NCBI | |
Zhao W, Bai B, Hong Z, Zhang X and Zhou B: Berbamine (BBM), a natural STAT3 inhibitor, synergistically enhances the antigrowth and proapoptotic effects of sorafenib on hepatocellular carcinoma cells. ACS Omega. 5:24838–24847. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhou Q, Kwan HY, Chan HC, Jiang JL, Tam SC and Yao X: Blockage of voltage-gated K+ channels inhibits adhesion and proliferation of hepatocarcinoma cells. Int J Mol Med. 11:261–266. 2003.PubMed/NCBI | |
Rosa P, Catacuzzeno L, Sforna L, Mangino G, Carlomagno S, Mincione G, Petrozza V, Ragona G, Franciolini F and Calogero A: BK channels blockage inhibits hypoxia-induced migration and chemoresistance to cisplatin in human glioblastoma cells. J Cell Physiol. 233:6866–6877. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Chen Y, Zhang Y, Guo S, Mo L, An H and Zhan Y: Eag1 voltage-dependent potassium channels: Structure, electrophysiological characteristics, and function in cancer. J Membr Biol. 250:123–132. 2017. View Article : Google Scholar : PubMed/NCBI | |
García-Quiroz J and Camacho J: Astemizole: An old anti-histamine as a new promising anti-cancer drug. Anticancer Agents Med Chem. 11:307–314. 2011. View Article : Google Scholar : PubMed/NCBI | |
de Guadalupe Chávez-López M, Pérez-Carreón JI, Zuñiga-García V, Díaz-Chávez J, Herrera LA, Caro-Sánchez CH, Acuña-Macías I, Gariglio P, Hernández-Gallegos E, Chiliquinga AJ and Camacho J: Astemizole-based anticancer therapy for hepatocellular carcinoma (HCC), and Eag1 channels as potential early-stage markers of HCC. Tumour Biol. 36:6149–6158. 2015. View Article : Google Scholar : PubMed/NCBI | |
Roy AM, Baliga MS, Elmets CA and Katiyar SK: Grape seed proanthocyanidins induce apoptosis through p53, Bax, and caspase 3 pathways. Neoplasia. 7:24–36. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mantena SK and Katiyar SK: Grape seed proanthocyanidins inhibit UV-radiation-induced oxidative stress and activation of MAPK and NF-kappaB signaling in human epidermal keratinocytes. Free Radic Biol Med. 40:1603–1614. 2006. View Article : Google Scholar : PubMed/NCBI | |
Mohr CJ, Steudel FA, Gross D, Ruth P, Lo WY, Hoppe R, Schroth W, Brauch H, Huber SM and Lukowski R: Cancer-associated intermediate conductance Ca2+-Activated K+ Channel KCa3.1. Cancers (Basel). 11:1092019. View Article : Google Scholar : PubMed/NCBI | |
Catacuzzeno L, Fioretti B and Franciolini F: Expression and role of the intermediate-conductance calcium-activated potassium channel KCa3.1 in glioblastoma. J Signal Transduct. 2012:4215642012. View Article : Google Scholar : PubMed/NCBI | |
Bulk E, Ay AS, Hammadi M, Ouadid-Ahidouch H, Schelhaas S, Hascher A, Rohde C, Thoennissen NH, Wiewrodt R, Schmidt E, et al: Epigenetic dysregulation of KCa 3.1 channels induces poor prognosis in lung cancer. Int J Cancer. 137:1306–1317. 2015. View Article : Google Scholar : PubMed/NCBI | |
Toyama K, Wulff H, Chandy KG, Azam P, Raman G, Saito T, Fujiwara Y, Mattson DL, Das S, Melvin JE, et al: The intermediate-conductance calcium-activated potassium channel KCa3.1 contributes to atherogenesis in mice and humans. J Clin Invest. 118:3025–3037. 2008. View Article : Google Scholar : PubMed/NCBI | |
Freise C, Ruehl M, Seehofer D, Hoyer J and Somasundaram R: The inhibitor of Ca(2+)-dependent K+ channels TRAM-34 blocks growth of hepatocellular carcinoma cells via downregulation of estrogen receptor alpha mRNA and nuclear factor-kappaB. Invest New Drugs. 31:452–457. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Zhao L, Ma W, Cao X, Chen H, Feng D, Liang J, Yin K and Jiang X: The blockage of KCa3.1 channel inhibited proliferation, migration and promoted apoptosis of human hepatocellular carcinoma cells. J Cancer. 6:643–651. 2015. View Article : Google Scholar : PubMed/NCBI | |
Freise C, Heldwein S, Erben U, Hoyer J, Köhler R, Jöhrens K, Patsenker E, Ruehl M, Seehofer D, Stickel F and Somasundaram R: K+-channel inhibition reduces portal perfusion pressure in fibrotic rats and fibrosis associated characteristics of hepatic stellate cells. Liver Int. 35:1244–1252. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yang S, Yang S, Zhang H, Hua H, Kong Q, Wang J and Jiang Y: Targeting Na+/K+-ATPase by berbamine and ouabain synergizes with sorafenib to inhibit hepatocellular carcinoma. Br J Pharmacol. 178:4389–4407. 2021. View Article : Google Scholar : PubMed/NCBI | |
Alevizopoulos K, Calogeropoulou T, Lang F and Stournaras C: Na+/K+ ATPase inhibitors in cancer. Curr Drug Targets. 15:988–1000. 2014. View Article : Google Scholar : PubMed/NCBI | |
Simpson CD, Mawji IA, Anyiwe K, Williams MA, Wang X, Venugopal AL, Gronda M, Hurren R, Cheng S, Serra S, et al: Inhibition of the sodium potassium adenosine triphosphatase pump sensitizes cancer cells to anoikis and prevents distant tumor formation. Cancer Res. 69:2739–2747. 2009. View Article : Google Scholar : PubMed/NCBI | |
Durlacher CT, Chow K, Chen XW, He ZX, Zhang X, Yang T and Zhou SF: Targeting Na+/K+-translocating adenosine triphosphatase in cancer treatment. Clin Exp Pharmacol Physiol. 42:427–443. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jiang W, Li G, Li W, Wang P, Xiu P, Jiang X, Liu B, Sun X and Jiang H: Sodium orthovanadate overcomes sorafenib resistance of hepatocellular carcinoma cells by inhibiting Na+/K+-ATPase activity and hypoxia-inducible pathways. Sci Rep. 8:97062018. View Article : Google Scholar : PubMed/NCBI |