|
1
|
Ravi S, Schilder RJ and Kimball SR: Role
of precursor mRNA splicing in nutrient-induced alterations in gene
expression and metabolism. J Nutr. 145:841–846. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Saha K, Fernandez MM, Biswas T, Joseph S
and Ghosh G: Discovery of a pre-mRNA structural scaffold as a
contributor to the mammalian splicing code. Nucleic Acids Res.
49:7103–7121. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Scotti MM and Swanson MS: RNA mis-splicing
in disease. Nat Rev Genet. 17:19–32. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Blijlevens M, Li J and van Beusechem VW:
Biology of the mRNA splicing machinery and its dysregulation in
cancer providing therapeutic opportunities. Int J Mol Sci.
22:51102021. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Cléry A, Sinha R, Anczuków O, Corrionero
A, Moursy A, Daubner GM, Valcárcel J, Krainer AR and Allain FH:
Isolated pseudo-RNA-recognition motifs of SR proteins can regulate
splicing using a noncanonical mode of RNA recognition. Proc Natl
Acad Sci USA. 110:E2802–E2811. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Moraleva AA, Deryabin AS, Rubtsov YP,
Rubtsova MP and Dontsova OA: Eukaryotic ribosome biogenesis: The
60S subunit. Acta Naturae. 14:39–49. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Carrocci TJ and Neugebauer KM: Pre-mRNA
splicing in the nuclear landscape. Cold Spring Harb Symp Quant
Biol. 84:11–20. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Meyer K, Koester T and Staiger D: Pre-mRNA
splicing in plants: In vivo functions of RNA-binding proteins
implicated in the splicing process. Biomolecules. 5:1717–1740.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Sette C and Paronetto MP: Somatic
mutations in core spliceosome components promote tumorigenesis and
generate an exploitable vulnerability in human cancer. Cancers
(Basel). 14:18272022. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Ilagan JO, Ramakrishnan A, Hayes B, Murphy
ME, Zebari AS, Bradley P and Bradley RK: U2AF1 mutations alter
splice site recognition in hematological malignancies. Genome Res.
25:14–26. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Yoshimi A and Abdel-Wahab O: Molecular
pathways: Understanding and targeting mutant spliceosomal proteins.
Clin Cancer Res. 23:336–341. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Fei DL, Zhen T, Durham B, Ferrarone J,
Zhang T, Garrett L, Yoshimi A, Abdel-Wahab O, Bradley RK, Liu P and
Varmus H: Impaired hematopoiesis and leukemia development in mice
with a conditional knock-in allele of a mutant splicing factor gene
U2af1. Proc Natl Acad Sci USA. 115:E10437–E10446. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Chen S, Benbarche S and Abdel-Wahab O:
Splicing factor gene mutations in hematologic malignancies. Blood.
129:1260–1269. 2017. View Article : Google Scholar
|
|
14
|
Ogawa S: Genetics of MDS. Blood.
133:1049–1059. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Inoue D, Bradley RK and Abdel-Wahab O:
Spliceosomal gene mutations in myelodysplasia: Molecular links to
clonal abnormalities of hematopoiesis. Genes Dev. 30:989–1001.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Taylor J and Lee SC: Mutations in
spliceosome genes and therapeutic opportunities in myeloid
malignancies. Genes Chromosomes Cancer. 58:889–902. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Przychodzen B, Jerez A, Guinta K, Sekeres
MA, Padgett R, Maciejewski JP and Makishima H: Patterns of
missplicing due to somatic U2AF1 mutations in myeloid neoplasms.
Blood. 122:999–1006. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Madan V, Li J, Zhou S, Teoh WW, Han L,
Meggendorfer M, Malcovati L, Cazzola M, Ogawa S, Haferlach T, et
al: Distinct and convergent consequences of splice factor mutations
in myelodysplastic syndromes. Am J Hematol. 95:133–143. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Zhou Z, Gong Q, Wang Y, Li M, Wang L, Ding
H and Li P: The biological function and clinical significance of
SF3B1 mutations in cancer. Biomark Res. 8:382020. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Gupta G, Singh R, Kotasthane DS and
Kotasthane VD: Myelodysplastic syndromes/neoplasms: Recent
classification system based on World Health Organization
classification of tumors-international agency for research on
cancer for hematopoietic and lymphoid tissues. J Blood Med.
