
HELQ as a DNA helicase: Its novel role in normal cell function and tumorigenesis (Review)
- Authors:
- Nan Tang
- Weilun Wen
- Zhihe Liu
- Xifeng Xiong
- Yanhua Wu
-
Affiliations: Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, Guangdong 510220, P.R. China, Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, Guangdong 510220, P.R. China - Published online on: November 2, 2023 https://doi.org/10.3892/or.2023.8657
- Article Number: 220
-
Copyright: © Tang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
Marini F and Wood RD: A human DNA helicase homologous to the DNA cross-link sensitivity protein Mus308. J Biol Chem. 277:8716–8723. 2002. View Article : Google Scholar : PubMed/NCBI | |
Richards JD, Johnson KA, Liu H, McRobbie AM, McMahon S, Oke M, Carter L, Naismith JH and White MF: Structure of the DNA repair helicase hel308 reveals DNA binding and autoinhibitory domains. J Biol Chem. 283:5118–5126. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tafel AA, Wu L and McHugh PJ: Human HEL308 localizes to damaged replication forks and unwinds lagging strand structures. J Biol Chem. 286:15832–15840. 2011. View Article : Google Scholar : PubMed/NCBI | |
Woodman IL and Bolt EL: Winged helix domains with unknown function in Hel308 and related helicases. Biochem Soc Trans. 39:140–144. 2011. View Article : Google Scholar : PubMed/NCBI | |
Singleton MR, Dillingham MS and Wigley DB: Structure and mechanism of helicases and nucleic acid translocases. Ann Rev Biochem. 76:23–50. 2007. View Article : Google Scholar : PubMed/NCBI | |
Fairman-Williams ME, Guenther UP and Jankowsky E: SF1 and SF2 helicases: Family matters. Curr Opin Struct Biol. 20:313–324. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bleichert F and Baserga SJ: The long unwinding road of RNA helicases. Mol Cell. 27:339–352. 2007. View Article : Google Scholar : PubMed/NCBI | |
Woodman IL, Briggs GS and Bolt EL: Archaeal Hel308 domain V couples DNA binding to ATP hydrolysis and positions DNA for unwinding over the helicase ratchet. J Mol Biol. 374:1139–1144. 2007. View Article : Google Scholar : PubMed/NCBI | |
Anand R, Buechelmaier E, Belan O, Newton M, Vancevska A, Kaczmarczyk A, Takaki T, Rueda DS, Powell SN and Boulton SJ: HELQ is a dual-function DSB repair enzyme modulated by RPA and RAD51. Nature. 601:268–273. 2022. View Article : Google Scholar : PubMed/NCBI | |
Guy CP and Bolt EL: Archaeal Hel308 helicase targets replication forks in vivo and in vitro and unwinds lagging strands. Nucleic Acids Res. 33:3678–3690. 2005. View Article : Google Scholar : PubMed/NCBI | |
Adelman CA, Lolo RL, Birkbak NJ, Murina O, Matsuzaki K, Horejsi Z, Parmar K, Borel V, Skehel JM, Stamp G, et al: HELQ promotes RAD51 paralogue-dependent repair to avert germ cell loss and tumorigenesis. Nature. 502:381–384. 2013. View Article : Google Scholar : PubMed/NCBI | |
Takata K, Reh S, Tomida J, Person MD and Wood RD: Human DNA helicase HELQ participates in DNA interstrand crosslink tolerance with ATR and RAD51 paralogs. Nat Commun. 4:23382013. View Article : Google Scholar : PubMed/NCBI | |
Long J, Zhu JY, Liu YB, Fu K, Tian Y, Li PY, Yang WQ, Yang SY, Yin JY, Yin G and Zhang Y: Helicase POLQ-like (HELQ) as a novel indicator of platinum-based chemoresistance for epithelial ovarian cancer. Gynecol Oncol. 149:341–349. 2018. View Article : Google Scholar : PubMed/NCBI | |
