
U2AF1 in various neoplastic diseases and relevant targeted therapies for malignant cancers with complex mutations (Review)
- Authors:
- Qing Nian
- Yihui Li
- Jingwei Li
- Liyun Zhao
- Fernando Rodrigues Lima
- Jinhao Zeng
- Rongxing Liu
- Zhijun Ye
-
Affiliations: Department of Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing 100730, P.R. China, Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China, Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, 75013 Paris, France, Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610000, P.R. China, Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400000, P.R. China, Department of Clinical Nutrition, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China - Published online on: November 16, 2023 https://doi.org/10.3892/or.2023.8664
- Article Number: 5
-
Copyright: © Nian et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Ravi S, Schilder RJ and Kimball SR: Role of precursor mRNA splicing in nutrient-induced alterations in gene expression and metabolism. J Nutr. 145:841–846. 2015. View Article : Google Scholar : PubMed/NCBI | |
Saha K, Fernandez MM, Biswas T, Joseph S and Ghosh G: Discovery of a pre-mRNA structural scaffold as a contributor to the mammalian splicing code. Nucleic Acids Res. 49:7103–7121. 2021. View Article : Google Scholar : PubMed/NCBI | |
Scotti MM and Swanson MS: RNA mis-splicing in disease. Nat Rev Genet. 17:19–32. 2016. View Article : Google Scholar : PubMed/NCBI | |
Blijlevens M, Li J and van Beusechem VW: Biology of the mRNA splicing machinery and its dysregulation in cancer providing therapeutic opportunities. Int J Mol Sci. 22:51102021. View Article : Google Scholar : PubMed/NCBI | |
Cléry A, Sinha R, Anczuków O, Corrionero A, Moursy A, Daubner GM, Valcárcel J, Krainer AR and Allain FH: Isolated pseudo-RNA-recognition motifs of SR proteins can regulate splicing using a noncanonical mode of RNA recognition. Proc Natl Acad Sci USA. 110:E2802–E2811. 2013. View Article : Google Scholar : PubMed/NCBI | |
Moraleva AA, Deryabin AS, Rubtsov YP, Rubtsova MP and Dontsova OA: Eukaryotic ribosome biogenesis: The 60S subunit. Acta Naturae. 14:39–49. 2022. View Article : Google Scholar : PubMed/NCBI | |
Carrocci TJ and Neugebauer KM: Pre-mRNA splicing in the nuclear landscape. Cold Spring Harb Symp Quant Biol. 84:11–20. 2019. View Article : Google Scholar : PubMed/NCBI | |
Meyer K, Koester T and Staiger D: Pre-mRNA splicing in plants: In vivo functions of RNA-binding proteins implicated in the splicing process. Biomolecules. 5:1717–1740. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sette C and Paronetto MP: Somatic mutations in core spliceosome components promote tumorigenesis and generate an exploitable vulnerability in human cancer. Cancers (Basel). 14:18272022. View Article : Google Scholar : PubMed/NCBI | |
Ilagan JO, Ramakrishnan A, Hayes B, Murphy ME, Zebari AS, Bradley P and Bradley RK: U2AF1 mutations alter splice site recognition in hematological malignancies. Genome Res. 25:14–26. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yoshimi A and Abdel-Wahab O: Molecular pathways: Understanding and targeting mutant spliceosomal proteins. Clin Cancer Res. 23:336–341. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fei DL, Zhen T, Durham B, Ferrarone J, Zhang T, Garrett L, Yoshimi A, Abdel-Wahab O, Bradley RK, Liu P and Varmus H: Impaired hematopoiesis and leukemia development in mice with a conditional knock-in allele of a mutant splicing factor gene U2af1. Proc Natl Acad Sci USA. 115:E10437–E10446. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Benbarche S and Abdel-Wahab O: Splicing factor gene mutations in hematologic malignancies. Blood. 129:1260–1269. 2017. View Article : Google Scholar | |