1:171–182. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Estey E, Hasserjian RP and Döhner H:
Distinguishing AML from MDS: A fixed blast percentage may no longer
be optimal. Blood. 139:323–332. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Chen J, Kao YR, Sun D, Todorova TI,
Reynolds D, Narayanagari SR, Montagna C, Will B, Verma A and Steidl
U: Myelodysplastic syndrome progression to acute myeloid leukemia
at the stem cell level. Nat Med. 25:103–110. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Yu J, Li Y, Li T, Li Y, Xing H, Sun H, Sun
L, Wan D, Liu Y, Xie X and Jiang Z: Gene mutational analysis by NGS
and its clinical significance in patients with myelodysplastic
syndrome and acute myeloid leukemia. Exp Hematol Oncol. 9:22020.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Čolović N, Denčić-Fekete M, Peruničić M
and Jurišić V: Clinical characteristics and treatment outcome of
hypocellular acute myeloid leukemia based on WHO classification.
Indian J Hematol Blood Transfus. 36:59–63. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Visconte V, O Nakashima M and J Rogers H:
Mutations in Splicing Factor Genes In Myeloid Malignancies:
Significance and impact on clinical features. Cancers (Basel).
11:18442019. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Follo MY, Pellagatti A, Ratti S,
Ramazzotti G, Faenza I, Fiume R, Mongiorgi S, Suh PG, McCubrey JA,
Manzoli L, et al: Recent advances in MDS mutation landscape:
Splicing and signalling. Adv Biol Regul. 75:1006732020. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Brunner AM and Steensma DP: Targeting
aberrant splicing in myelodysplastic syndromes: Biologic rationale
and clinical opportunity. Hematol Oncol Clin North Am. 34:379–391.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Douet-Guilbert N, Soubise B, Bernard DG
and Troadec MB: Cytogenetic and genetic abnormalities with
diagnostic value in myelodysplastic syndromes (MDS): Focus on the
pre-messenger RNA splicing process. Diagnostics (Basel).
12:16582022. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Dong Y and Li J, Zeng Z, Zhang X, Liang M,
Yi H, Luo J and Li J: Growth retardation and congenital heart
disease in a boy with a ring chromosome 6 of maternal origin. Mol
Cytogenet. 15:92022. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Li B, Zou D, Yang S, Ouyang G and Mu Q:
Prognostic significance of U2AF1 mutations in myelodysplastic
syndromes: A meta-analysis. J Int Med Res.
48:3000605198910132020.PubMed/NCBI
|
|
31
|
Awada H, Thapa B and Visconte V: The
genomics of myelodysplastic syndromes: Origins of disease
evolution, biological pathways, and prognostic implications. Cells.
9:25122020. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Esfahani MS, Lee LJ, Jeon YJ, Flynn RA,
Stehr H, Hui AB, Ishisoko N, Kildebeck E, Newman AM, Bratman SV, et
al: Functional significance of U2AF1 S34F mutations in lung
adenocarcinomas. Nat Commun. 10:57122019. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Kielkopf CL: Insights from structures of
cancer-relevant pre-mRNA splicing factors. Curr Opin Genet Dev.
48:57–66. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Escobar-Hoyos L, Knorr K and Abdel-Wahab
O: Aberrant RNA splicing in cancer. Annu Rev Cancer Biol.
3:167–185. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Biancon G, Joshi P, Zimmer JT, Hunck T,
Gao Y, Lessard MD, Courchaine E, Barentine AE, Machyna M, Botti V,
et al: Multi-omics profiling of U2AF1 mutants dissects pathogenic
mechanisms affecting RNA granules in myeloid malignancies. bioRxiv.