Song X, Ni J and Shen Y: Structure-based genetic analysis of Hel308a in the Hyperthermophilic Archaeon Sulfolobus islandicus. J Genet Genomics. 43:405–413. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gorbalenya AE, Koonin EV, Donchenko AP and Blinov VM: Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Res. 17:4713–4730. 1989. View Article : Google Scholar : PubMed/NCBI | |
Caruthers JM and McKay DB: Helicase structure and mechanism. Curr Opin Struct Biol. 12:123–133. 2002. View Article : Google Scholar : PubMed/NCBI | |
Pyle AM: Translocation and unwinding mechanisms of RNA and DNA helicases. Ann Rev Biophys. 37:317–336. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jankowsky E: RNA helicases at work: Binding and rearranging. Trends Biochem Sci. 36:19–29. 2011. View Article : Google Scholar : PubMed/NCBI | |
Johnson SJ and Jackson RN: Ski2-like RNA helicase structures: Common themes and complex assemblies. RNA Biol. 10:33–43. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bennett RJ and Keck JL: Structure and function of RecQ DNA helicases. Crit Rev Biochem Mol Biol. 39:79–97. 2004. View Article : Google Scholar : PubMed/NCBI | |
Fuller-Pace FV: DExD/H box RNA helicases: Multifunctional proteins with important roles in transcriptional regulation. Nucleic Acids Res. 34:4206–4215. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lusser A and Kadonaga JT: Chromatin remodeling by ATP-dependent molecular machines. Bioessays. 25:1192–1200. 2003. View Article : Google Scholar : PubMed/NCBI | |
Jankowsky E and Fairman ME: RNA helicases-one fold for many functions. Curr Opin Struct Biol. 17:316–324. 2007. View Article : Google Scholar : PubMed/NCBI | |
Jankowsky E and Bowers H: Remodeling of ribonucleoprotein complexes with DExH/D RNA helicases. Nucleic Acids Res. 34:4181–4188. 2006. View Article : Google Scholar : PubMed/NCBI | |
Byrd AK and Raney KD: Superfamily 2 helicases. Front Bioscience. 17:2070–2088. 2012. View Article : Google Scholar : PubMed/NCBI | |
Han X, Zhao L and Li X: HELQ in cancer and reproduction. Neoplasma. 63:825–835. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cordin O, Banroques J, Tanner NK and Linder P: The DEAD-box protein family of RNA helicases. Gene. 367:17–37. 2006. View Article : Google Scholar : PubMed/NCBI | |
Heung LJ and Del Poeta M: Unlocking the DEAD-box: A key to cryptococcal virulence? J Clin Invest. 115:593–595. 2005. View Article : Google Scholar : PubMed/NCBI | |
de la Cruz J, Kressler D and Linder P: Unwinding RNA in Saccharomyces cerevisiae: DEAD-box proteins and related families. Trends Biochem Sci. 24:192–198. 1999. View Article : Google Scholar : PubMed/NCBI | |
Aubourg S, Kreis M and Lecharny A: The DEAD box RNA helicase family in Arabidopsis thaliana. Nucleic Acids Res. 27:628–636. 1999. View Article : Google Scholar : PubMed/NCBI | |
Tanner NK and Linder P: DExD/H box RNA helicases: From generic motors to specific dissociation functions. Mol Cell. 8:251–262. 2001. View Article : Google Scholar : PubMed/NCBI | |
Huffman JL and Brennan RG: Prokaryotic transcription regulators: More than just the helix-turn-helix motif. Curr Opin Struct Biol. 12:98–106. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kitano K, Kim SY and Hakoshima T: Structural basis for DNA strand separation by the unconventional winged-helix domain of RecQ helicase WRN. Structure. 18:177–187. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li YP, Yang JJ, Xu H, Guo EY and Yu Y: Structure-function analysis of DNA helicase HELQ: A new diagnostic marker in ovarian cancer. Oncol Lett. 12:4439–4444. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jenkins T, Northall SJ, Ptchelkine D, Lever R, Cubbon A, Betts H, Taresco V, Cooper CDO, McHugh PJ, Soultanas P and Bolt EL: The HelQ human DNA repair helicase utilizes a PWI-like domain for DNA loading through interaction with RPA, triggering DNA unwinding by the HelQ helicase core. NAR Cancer. 3:zcaa0432021. View Article : Google Scholar : PubMed/NCBI | |