Ogawa S: Genetics of MDS. Blood. 133:1049–1059. 2019. View Article : Google Scholar : PubMed/NCBI | |
Inoue D, Bradley RK and Abdel-Wahab O: Spliceosomal gene mutations in myelodysplasia: Molecular links to clonal abnormalities of hematopoiesis. Genes Dev. 30:989–1001. 2016. View Article : Google Scholar : PubMed/NCBI | |
Taylor J and Lee SC: Mutations in spliceosome genes and therapeutic opportunities in myeloid malignancies. Genes Chromosomes Cancer. 58:889–902. 2019. View Article : Google Scholar : PubMed/NCBI | |
Przychodzen B, Jerez A, Guinta K, Sekeres MA, Padgett R, Maciejewski JP and Makishima H: Patterns of missplicing due to somatic U2AF1 mutations in myeloid neoplasms. Blood. 122:999–1006. 2013. View Article : Google Scholar : PubMed/NCBI | |
Madan V, Li J, Zhou S, Teoh WW, Han L, Meggendorfer M, Malcovati L, Cazzola M, Ogawa S, Haferlach T, et al: Distinct and convergent consequences of splice factor mutations in myelodysplastic syndromes. Am J Hematol. 95:133–143. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhou Z, Gong Q, Wang Y, Li M, Wang L, Ding H and Li P: The biological function and clinical significance of SF3B1 mutations in cancer. Biomark Res. 8:382020. View Article : Google Scholar : PubMed/NCBI | |
Gupta G, Singh R, Kotasthane DS and Kotasthane VD: Myelodysplastic syndromes/neoplasms: Recent classification system based on World Health Organization classification of tumors-international agency for research on cancer for hematopoietic and lymphoid tissues. J Blood Med. 1:171–182. 2010. View Article : Google Scholar : PubMed/NCBI | |
Estey E, Hasserjian RP and Döhner H: Distinguishing AML from MDS: A fixed blast percentage may no longer be optimal. Blood. 139:323–332. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Kao YR, Sun D, Todorova TI, Reynolds D, Narayanagari SR, Montagna C, Will B, Verma A and Steidl U: Myelodysplastic syndrome progression to acute myeloid leukemia at the stem cell level. Nat Med. 25:103–110. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yu J, Li Y, Li T, Li Y, Xing H, Sun H, Sun L, Wan D, Liu Y, Xie X and Jiang Z: Gene mutational analysis by NGS and its clinical significance in patients with myelodysplastic syndrome and acute myeloid leukemia. Exp Hematol Oncol. 9:22020. View Article : Google Scholar : PubMed/NCBI | |
Čolović N, Denčić-Fekete M, Peruničić M and Jurišić V: Clinical characteristics and treatment outcome of hypocellular acute myeloid leukemia based on WHO classification. Indian J Hematol Blood Transfus. 36:59–63. 2020. View Article : Google Scholar : PubMed/NCBI | |
Visconte V, O Nakashima M and J Rogers H: Mutations in Splicing Factor Genes In Myeloid Malignancies: Significance and impact on clinical features. Cancers (Basel). 11:18442019. View Article : Google Scholar : PubMed/NCBI | |
Follo MY, Pellagatti A, Ratti S, Ramazzotti G, Faenza I, Fiume R, Mongiorgi S, Suh PG, McCubrey JA, Manzoli L, et al: Recent advances in MDS mutation landscape: Splicing and signalling. Adv Biol Regul. 75:1006732020. View Article : Google Scholar : PubMed/NCBI | |