2021.2004.2022.441020. 2021.
|
|
36
|
Martínez-Valiente C, Garcia-Ruiz C, Rosón
B, Liquori A, González-Romero E, Fernández-González R,
Gómez-Redondo I, Cervera J, Gutiérrez-Adán A and Sanjuan-Pla A:
Aberrant alternative splicing in U2af1/Tet2 double mutant mice
contributes to major hematological phenotypes. Int J Mol Sci.
22:69632021. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Ivy KS and Brent Ferrell P Jr: Disordered
immune regulation and its therapeutic targeting in myelodysplastic
syndromes. Curr Hematol Malig Rep. 13:244–255. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Pellagatti A, Armstrong RN, Steeples V,
Sharma E, Repapi E, Singh S, Sanchi A, Radujkovic A, Horn P,
Dolatshad H, et al: Impact of spliceosome mutations on RNA splicing
in myelodysplasia: dysregulated genes/pathways and clinical
associations. Blood. 132:1225–1240. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Akef A, McGraw K, Cappell SD and Larson
DR: Ribosome biogenesis is a downstream effector of the oncogenic
U2AF1-S34F mutation. PLoS Biol. 18:e30009202020. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Xu Y and Ruggero D: The role of
translation control in tumorigenesis and its therapeutic
implications. Ann Rev Cancer Biol. 4:437–457. 2020. View Article : Google Scholar
|
|
41
|
Feliu N, Kohonen P, Ji J, Zhang Y,
Karlsson HL, Palmberg L, Nyström A and Fadeel B: Next-generation
sequencing reveals low-dose effects of cationic dendrimers in
primary human bronchial epithelial cells. ACS Nano. 9:146–163.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Hallstrom TC, Mori S and Nevins JR: An
E2F1-dependent gene expression program that determines the balance
between proliferation and cell death. Cancer Cell. 13:11–22. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Wang H, Guo Y, Dong Z, Li T, Xie X, Wan D,
Jiang Z, Yu J and Guo R: Differential U2AF1 mutation sites, burden
and co-mutation genes can predict prognosis in patients with
myelodysplastic syndrome. Sci Rep. 10:186222020. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Huang FT, Sun J, Zhang L, He X, Zhu YH,
Dong HJ, Wang HY, Zhu L, Zou JY, Huang JW and Li L: Role of SIRT1
in hematologic malignancies. J Zhejiang Univ Sci B. 20:391–398.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Carraway HE, Malkaram SA, Cen Y, Shatnawi
A, Fan J, Ali HEA, Abd Elmageed ZY, Buttolph T, Denvir J, Primerano
DA and Fandy TE: Activation of SIRT6 by DNA hypomethylating agents
and clinical consequences on combination therapy in leukemia. Sci
Rep. 10:103252020. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Bhalla S and Gordon LI: Functional
characterization of NAD dependent de-acetylases SIRT1 and SIRT2 in
B-cell chronic lymphocytic leukemia (CLL). Cancer Biol Ther.
17:300–309. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Chen ML, Logan TD, Hochberg ML, Shelat SG,
Yu X, Wilding GE, Tan W, Kujoth GC, Prolla TA, Selak MA, et al:
Erythroid dysplasia, megaloblastic anemia, and impaired
lymphopoiesis arising from mitochondrial dysfunction. Blood.
114:4045–4053. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Luo Y, Ma J and Lu W: The significance of
mitochondrial dysfunction in cancer. Int J Mol Sci. 21:55982020.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Park SM, Ou J, Chamberlain L, Simone TM,
Yang H, Virbasius CM, Ali AM, Zhu LJ, Mukherjee S, Raza A and Green
MR: U2AF35(S34F) promotes transformation by directing aberrant ATG7
pre-mRNA 3′ end formation. Mol Cell. 62:479–490. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zhao L, Cao J, Hu K, He X, Yun D, Tong T
and Han L: Sirtuins and their biological relevance in aging and
age-related diseases. Aging Dis. 11:927–945. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Bosch-Presegué L and Vaquero A: The dual
role of sirtuins in cancer. Genes Cancer. 2:648–662. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Nakagawa MM, Chen H and Rathinam CV:
Constitutive activation of NF-κB pathway in hematopoietic stem
cells causes loss of quiescence and deregulated transcription
factor networks. Front Cell Dev Biol. 6:1432018. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Balka KR and De Nardo D: Understanding
early TLR signaling through the myddosome. J Leukoc Biol.