Gaudet P, Livstone MS, Lewis SE and Thomas PD: Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Brief Bioinform. 12:449–462. 2011. View Article : Google Scholar : PubMed/NCBI | |
Moldovan GL, Madhavan MV, Mirchandani KD, McCaffrey RM, Vinciguerra P and D'Andrea AD: DNA polymerase POLN participates in cross-link repair and homologous recombination. Mol Cell Biol. 30:1088–1096. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wu L and Hickson ID: DNA helicases required for homologous recombination and repair of damaged replication forks. Ann Rev Genet. 40:279–306. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K and Linn S: Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Ann Rev Biochem. 73:39–85. 2004. View Article : Google Scholar : PubMed/NCBI | |
Li X and Heyer WD: Homologous recombination in DNA repair and DNA damage tolerance. Cell Res. 18:99–113. 2008. View Article : Google Scholar : PubMed/NCBI | |
Roy S: Maintenance of genome stability in plants: Repairing DNA double strand breaks and chromatin structure stability. Front Plant Sci. 5:4872014. View Article : Google Scholar : PubMed/NCBI | |
Martin LP, Hamilton TC and Schilder RJ: Platinum resistance: The role of DNA repair pathways. Clin Cancer Res. 14:1291–1295. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kamp JA, Lemmens B, Romeijn RJ, Changoer SC, van Schendel R and Tijsterman M: Helicase Q promotes homology-driven DNA double-strand break repair and prevents tandem duplications. Nat Commun. 12:71262021. View Article : Google Scholar : PubMed/NCBI | |
Hoeijmakers JH: Genome maintenance mechanisms for preventing cancer. Nature. 411:366–374. 2001. View Article : Google Scholar : PubMed/NCBI | |
Scully R, Panday A, Elango R and Willis NA: DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol. 20:698–714. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gartner A and Engebrecht J: DNA repair, recombination, and damage signaling. Genetics. 220:iyab1782022. View Article : Google Scholar : PubMed/NCBI | |
Ward JD, Muzzini DM, Petalcorin MI, Martinez-Perez E, Martin JS, Plevani P, Cassata G, Marini F and Boulton SJ: Overlapping mechanisms promote postsynaptic RAD-51 filament disassembly during meiotic double-strand break repair. Mol Cell. 37:259–272. 2010. View Article : Google Scholar : PubMed/NCBI | |
San Filippo J, Sung P and Klein H: Mechanism of eukaryotic homologous recombination. Ann Rev Biochem. 77:229–257. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hustedt N, Saito Y, Zimmermann M, Alvarez-Quilon A, Setiaputra D, Adam S, McEwan A, Yuan JY, Olivieri M, Zhao Y, et al: Control of homologous recombination by the HROB-MCM8-MCM9 pathway. Genes Dev. 33:1397–1415. 2019. View Article : Google Scholar : PubMed/NCBI | |
Niedernhofer LJ, Daniels JS, Rouzer CA, Greene RE and Marnett LJ: Malondialdehyde, a product of lipid peroxidation, is mutagenic in human cells. J Biol Chem. 278:31426–31433. 2003. View Article : Google Scholar : PubMed/NCBI | |