Brunner AM and Steensma DP: Targeting aberrant splicing in myelodysplastic syndromes: Biologic rationale and clinical opportunity. Hematol Oncol Clin North Am. 34:379–391. 2020. View Article : Google Scholar : PubMed/NCBI | |
Douet-Guilbert N, Soubise B, Bernard DG and Troadec MB: Cytogenetic and genetic abnormalities with diagnostic value in myelodysplastic syndromes (MDS): Focus on the pre-messenger RNA splicing process. Diagnostics (Basel). 12:16582022. View Article : Google Scholar : PubMed/NCBI | |
Dong Y and Li J, Zeng Z, Zhang X, Liang M, Yi H, Luo J and Li J: Growth retardation and congenital heart disease in a boy with a ring chromosome 6 of maternal origin. Mol Cytogenet. 15:92022. View Article : Google Scholar : PubMed/NCBI | |
Li B, Zou D, Yang S, Ouyang G and Mu Q: Prognostic significance of U2AF1 mutations in myelodysplastic syndromes: A meta-analysis. J Int Med Res. 48:3000605198910132020.PubMed/NCBI | |
Awada H, Thapa B and Visconte V: The genomics of myelodysplastic syndromes: Origins of disease evolution, biological pathways, and prognostic implications. Cells. 9:25122020. View Article : Google Scholar : PubMed/NCBI | |
Esfahani MS, Lee LJ, Jeon YJ, Flynn RA, Stehr H, Hui AB, Ishisoko N, Kildebeck E, Newman AM, Bratman SV, et al: Functional significance of U2AF1 S34F mutations in lung adenocarcinomas. Nat Commun. 10:57122019. View Article : Google Scholar : PubMed/NCBI | |
Kielkopf CL: Insights from structures of cancer-relevant pre-mRNA splicing factors. Curr Opin Genet Dev. 48:57–66. 2018. View Article : Google Scholar : PubMed/NCBI | |
Escobar-Hoyos L, Knorr K and Abdel-Wahab O: Aberrant RNA splicing in cancer. Annu Rev Cancer Biol. 3:167–185. 2019. View Article : Google Scholar : PubMed/NCBI | |
Biancon G, Joshi P, Zimmer JT, Hunck T, Gao Y, Lessard MD, Courchaine E, Barentine AE, Machyna M, Botti V, et al: Multi-omics profiling of U2AF1 mutants dissects pathogenic mechanisms affecting RNA granules in myeloid malignancies. bioRxiv. 2021.2004.2022.441020. 2021. | |
Martínez-Valiente C, Garcia-Ruiz C, Rosón B, Liquori A, González-Romero E, Fernández-González R, Gómez-Redondo I, Cervera J, Gutiérrez-Adán A and Sanjuan-Pla A: Aberrant alternative splicing in U2af1/Tet2 double mutant mice contributes to major hematological phenotypes. Int J Mol Sci. 22:69632021. View Article : Google Scholar : PubMed/NCBI | |
Ivy KS and Brent Ferrell P Jr: Disordered immune regulation and its therapeutic targeting in myelodysplastic syndromes. Curr Hematol Malig Rep. 13:244–255. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pellagatti A, Armstrong RN, Steeples V, Sharma E, Repapi E, Singh S, Sanchi A, Radujkovic A, Horn P, Dolatshad H, et al: Impact of spliceosome mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associations. Blood. 132:1225–1240. 2018. View Article : Google Scholar : PubMed/NCBI | |
Akef A, McGraw K, Cappell SD and Larson DR: Ribosome biogenesis is a downstream effector of the oncogenic U2AF1-S34F mutation. PLoS Biol. 18:e30009202020. View Article : Google Scholar : PubMed/NCBI | |
Xu Y and Ruggero D: The role of translation control in tumorigenesis and its therapeutic implications. Ann Rev Cancer Biol. 4:437–457. 2020. View Article : Google Scholar | |