105:339–351. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Smith MA, Choudhary GS, Pellagatti A, Choi
K, Bolanos LC, Bhagat TD, Gordon-Mitchell S, Von Ahrens D, Pradhan
K, Steeples V, et al: U2AF1 mutations induce oncogenic IRAK4
isoforms and activate innate immune pathways in myeloid
malignancies. Nat Cell Biol. 21:640–650. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Pellagatti A and Boultwood J: SF3B1 mutant
myelodysplastic syndrome: Recent advances. Adv Biol Regul.
79:1007762021. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Lee SC, North K, Kim E, Jang E, Obeng E,
Lu SX, Liu B, Inoue D, Yoshimi A, Ki M, et al: Synthetic lethal and
convergent biological effects of cancer-associated spliceosomal
gene mutations. Cancer Cell. 34:225–241.e8. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Crossley MP, Bocek M and Cimprich KA:
R-loops as cellular regulators and genomic threats. Mol Cell.
73:398–411. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Chen C, Zhou P, Zhang Z and Liu Y: U2AF1
mutation connects DNA damage to the alternative splicing of RAD51
in lung adenocarcinomas. Clin Exp Pharmacol Physiol. 49:740–747.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Nguyen HD, Leong WY, Li W, Reddy PNG,
Sullivan JD, Walter MJ, Zou L and Graubert TA: Spliceosome
mutations induce R loop-associated sensitivity to ATR inhibition in
myelodysplastic syndromes. Cancer Res. 78:5363–5374. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Chen H, Libring S, Ruddraraju KV, Miao J,
Solorio L, Zhang ZY and Wendt MK: SHP2 is a multifunctional
therapeutic target in drug resistant metastatic breast cancer.
Oncogene. 39:7166–7180. 2019. View Article : Google Scholar
|
|
61
|
Chen L, Chen JY, Huang YJ, Gu Y, Qiu J,
Qian H, Shao C, Zhang X, Hu J, Li H, et al: The augmented R-loop is
a unifying mechanism for myelodysplastic syndromes induced by
high-risk splicing factor mutations. Mol Cell. 69:412–425.e6. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Boultwood J and Pellagatti A: The impact
of spliceosome mutations in MDS. Hemasphere. 3 (Suppl):S132–S134.
2019. View Article : Google Scholar
|
|
63
|
Vallapureddy RR, Mudireddy M, Penna D,
Lasho TL, Finke CM, Hanson CA, Ketterling RP, Begna KH, Gangat N,
Pardanani A and Tefferi A: Leukemic transformation among 1306
patients with primary myelofibrosis: Risk factors and development
of a predictive model. Blood Cancer J. 9:122019. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Tefferi A, Siragusa S, Hussein K, Schwager
SM, Hanson CA, Pardanani A, Cervantes F and Passamonti F:
Transfusion-dependency at presentation and its acquisition in the
first year of diagnosis are both equally detrimental for survival
in primary myelofibrosis-prognostic relevance is independent of
IPSS or karyotype. Am J Hematol. 85:14–17. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Alhuraiji A, Naqvi K, Huh YO, Ho C,
Verstovsek S and Bose P: Acute lymphoblastic leukemia secondary to
myeloproliferative neoplasms or after lenalidomide exposure. Clin
Case Rep. 6:155–161. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Tefferi A, Lasho TL, Finke CM, Knudson RA,
Ketterling R, Hanson CH, Maffioli M, Caramazza D, Passamonti F and
Pardanani A: CALR vs JAK2 vs MPL-mutated or triple-negative
myelofibrosis: Clinical, cytogenetic and molecular comparisons.
