|
1
|
Recamier JCA: Recherches sur le Traitement
du Cancer, etc. Chez Gabo; Paris: 1829
|
|
2
|
Oberling CH: The Riddle of Cancer. Yale
University Press; New Haven: pp. p1961944
|
|
3
|
Oberling C: The riddle of cancer. Yale
University Press; New Haven: pp. 26–27. 1946
|
|
4
|
Müller J: Über den feinern Bau und die
Formen der krankhaften Geschwülste. G. Reimer, Berlin. Nat Cancer
Inst Mnogr Spontaneous Regression Cancer. 1976:441838.
|
|
5
|
Virchow R: Editoral Archiv fuer
pathologische Anatomie und Physiologie und fuer klinische. Medizin.
8:231855.
|
|
6
|
Virchow R: Cellular Pathology. Hirschwald
A: August Hirschwald; Berlin: 1858, PubMed/NCBI
|
|
7
|
Durante F: Nesso fisiopatologico tra la
struttura dei nei materni e la genesi di alcuni tumori maligni.
Arch Memorie ed Osservazioni di Chirurgia Pratica. 1874:217–226.
1874.
|
|
8
|
Cohnheim J: Congenitales, quergestreiftes
muskelsarkon der nireren. Virchows Arch. 65:64–69. 1875. View Article : Google Scholar
|
|
9
|
Wilms M: Die Mischgeschwuelste. Leipzing;
Arthur Georgi: 1899
|
|
10
|
Ribbert H: Ueber Rückbildung an Zellen und
Geweben und über die Entstehung der Geschwülste. Erwin Nägele;
Stuttgart: 1897
|
|
11
|
Ribbert, op. cit., Rückbildung (note 51).
pp42–43, idem, op. cit., Beiträge (note 51). pp8–13, See also
Johach, op. cit. (note 11). pp246–267
|
|
12
|
Soto AM, Maffini MV and Sonnenschein C:
Neoplasia as development gone awry: The role of endocrine
disruptors. Int J Androl. 31:288–293. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Askanazy M: Die Teratome nach ihrem Bau,
ihrem Verlauf, ihrer Genese und im Vergleich zum experimentellen
Teratoid. Verhandl Deutsch Pathol. 11:39–82. 1907.
|
|
14
|
Stevens LC and Little CC: Spontaneous
testicular teratomas in an inbred strain of mice. Proc Natl Acad
Sci USA. 40:1080–1087. 1954. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Pierce GB and Dixon FJ: Testicular
teratomas: I. The demonstration of teratogenesis by metamorphosis
of multipotent cells. Cancer. 12:573–583. 1959. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Pierce GB and Verney EL: An in vitro and
in vivo study of differentiation in teratocarcinomas. Cancer.
14:1017–1029. 1961. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Brinster RL: The effect of cells
transferred into the mouse blastocyst on subsequent development. J
Exp Med. 140:1049–1056. 1974. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Mintz B and Illmensee K: Normal
genetically mosaic mice produced from malignant teratocarcinoma
cells. Proc Natl Acad Sci USA. 72:3585–3589. 1975. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Grobstein C: The differentiation of such
tissues may depend on inductive interactions between embryonic
components. 13th Symposium of the Society for Development and
Growth. Rudnick D: Princeton University Press; Princeton, NJ: pp.
233–256. 1954
|
|
20
|
Rous P: A Sarcoma of the Fowl
Transmissible by an Agent Separable from the Tumor Cells. J Exp
Med. 13:397–411. 1911. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Macpherson I: Reversion in hamster cells
transformed by Rous sarcoma virus. Science. 148:1731–1733. 1965.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Pollack RE, Green H and Todaro GJ: Growth
control in cultured cells: Selection of sublines with increased
sensitivity to contact inhibition and decreased tumor-producing
ability. Proc Natl Acad Sci USA. 60:126–133. 1968. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Duran-Reynals F and Milford JJF: Growth of
a chicken sarcoma virus in the chick embryo in the absence of
neoplasia. Cancer Res. 3:578–584. 1943.
|
|
24
|
Dolberg DS and Bissell MJ: Inability of
Rous sarcoma virus to cause sarcomas in the avian embryo. Nature.