Feliu N, Kohonen P, Ji J, Zhang Y, Karlsson HL, Palmberg L, Nyström A and Fadeel B: Next-generation sequencing reveals low-dose effects of cationic dendrimers in primary human bronchial epithelial cells. ACS Nano. 9:146–163. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hallstrom TC, Mori S and Nevins JR: An E2F1-dependent gene expression program that determines the balance between proliferation and cell death. Cancer Cell. 13:11–22. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Guo Y, Dong Z, Li T, Xie X, Wan D, Jiang Z, Yu J and Guo R: Differential U2AF1 mutation sites, burden and co-mutation genes can predict prognosis in patients with myelodysplastic syndrome. Sci Rep. 10:186222020. View Article : Google Scholar : PubMed/NCBI | |
Huang FT, Sun J, Zhang L, He X, Zhu YH, Dong HJ, Wang HY, Zhu L, Zou JY, Huang JW and Li L: Role of SIRT1 in hematologic malignancies. J Zhejiang Univ Sci B. 20:391–398. 2019. View Article : Google Scholar : PubMed/NCBI | |
Carraway HE, Malkaram SA, Cen Y, Shatnawi A, Fan J, Ali HEA, Abd Elmageed ZY, Buttolph T, Denvir J, Primerano DA and Fandy TE: Activation of SIRT6 by DNA hypomethylating agents and clinical consequences on combination therapy in leukemia. Sci Rep. 10:103252020. View Article : Google Scholar : PubMed/NCBI | |
Bhalla S and Gordon LI: Functional characterization of NAD dependent de-acetylases SIRT1 and SIRT2 in B-cell chronic lymphocytic leukemia (CLL). Cancer Biol Ther. 17:300–309. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen ML, Logan TD, Hochberg ML, Shelat SG, Yu X, Wilding GE, Tan W, Kujoth GC, Prolla TA, Selak MA, et al: Erythroid dysplasia, megaloblastic anemia, and impaired lymphopoiesis arising from mitochondrial dysfunction. Blood. 114:4045–4053. 2009. View Article : Google Scholar : PubMed/NCBI | |
Luo Y, Ma J and Lu W: The significance of mitochondrial dysfunction in cancer. Int J Mol Sci. 21:55982020. View Article : Google Scholar : PubMed/NCBI | |
Park SM, Ou J, Chamberlain L, Simone TM, Yang H, Virbasius CM, Ali AM, Zhu LJ, Mukherjee S, Raza A and Green MR: U2AF35(S34F) promotes transformation by directing aberrant ATG7 pre-mRNA 3′ end formation. Mol Cell. 62:479–490. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Cao J, Hu K, He X, Yun D, Tong T and Han L: Sirtuins and their biological relevance in aging and age-related diseases. Aging Dis. 11:927–945. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bosch-Presegué L and Vaquero A: The dual role of sirtuins in cancer. Genes Cancer. 2:648–662. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nakagawa MM, Chen H and Rathinam CV: Constitutive activation of NF-κB pathway in hematopoietic stem cells causes loss of quiescence and deregulated transcription factor networks. Front Cell Dev Biol. 6:1432018. View Article : Google Scholar : PubMed/NCBI | |
Balka KR and De Nardo D: Understanding early TLR signaling through the myddosome. J Leukoc Biol. 105:339–351. 2019. View Article : Google Scholar : PubMed/NCBI | |
Smith MA, Choudhary GS, Pellagatti A, Choi K, Bolanos LC, Bhagat TD, Gordon-Mitchell S, Von Ahrens D, Pradhan K, Steeples V, et al: U2AF1 mutations induce oncogenic IRAK4 isoforms and activate innate immune pathways in myeloid malignancies. Nat Cell Biol. 21:640–650. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pellagatti A and Boultwood J: SF3B1 mutant myelodysplastic syndrome: Recent advances. Adv Biol Regul. 79:1007762021. View Article : Google Scholar : PubMed/NCBI | |
Lee SC, North K, Kim E, Jang E, Obeng E, Lu SX, Liu B, Inoue D, Yoshimi A, Ki M, et al: Synthetic lethal and convergent biological effects of cancer-associated spliceosomal gene mutations. Cancer Cell. 34:225–241.e8. 2018. View Article : Google Scholar : PubMed/NCBI | |