Leukemia. 28:1472–1477. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Chaligné R, James C, Tonetti C, Besancenot
R, Le Couédic JP, Fava F, Mazurier F, Godin I, Maloum K, Larbret F,
et al: Evidence for MPL W515L/K mutations in hematopoietic stem
cells in primitive myelofibrosis. Blood. 110:3735–3743. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Tefferi A, Finke CM, Lasho TL, Hanson CA,
Ketterling RP, Gangat N and Pardanani A: U2AF1 mutation types in
primary myelofibrosis: Phenotypic and prognostic distinctions.
Leukemia. 32:2274–2278. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Tefferi A, Mudireddy M, Finke CM, Nicolosi
M, Lasho TL, Hanson CA, Patnaik MM, Pardanani A and Gangat N: U2AF1
mutation variants in myelodysplastic syndromes and their clinical
correlates. Am J Hematol. 93:E146–E148. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Wu SJ, Tang JL, Lin CT, Kuo YY, Li LY,
Tseng MH, Huang CF, Lai YJ, Lee FY, Liu MC, et al: Clinical
implications of U2AF1 mutation in patients with myelodysplastic
syndrome and its stability during disease progression. Am J
Hematol. 88:E277–E282. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Patnaik MM and Tefferi A: Chronic
myelomonocytic leukemia: 2020 Update on diagnosis, risk
stratification and management. Am J Hematol. 95:97–115. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Machherndl-Spandl S, Jäger E, Barna A,
Gurbisz M, Marschon R, Graf T, Graf E, Geissler C, Hoermann G,
Nösslinger T, et al: Impact of age on the cumulative risk of
transformation in patients with chronic myelomonocytic leukaemia.
Eur J Haematol. 107:265–274. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Patnaik MM, Lasho TL, Finke CM, Hanson CA,
Hodnefield JM, Knudson RA, Ketterling RP, Pardanani A and Tefferi
A: Spliceosome mutations involving SRSF2, SF3B1, and U2AF35 in
chronic myelomonocytic leukemia: Prevalence, clinical correlates,
and prognostic relevance. Am J Hematol. 88:201–206. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Patnaik MM and Tefferi A: Cytogenetic and
molecular abnormalities in chronic myelomonocytic leukemia. Blood
Cancer J. 6:e3932016. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
McClure RF, Ewalt MD, Crow J,
Temple-Smolkin RL, Pullambhatla M, Sargent R and Kim AS: Clinical
significance of DNA variants in chronic myeloid neoplasms: A report
of the association for molecular pathology. J Mol Diagn.
20:717–737. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Grever MR, Abdel-Wahab O, Andritsos LA,
Banerji V, Barrientos J, Blachly JS, Call TG, Catovsky D, Dearden
C, Demeter J, et al: Consensus guidelines for the diagnosis and
management of patients with classic hairy cell leukemia. Blood.
129:553–560. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Kreitman RJ: Hairy cell leukemia: Present
and future directions. Leuk Lymphoma. 60:2869–2879. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Durham BH, Getta B, Dietrich S, Taylor J,
Won H, Bogenberger JM, Scott S, Kim E, Chung YR, Chung SS, et al:
Genomic analysis of hairy cell leukemia identifies novel recurrent
genetic alterations. Blood. 130:1644–1648. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Rahman MA, Krainer AR and Abdel-Wahab O:
SnapShot: Splicing alterations in cancer. Cell. 180:208–208.e1.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Fei DL, Motowski H, Chatrikhi R, Prasad S,
Yu J, Gao S, Kielkopf CL, Bradley RK and Varmus H: Wild-type U2AF1
antagonizes the splicing program characteristic of U2AF1-mutant
tumors and is required for cell survival. PLOS Genetics.