309:552–556. 1984. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Braun AC: Bacterial and host factors
concerned in determining tumor morphology in crown gall. Bot Gaz.
114:363–371. 1953. View
Article : Google Scholar
|
|
26
|
Braun AC: A Demonstration of the recovery
of the crown-gall tumor cell with the use of complex tumors of
single-cell origin. Proc Natl Acad Sci USA. 45:932–938. 1959.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Rose SM: Epidermal dedifferentiation
during blastema formation in regeneration limbs of Triturus
viridescens. J Exp Zool. 108:337–362. 1948. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Wallingford HM: Transformations of renal
tumors to normal tissue in regenerating limbs of salamanders.
Science. 107:4571948.PubMed/NCBI
|
|
29
|
Gersch M: Zellentartung und Zellwucherung
bei wirbellosen Tieren. Arch. Geschwulst-Forschung. 3:1–18.
1951.
|
|
30
|
Waddington CH: Cancer and the theory of
organizers. Nature. 135:606–608. 1935. View Article : Google Scholar
|
|
31
|
Needham J: New advances in the chemistry
and biology of organized growth. Proc R Soc London B Biol Sci.
29:1577–1626. 1936.PubMed/NCBI
|
|
32
|
Seilern-Aspang F and Kratochwil K:
Induction and differentiation of an epithelial tumour in the newt
(Triturus cristatus). J Embryol Exp Morphol. 10:337–356.
1962.PubMed/NCBI
|
|
33
|
McMichael H: Inhibition of growth of Shope
rabbit papilloma by hypervitaminosis A. Cancer Res. 25:947–955.
1965.PubMed/NCBI
|
|
34
|
Saffiotti J, Montesano R, Sellakumar AR
and Borg SA: Experimental cancer of the lung, inhibition by vitamin
a of the induction of tracheobronchial squamous metaplasia and
squamous cell tumors. Cancer. 20:857–864. 1967. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Davies RE: Effect of vitamin A on 7,
12-di-methylbenz(alpha) anthracene-induced papillomas in rhino
mouse skin. Cancer Res. 27:237–241. 1967.PubMed/NCBI
|
|
36
|
Coleman WB, Wennerberg AE, Smith GJ and
Grisham JW: Regulation of the differentiation of diploid and some
aneuploid rat liver epithelial (stemlike) cells by the hepatic
microenvironment. Am J Pathol. 142:1373–1382. 1993.PubMed/NCBI
|
|
37
|
Pierce GB: The cancer cell and its control
by the embryo. Rous-Whipple Award lecture. Am J Pathol.
113:115–124. 1983.
|
|
38
|
Pierce GB, Lewis SH, Miller GJ, Moritz E
and Miller P: Tumorigenicity of embryonal carcinoma as an assay to
study control of malignancy by the murine blastocyst. Proc Natl
Acad Sci USA. 76:6649–6651. 1979. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Pierce GB, Pantazis CG, Caldwell JE and
Wells RS: Specificity of tumor formation by the blastocyst. Cancer
Res. 42:1082–1087. 1982.PubMed/NCBI
|
|
40
|
Wells RS: An in vitro assay for regulation
of embryonal carcinoma by the blastocyst. Cancer Res. 42:2736–2741.
1982.PubMed/NCBI
|
|
41
|
Podesta A, Beddington RSP, Wells RS and
Pierce GB: The neurula stage mouse embryo in control of
neuroblastoma. Proc Natl Acad Sci USA. 81:7608–7611. 1984.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Podesta AN, Mullins J, Pierce GB and Sells
RS: The neurula state mouse embryos in control of neuroblastomas.
Proc Natl Acad Sci USA. 81:7608–7611. 1984. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Gootwine E, Webb CG and Sachs L:
Participation of myeloid leukaemia cells injected into embryos in
haematopoietic differentiation in adult mice. Nature. 299:63–65.