Crossley MP, Bocek M and Cimprich KA: R-loops as cellular regulators and genomic threats. Mol Cell. 73:398–411. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Zhou P, Zhang Z and Liu Y: U2AF1 mutation connects DNA damage to the alternative splicing of RAD51 in lung adenocarcinomas. Clin Exp Pharmacol Physiol. 49:740–747. 2022. View Article : Google Scholar : PubMed/NCBI | |
Nguyen HD, Leong WY, Li W, Reddy PNG, Sullivan JD, Walter MJ, Zou L and Graubert TA: Spliceosome mutations induce R loop-associated sensitivity to ATR inhibition in myelodysplastic syndromes. Cancer Res. 78:5363–5374. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Libring S, Ruddraraju KV, Miao J, Solorio L, Zhang ZY and Wendt MK: SHP2 is a multifunctional therapeutic target in drug resistant metastatic breast cancer. Oncogene. 39:7166–7180. 2019. View Article : Google Scholar | |
Chen L, Chen JY, Huang YJ, Gu Y, Qiu J, Qian H, Shao C, Zhang X, Hu J, Li H, et al: The augmented R-loop is a unifying mechanism for myelodysplastic syndromes induced by high-risk splicing factor mutations. Mol Cell. 69:412–425.e6. 2018. View Article : Google Scholar : PubMed/NCBI | |
Boultwood J and Pellagatti A: The impact of spliceosome mutations in MDS. Hemasphere. 3 (Suppl):S132–S134. 2019. View Article : Google Scholar | |
Vallapureddy RR, Mudireddy M, Penna D, Lasho TL, Finke CM, Hanson CA, Ketterling RP, Begna KH, Gangat N, Pardanani A and Tefferi A: Leukemic transformation among 1306 patients with primary myelofibrosis: Risk factors and development of a predictive model. Blood Cancer J. 9:122019. View Article : Google Scholar : PubMed/NCBI | |
Tefferi A, Siragusa S, Hussein K, Schwager SM, Hanson CA, Pardanani A, Cervantes F and Passamonti F: Transfusion-dependency at presentation and its acquisition in the first year of diagnosis are both equally detrimental for survival in primary myelofibrosis-prognostic relevance is independent of IPSS or karyotype. Am J Hematol. 85:14–17. 2010. View Article : Google Scholar : PubMed/NCBI | |
Alhuraiji A, Naqvi K, Huh YO, Ho C, Verstovsek S and Bose P: Acute lymphoblastic leukemia secondary to myeloproliferative neoplasms or after lenalidomide exposure. Clin Case Rep. 6:155–161. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tefferi A, Lasho TL, Finke CM, Knudson RA, Ketterling R, Hanson CH, Maffioli M, Caramazza D, Passamonti F and Pardanani A: CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: Clinical, cytogenetic and molecular comparisons. Leukemia. 28:1472–1477. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chaligné R, James C, Tonetti C, Besancenot R, Le Couédic JP, Fava F, Mazurier F, Godin I, Maloum K, Larbret F, et al: Evidence for MPL W515L/K mutations in hematopoietic stem cells in primitive myelofibrosis. Blood. 110:3735–3743. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tefferi A, Finke CM, Lasho TL, Hanson CA, Ketterling RP, Gangat N and Pardanani A: U2AF1 mutation types in primary myelofibrosis: Phenotypic and prognostic distinctions. Leukemia. 32:2274–2278. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tefferi A, Mudireddy M, Finke CM, Nicolosi M, Lasho TL, Hanson CA, Patnaik MM, Pardanani A and Gangat N: U2AF1 mutation variants in myelodysplastic syndromes and their clinical correlates. Am J Hematol. 93:E146–E148. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu SJ, Tang JL, Lin CT, Kuo YY, Li LY, Tseng MH, Huang CF, Lai YJ, Lee FY, Liu MC, et al: Clinical implications of U2AF1 mutation in patients with myelodysplastic syndrome and its stability during disease progression. Am J Hematol. 88:E277–E282. 2013. View Article : Google Scholar : PubMed/NCBI | |