McHugh PJ, Spanswick VJ and Hartley JA: Repair of DNA interstrand crosslinks: Molecular mechanisms and clinical relevance. Lancet Oncol. 2:483–490. 2001. View Article : Google Scholar : PubMed/NCBI | |
Adelman CA and Boulton SJ: Metabolism of postsynaptic recombination intermediates. FEBS Lett. 584:3709–3716. 2010. View Article : Google Scholar : PubMed/NCBI | |
Luebben SW, Kawabata T, Akre MK, Lee WL, Johnson CS, O'Sullivan MG and Shima N: Helq acts in parallel to Fancc to suppress replication-associated genome instability. Nucleic Acids Res. 41:10283–10297. 2013. View Article : Google Scholar : PubMed/NCBI | |
Garcia-Higuera I, Taniguchi T, Ganesan S, Meyn MS, Timmers C, Hejna J, Grompe M and D'Andrea AD: Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol Cell. 7:249–262. 2001. View Article : Google Scholar : PubMed/NCBI | |
Northall SJ, Buckley R, Jones N, Penedo JC, Soultanas P and Bolt EL: DNA binding and unwinding by Hel308 helicase requires dual functions of a winged helix domain. DNA Repair. 57:125–132. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fujikane R, Shinagawa H and Ishino Y: The archaeal Hjm helicase has recQ-like functions, and may be involved in repair of stalled replication fork. Genes Cells. 11:99–110. 2006. View Article : Google Scholar : PubMed/NCBI | |
Smith J, Tho LM, Xu N and Gillespie DA: The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv Cancer Res. 108:73–112. 2010. View Article : Google Scholar : PubMed/NCBI | |
Montano R, Thompson R, Chung I, Hou H, Khan N and Eastman A: Sensitization of human cancer cells to gemcitabine by the Chk1 inhibitor MK-8776: Cell cycle perturbation and impact of administration schedule in vitro and in vivo. BMC Cancer. 13:6042013. View Article : Google Scholar : PubMed/NCBI | |
Krajewska M, Fehrmann RS, Schoonen PM, Labib S, de Vries EG, Franke L and van Vugt MA: ATR inhibition preferentially targets homologous recombination-deficient tumor cells. Oncogene. 34:3474–3481. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bagby GC Jr: Genetic basis of Fanconi anemia. Curr Opin Hematol. 10:68–76. 2003. View Article : Google Scholar : PubMed/NCBI | |
Seki S, Ohzeki M, Uchida A, Hirano S, Matsushita N, Kitao H, Oda T, Yamashita T, Kashihara N, Tsubahara A, et al: A requirement of FancL and FancD2 monoubiquitination in DNA repair. Genes Cells. 12:299–310. 2007. View Article : Google Scholar : PubMed/NCBI | |
Nepal M, Che R, Ma C, Zhang J and Fei P: FANCD2 and DNA Damage. Int J Mol Sci. 18:18042017. View Article : Google Scholar : PubMed/NCBI | |
Muzzini DM, Plevani P, Boulton SJ, Cassata G and Marini F: Caenorhabditis elegans POLQ-1 and HEL-308 function in two distinct DNA interstrand cross-link repair pathways. DNA Repair. 7:941–950. 2008. View Article : Google Scholar : PubMed/NCBI | |
Richardson CD, Kazane KR, Feng SJ, Zelin E, Bray NL, Schäfer AJ, Floor SN and Corn JE: CRISPR-Cas9 genome editing in human cells occurs via the Fanconi anemia pathway. Nat Genet. 50:1132–1139. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zellweger R, Dalcher D, Mutreja K, Berti M, Schmid JA, Herrador R, Vindigni A and Lopes M: Rad51-mediated replication fork reversal is a global response to genotoxic treatments in human cells. J Cell Biol. 208:563–579. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bhat KP and Cortez D: RPA and RAD51: Fork reversal, fork protection, and genome stability. Nat Struct Mol Biol. 25:446–453. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bonilla B, Hengel SR, Grundy MK and Bernstein KA: RAD51 gene family structure and function. Ann Rev Genet. 54:25–46. 2020. View Article : Google Scholar : PubMed/NCBI | |