1982. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Gerschenson M, Graves K, Carson SD, Wells
RS and Pierce GB: Regulation of melanoma by the embryonic skin.
Proc Natl Acad Sci USA. 83:7307–7310. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Pierce GB, Aguilar D, Hood G and Wells RS:
Trophectoderm in control of murine embryonal carcinoma. Cancer Res.
44:3987–3996. 1984.PubMed/NCBI
|
|
46
|
DeCosse JJ, Gossens CL, Kuzma JF and
Unsworth BR: Breast cancer: Induction of differentiation by
embryonic tissue. Science. 181:1057–1058. 1973. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Biava PM, Fiorito A, Negro C and Mariani
M: Effects of treatment with embryonic and uterine tissue
homogenates on Lewis lung carcinoma development. Cancer Lett.
41:265–270. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Biava PM, Bonsignorio D and Hosha M: Cell
proliferation curves of different human tumor lines after in vitro
treatment with Zebrafish embryonic extracts. J Tumor Marker Oncol.
16:195–201. 2001.
|
|
49
|
Biava PM and Bonsignorio D: Cancer and
cell differentiation: A model to explain malignancy. J Tumor Marker
Oncol. 17:47–53. 2002.
|
|
50
|
Lee LM, Seftor EA, Bonde G, Cornell RA and
Hendrix MJ: The fate of human malignant melanoma cells transplanted
into zebrafish embryos: Assessment of migration and cell division
in the absence of tumour formation. Dev Dyn. 233:1560–1570. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Cucina A, Biava PM, D'Anselmi F, Coluccia
P, Conti F, di Clemente R, Miccheli A, Frati L, Gulino A and
Bizzarri M: Zebrafish embryo proteins induce apoptosis in human
colon cancer cells (Caco2). Apoptosis. 11:1617–1628.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Pierce GB and Johnson LD: Differentiation
and cancer. In Vitro. 7:140–145. 1971. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Pierce GB and Wallace C: Differentiation
of malignant to benign cells. Cancer Res. 31:127–134.
1971.PubMed/NCBI
|
|
54
|
Kenny PA and Bissell MJ: Tumor reversion:
Correction of malignant behavior by microenvironmental cues.
International J Cancer. 107:688–695. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Camacho LH: Clinical application of
retinoids in cancer medicine. J Biol Regul Homeost Agents.
17:98–114. 2003.PubMed/NCBI
|
|
56
|
Pitha-Rowe I, Petty WJ, Kitareewan S and
Dmitrovsky E: Retinoid target genes in acute promyelocytic
leukemia. Leukemia. 17:1723–1730. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Segalla S, Rinaldi L, Kilstrup-Nielsen C,
Badaracco G, Minucci S, Pelicci PG and Landsberger N: Retinoic acid
receptor alpha fusion to PML affects in transcriptional and
chromatin-remodeling properties. Mol Cell Biol. 23:8795–808. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Alcalay M, Meani N, Gelmetti V, Fantozzi
A, Fagioli M, Orleth A, Riganelli D, Sebastiani C, Cappelli E,
Casciari C, et al: Acute myeloid leukemia fusion proteins
deregulate genes involved in stem cell maintenance and DNA repair.
J Clin Invest. 112:1751–1761. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Strickland S and Madavi V: The induction
of differentiation in teratocarcinoma stem cells by retinoic acid.
Cell. 15:393–403. 1978. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Trump DL: Retinoids in bladder, testes and
prostate cancer: Epidemiologic, preclinical and clinical
observations. Leukemia. 8 (Suppl 3):S50–S54. 1994.PubMed/NCBI
|
|
61
|
Breitman TR, Selonick SE and Collins SJ:
Induction of differentiation of the human promyelocytic leukemia
cell line (HL-60) by retinoic acid. Proc Natl Acad Sci USA.