Patnaik MM and Tefferi A: Chronic myelomonocytic leukemia: 2020 Update on diagnosis, risk stratification and management. Am J Hematol. 95:97–115. 2020. View Article : Google Scholar : PubMed/NCBI | |
Machherndl-Spandl S, Jäger E, Barna A, Gurbisz M, Marschon R, Graf T, Graf E, Geissler C, Hoermann G, Nösslinger T, et al: Impact of age on the cumulative risk of transformation in patients with chronic myelomonocytic leukaemia. Eur J Haematol. 107:265–274. 2021. View Article : Google Scholar : PubMed/NCBI | |
Patnaik MM, Lasho TL, Finke CM, Hanson CA, Hodnefield JM, Knudson RA, Ketterling RP, Pardanani A and Tefferi A: Spliceosome mutations involving SRSF2, SF3B1, and U2AF35 in chronic myelomonocytic leukemia: Prevalence, clinical correlates, and prognostic relevance. Am J Hematol. 88:201–206. 2013. View Article : Google Scholar : PubMed/NCBI | |
Patnaik MM and Tefferi A: Cytogenetic and molecular abnormalities in chronic myelomonocytic leukemia. Blood Cancer J. 6:e3932016. View Article : Google Scholar : PubMed/NCBI | |
McClure RF, Ewalt MD, Crow J, Temple-Smolkin RL, Pullambhatla M, Sargent R and Kim AS: Clinical significance of DNA variants in chronic myeloid neoplasms: A report of the association for molecular pathology. J Mol Diagn. 20:717–737. 2018. View Article : Google Scholar : PubMed/NCBI | |
Grever MR, Abdel-Wahab O, Andritsos LA, Banerji V, Barrientos J, Blachly JS, Call TG, Catovsky D, Dearden C, Demeter J, et al: Consensus guidelines for the diagnosis and management of patients with classic hairy cell leukemia. Blood. 129:553–560. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kreitman RJ: Hairy cell leukemia: Present and future directions. Leuk Lymphoma. 60:2869–2879. 2019. View Article : Google Scholar : PubMed/NCBI | |
Durham BH, Getta B, Dietrich S, Taylor J, Won H, Bogenberger JM, Scott S, Kim E, Chung YR, Chung SS, et al: Genomic analysis of hairy cell leukemia identifies novel recurrent genetic alterations. Blood. 130:1644–1648. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rahman MA, Krainer AR and Abdel-Wahab O: SnapShot: Splicing alterations in cancer. Cell. 180:208–208.e1. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fei DL, Motowski H, Chatrikhi R, Prasad S, Yu J, Gao S, Kielkopf CL, Bradley RK and Varmus H: Wild-type U2AF1 antagonizes the splicing program characteristic of U2AF1-mutant tumors and is required for cell survival. PLOS Genetics. 12:e10063842016. View Article : Google Scholar : PubMed/NCBI | |
Sanchez A, El Ouardi D, Houfaf Khoufaf FZ, Idrissou M, Boisnier T, Penault-Llorca F, Bignon YJ, Guy L and Bernard-Gallon D: Role of JMJD3 demethylase and its inhibitor GSK-J4 in regulation of MGMT, TRA2A, RPS6KA2, and U2AF1 genes in prostate cancer cell lines. OMICS. 24:505–507. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cao H, Wang D, Gao R, Chen L and Feng Y: Down regulation of U2AF1 promotes ARV7 splicing and prostate cancer progression. Biochem Biophys Res Commun. 541:56–62. 2021. View Article : Google Scholar : PubMed/NCBI | |
El Ouardi D, Idrissou M, Sanchez A, Penault-Llorca F, Bignon YJ, Guy L and Bernard-Gallon D: The inhibition of the histone methyltransferase EZH2 by DZNEP or SiRNA demonstrates its involvement in MGMT, TRA2A, RPS6KA2, and U2AF1 gene regulation in prostate cancer. OMICS. 24:116–118. 2020. View Article : Google Scholar : PubMed/NCBI | |