Somyajit K, Subramanya S and Nagaraju G: RAD51C: A novel cancer susceptibility gene is linked to Fanconi anemia and breast cancer. Carcinogenesis. 31:2031–2038. 2010. View Article : Google Scholar : PubMed/NCBI | |
Suwaki N, Klare K and Tarsounas M: RAD51 paralogs: Roles in DNA damage signalling, recombinational repair and tumorigenesis. Seminars Cell Dev Biol. 22:898–905. 2011. View Article : Google Scholar : PubMed/NCBI | |
Somyajit K, Saxena S, Babu S, Mishra A and Nagaraju G: Mammalian RAD51 paralogs protect nascent DNA at stalled forks and mediate replication restart. Nucleic Acids Res. 43:9835–9855. 2015.PubMed/NCBI | |
Masson JY, Stasiak AZ, Stasiak A, Benson FE and West SC: Complex formation by the human RAD51C and XRCC3 recombination repair proteins. Proc Natl Acad Sci USA. 98:8440–8446. 2001. View Article : Google Scholar : PubMed/NCBI | |
Rein HL, Bernstein KA and Baldock RA: RAD51 paralog function in replicative DNA Damage and tolerance. Curr Opin Genet Dev. 71:86–91. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen R and Wold MS: Replication protein A: Single-stranded DNA's first responder: Dynamic DNA-interactions allow replication protein A to direct single-strand DNA intermediates into different pathways for synthesis or repair. Bioessays. 36:1156–1161. 2014. View Article : Google Scholar : PubMed/NCBI | |
Oakley GG and Patrick SM: Replication protein A: Directing traffic at the intersection of replication and repair. Front Bioscience. 15:883–900. 2010. View Article : Google Scholar : PubMed/NCBI | |
Marini F, Kim N, Schuffert A and Wood RD: POLN, a nuclear PolA family DNA polymerase homologous to the DNA cross-link sensitivity protein Mus308. J Biol Chem. 278:32014–32019. 2003. View Article : Google Scholar : PubMed/NCBI | |
Murtaza G, Yang L, Khan I, Unar A, Khan M, Huan Z, Khan R and Shi Q: Identification and functional investigation of novel heterozygous HELQ mutations in patients with Sertoli Cell-only Syndrome. Genet Test Mol Biomarkers. 25:654–659. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Zhao S, Zhuang L, Li W, Qin Y and Chen ZJ: The screening of HELQ gene in Chinese patients with premature ovarian failure. Reprod Biomed Online. 31:573–576. 2015. View Article : Google Scholar : PubMed/NCBI | |
McKay JD, Truong T, Gaborieau V, Chabrier A, Chuang SC, Byrnes G, Zaridze D, Shangina O, Szeszenia-Dabrowska N, Lissowska J, et al: A genome-wide association study of upper aerodigestive tract cancers conducted within the INHANCE consortium. PLoS Genet. 7:e10013332011. View Article : Google Scholar : PubMed/NCBI | |
Babron MC, Kazma R, Gaborieau V, McKay J, Brennan P, Sarasin A and Benhamou S: Genetic variants in DNA repair pathways and risk of upper aerodigestive tract cancers: Combined analysis of data from two genome-wide association studies in European populations. Carcinogenesis. 35:1523–1527. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, He Y, Xu J, Xu L, Du J, Zhu C, Gu H, Ma H, Hu Z, Jin G, et al: Genetic variants at 4q21, 4q23 and 12q24 are associated with esophageal squamous cell carcinoma risk in a Chinese population. Hum Genet. 132:649–656. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li WQ, Hu N, Hyland PL, Gao Y, Wang ZM, Yu K, Su H, Wang CY, Wang LM, Chanock SJ, et al: Genetic variants in DNA repair pathway genes and risk of esophageal squamous cell carcinoma and gastric adenocarcinoma in a Chinese population. Carcinogenesis. 