12:e10063842016. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Sanchez A, El Ouardi D, Houfaf Khoufaf FZ,
Idrissou M, Boisnier T, Penault-Llorca F, Bignon YJ, Guy L and
Bernard-Gallon D: Role of JMJD3 demethylase and its inhibitor
GSK-J4 in regulation of MGMT, TRA2A, RPS6KA2, and U2AF1 genes in
prostate cancer cell lines. OMICS. 24:505–507. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Cao H, Wang D, Gao R, Chen L and Feng Y:
Down regulation of U2AF1 promotes ARV7 splicing and prostate cancer
progression. Biochem Biophys Res Commun. 541:56–62. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
El Ouardi D, Idrissou M, Sanchez A,
Penault-Llorca F, Bignon YJ, Guy L and Bernard-Gallon D: The
inhibition of the histone methyltransferase EZH2 by DZNEP or SiRNA
demonstrates its involvement in MGMT, TRA2A, RPS6KA2, and U2AF1
gene regulation in prostate cancer. OMICS. 24:116–118. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Je EM, Yoo NJ, Kim YJ, Kim MS and Lee SH:
Mutational analysis of splicing machinery genes SF3B1, U2AF1 and
SRSF2 in myelodysplasia and other common tumors. Int J Cancer.
133:260–265. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Chatrikhi R, Feeney CF, Pulvino MJ,
Alachouzos G, MacRae AJ, Falls Z, Rai S, Brennessel WW, Jenkins JL,
Walter MJ, et al: A synthetic small molecule stalls pre-mRNA
splicing by promoting an early-stage U2AF2-RNA complex. Cell Chem
Biol. 28:1145–1157.e6. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Lagisetti C, Palacios G, Goronga T,
Freeman B, Caufield W and Webb TR: Optimization of antitumor
modulators of pre-mRNA splicing. J Med Chem. 56:10033–10044. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Shirai CL, White BS, Tripathi M, Tapia R,
Ley JN, Ndonwi M, Kim S, Shao J, Carver A, Saez B, et al: Mutant
U2AF1-expressing cells are sensitive to pharmacological modulation
of the spliceosome. Nat Commun. 8:140602017. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Middleton MR, Dean E, Evans TRJ, Shapiro
GI, Pollard J, Hendriks BS, Falk M, Diaz-Padilla I and Plummer R:
Phase 1 study of the ATR inhibitor berzosertib (formerly M6620,
VX-970) combined with gemcitabine ± cisplatin in patients with
advanced solid tumours. Br J Cancer. 125:510–519. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Powers JP, Li S, Jaen JC, Liu J, Walker
NP, Wang Z and Wesche H: Discovery and initial SAR of inhibitors of
interleukin-1 receptor-associated kinase-4. Bioorg Med Chem Lett.
16:2842–2845. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Thol F, Kade S, Schlarmann C, Löffeld P,
Morgan M, Krauter J, Wlodarski MW, Kölking B, Wichmann M, Görlich
K, et al: Frequency and prognostic impact of mutations in SRSF2,
U2AF1, and ZRSR2 in patients with myelodysplastic syndromes. Blood.
119:3578–3584. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Griffin C and Saint-Jeannet JP:
Spliceosomopathies: Diseases and mechanisms. Dev Dyn.
249:1038–1046. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Zhao Y, Cai W, Hua Y, Yang X and Zhou J:
The biological and clinical consequences of RNA splicing factor
U2AF1 mutation in myeloid malignancies. Cancers (Basel).
14:44062022. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Lee P, Yim R, Yung Y, Chu HT, Yip PK and
Gill H: Molecular targeted therapy and immunotherapy for
myelodysplastic syndrome. Int J Mol Sci. 22:102322021. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Jacobs MD and Harrison SC: Structure of an
IkappaBalpha/NF-kappaB complex. Cell. 95:749–758. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Raedler L: Velcade (bortezomib) receives 2
new FDA indications: For retreatment of patients with multiple
myeloma and for first-line treatment of patients with mantle-cell
lymphoma. Am Health Drug Benefits. 8:135–140. 2015.PubMed/NCBI
|
|
96
|
Hamdy NA: Denosumab: RANKL inhibition in
the management of bone loss. Drugs Today (Barc). 44:7–21. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Vazquez Rodriguez G, Abrahamsson A,
Turkina MV and Dabrosin C: Lysine in combination with estradiol
promote dissemination of estrogen receptor positive breast cancer
via upregulation of U2AF1 and RPN2 proteins. Front Oncol.
10:5986842020. View Article : Google Scholar : PubMed/NCBI
|