Je EM, Yoo NJ, Kim YJ, Kim MS and Lee SH: Mutational analysis of splicing machinery genes SF3B1, U2AF1 and SRSF2 in myelodysplasia and other common tumors. Int J Cancer. 133:260–265. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chatrikhi R, Feeney CF, Pulvino MJ, Alachouzos G, MacRae AJ, Falls Z, Rai S, Brennessel WW, Jenkins JL, Walter MJ, et al: A synthetic small molecule stalls pre-mRNA splicing by promoting an early-stage U2AF2-RNA complex. Cell Chem Biol. 28:1145–1157.e6. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lagisetti C, Palacios G, Goronga T, Freeman B, Caufield W and Webb TR: Optimization of antitumor modulators of pre-mRNA splicing. J Med Chem. 56:10033–10044. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shirai CL, White BS, Tripathi M, Tapia R, Ley JN, Ndonwi M, Kim S, Shao J, Carver A, Saez B, et al: Mutant U2AF1-expressing cells are sensitive to pharmacological modulation of the spliceosome. Nat Commun. 8:140602017. View Article : Google Scholar : PubMed/NCBI | |
Middleton MR, Dean E, Evans TRJ, Shapiro GI, Pollard J, Hendriks BS, Falk M, Diaz-Padilla I and Plummer R: Phase 1 study of the ATR inhibitor berzosertib (formerly M6620, VX-970) combined with gemcitabine ± cisplatin in patients with advanced solid tumours. Br J Cancer. 125:510–519. 2021. View Article : Google Scholar : PubMed/NCBI | |
Powers JP, Li S, Jaen JC, Liu J, Walker NP, Wang Z and Wesche H: Discovery and initial SAR of inhibitors of interleukin-1 receptor-associated kinase-4. Bioorg Med Chem Lett. 16:2842–2845. 2006. View Article : Google Scholar : PubMed/NCBI | |
Thol F, Kade S, Schlarmann C, Löffeld P, Morgan M, Krauter J, Wlodarski MW, Kölking B, Wichmann M, Görlich K, et al: Frequency and prognostic impact of mutations in SRSF2, U2AF1, and ZRSR2 in patients with myelodysplastic syndromes. Blood. 119:3578–3584. 2012. View Article : Google Scholar : PubMed/NCBI | |
Griffin C and Saint-Jeannet JP: Spliceosomopathies: Diseases and mechanisms. Dev Dyn. 249:1038–1046. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Cai W, Hua Y, Yang X and Zhou J: The biological and clinical consequences of RNA splicing factor U2AF1 mutation in myeloid malignancies. Cancers (Basel). 14:44062022. View Article : Google Scholar : PubMed/NCBI | |
Lee P, Yim R, Yung Y, Chu HT, Yip PK and Gill H: Molecular targeted therapy and immunotherapy for myelodysplastic syndrome. Int J Mol Sci. 22:102322021. View Article : Google Scholar : PubMed/NCBI | |
Jacobs MD and Harrison SC: Structure of an IkappaBalpha/NF-kappaB complex. Cell. 95:749–758. 1998. View Article : Google Scholar : PubMed/NCBI | |
Raedler L: Velcade (bortezomib) receives 2 new FDA indications: For retreatment of patients with multiple myeloma and for first-line treatment of patients with mantle-cell lymphoma. Am Health Drug Benefits. 8:135–140. 2015.PubMed/NCBI | |
Hamdy NA: Denosumab: RANKL inhibition in the management of bone loss. Drugs Today (Barc). 44:7–21. 2008. View Article : Google Scholar : PubMed/NCBI | |
Vazquez Rodriguez G, Abrahamsson A, Turkina MV and Dabrosin C: Lysine in combination with estradiol promote dissemination of estrogen receptor positive breast cancer via upregulation of U2AF1 and RPN2 proteins. Front Oncol. 10:5986842020. View Article : Google Scholar : PubMed/NCBI |