34:1536–1542. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liang C, Marsit CJ, Houseman EA, Butler R, Nelson HH, McClean MD and Kelsey KT: Gene-environment interactions of novel variants associated with head and neck cancer. Head Neck. 34:1111–1118. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pelttari LM, Kinnunen L, Kiiski JI, Khan S, Blomqvist C, Aittomaki K and Nevanlinna H: Screening of HELQ in breast and ovarian cancer families. Fam Cancer. 15:19–23. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hamdi Y, Soucy P, Adoue V, Michailidou K, Canisius S, Lemacon A, Droit A, Andrulis IL, Anton-Culver H, Arndt V, et al: Association of breast cancer risk with genetic variants showing differential allelic expression: Identification of a novel breast cancer susceptibility locus at 4q21. Oncotarget. 7:80140–80163. 2016. View Article : Google Scholar : PubMed/NCBI | |
Homer MV, Charo LM, Natarajan L, Haunschild C, Chung K, Mao JJ, DeMichele AM and Su HI: Genetic variants of age at menopause are not related to timing of ovarian failure in breast cancer survivors. Menopause. 24:663–668. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu DN, Zhou YF, Peng AF, Long XH, Chen XY, Liu ZL and Xia H: HELQ reverses the malignant phenotype of osteosarcoma cells via CHK1-RAD51 signaling pathway. Oncol Rep. 37:1107–1113. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhu F, Yang S, Lei M, He Q, Wu L and Zhang Y: DNA repair protein HELQ and XAB2 as chemoresponse and prognosis biomarkers in ascites tumor cells of high-grade serous ovarian cancer. J Oncol. 2022:75219342022. View Article : Google Scholar : PubMed/NCBI | |
Guo C, Gao YY, Ju QQ, Zhang CX, Gong M and Li ZL: HELQ and EGR3 expression correlate with IGHV mutation status and prognosis in chronic lymphocytic leukemia. J Transl Med. 19:422021. View Article : Google Scholar : PubMed/NCBI | |
Zhong NS, Tong WL, Zhang Y, Xiao SN, Liu JM, Li AA, Yao GL, Lin Q and Liu ZL: HELQ suppresses migration and proliferation of non-small cell lung cancer cells by repairing DNA damage and inducing necrosis. Cell Biol Int. 47:188–200. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Zhang Y and Tian Y: Expressions of HELQ and RAD51C in endometrial stromal sarcoma and their clinical significance. Nan Fang Yi Ke Da Xue Xue Bao. 40:936–941. 2020.(In Chinese). PubMed/NCBI | |
Gimenez N, Martinez-Trillos A, Montraveta A, Lopez-Guerra M, Rosich L, Nadeu F, Valero JG, Aymerich M, Magnano L, Rozman M, et al: Mutations in the RAS-BRAF-MAPK-ERK pathway define a specific subgroup of patients with adverse clinical features and provide new therapeutic options in chronic lymphocytic leukemia. Haematologica. 104:576–586. 2019. View Article : Google Scholar : PubMed/NCBI | |
Thomas A, Cox J, Wolfe KB, Mingalone CH, Yaspan HR and McVey M: Division of Labor by the HELQ, BLM, and FANCM Helicases during Homologous Recombination Repair in Drosophila melanogaster. Genes (Basel). 13:4742022. View Article : Google Scholar : PubMed/NCBI | |
Scott DE, Francis-Newton NJ, Marsh ME, Coyne AG, Fischer G, Moschetti T, Bayly AR, Sharpe TD, Haas KT, Barber L, et al: A small-molecule inhibitor of the BRCA2-RAD51 interaction modulates RAD51 assembly and potentiates DNA damage-induced cell death. Cell Chem Biol. 28:835–847.e5. 2021. View Article : Google Scholar : PubMed/NCBI |