77:2936–2940. 1980. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Huang ME, Ye YC, Chen SR, Chai JR, Lu JX,
Zhoa L, Gu LJ and Wang ZY: Use of all-trans retinoic acid in the
treatment of acute promyelocytic leukemia. Blood. 72:567–572. 1988.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Dragnev KH, Petty WJ and Dmitrovsky E:
Retinoid targets in cancer therapy and chemoprevention. Cancer Biol
Ther. 2 (Suppl 1):S150–S156. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Melnick A and Licht JD: Deconstruction a
disease: RARalpha, its fusion partners, and their roles in the
pathogenesis of acute promyelocytic leukemia. Blood. 99:3167–3215.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Warrell RP Jr, Frankel SR, Miller WH Jr,
Scheinberg DA, Itri LM, Hittelman WN, Vyas R, Andreeff M, Tafuri A
and Jakubowski A: Differention therapy of acute promyelocytic
leukemia with tretinoin (all-trans-retinoic acid). N Engl J Med.
324:1385–1393. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Vogelstein B, Papadopoulos N, Velculescu
VE, Zhou S, Diaz LA and Kinzler KW: Cancer genome landscapes.
Science. 339:1546–1558. 6127. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Bertolaso M: Philosophy of Cancer-A
Dynamic and Relational View. Springer; New York, NY: 2016,
PubMed/NCBI
|
|
68
|
Rohdenburg GL: Fluctuations in the growth
of malignant tumors in man, with especial reference to spontaneous
regression. J Cancer Res. 3:192–221. 1918.
|
|
69
|
Cushing H and Wollbach S: The
transformation of malignant paravertebral Sympathicoblastoma into a
benign ganglioneuroma. Am J Pathol. 3:203–216.7. 1927.PubMed/NCBI
|
|
70
|
Bumpus HC: The apparent disappearance of
pulmonary metastasis in a case of hypernephroma following
nephrectomy. J Urol. 20:185–191. 1927. View Article : Google Scholar
|
|
71
|
Everson TC and Cole WH: Spontaneous
Regression of Cancer. W.B Saunders; Philadelphia, PA: 1966,
PubMed/NCBI
|
|
72
|
Cole WH: Spontaneous regression of cancer
and the importance of finding its cause. Nat Cancer Inst Mnogr.
44:5–9. 1976.PubMed/NCBI
|
|
73
|
Challis GB and Stam HJ: The spontaneous
regression of cancer. A review of cases from 1900 to 1987. Acta
Oncol. 29:545–549. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
O'Regan B and Hirschberg C: Spontaneous
Regression. An Annotated Bibliography Sausalito CA: Institute of
Noetic Science; 1993
|
|
75
|
Papac RJ: Spontaneous regression of
cancer: Possible mechanisms. In Vivo. 12:571–578. 1998.PubMed/NCBI
|
|
76
|
Livraghi T, Meloni F, Frosi A, Lazzaroni
S, Bizzarri TM, Frati L and Biava PM: Treatment with stem cell
differentiation stage factors of intermediate-advanced
hepatocellular carcinoma: An open randomized clinical trial. Oncol
Res. 15:399–408. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Telerman A, Tuynder M, Dupressoir T,
Robaye B, Sigaux F, Shaulian E, Oren M, Rommelaere J and Amson R: A
model for tumor suppression using H-1 parvovirus. Proc Natl Acad
Sci USA. 90:8702–8706. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Tuynder M, Susini L, Prieur S, Besse S,
Fiucci G, Amson R and Telerman A: Biological models and genes of
tumor reversion: Cellular reprogramming through tpt1/TCTP and
SIAH-1. Proc Natl Acad Sci USA. 99:14976–1481. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Telerman A and Amson R: The molecular
programme of tumour reversion: The steps beyond malignant
transformation. Nat Rev Cancer. 9:206–216. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Tuynder M, Fiucci G, Prieur S, Lespagnol
A, Géant A, Beaucourt S, Duflaut D, Besse S, Susini L, Cavarelli J,
et al: Translationally controlled tumor protein is a target of
tumor reversion. Proc Natl Acad Sci USA. 101:15364–15369. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Thaw P, Baxter NJ, Hounslow AM, Price C,
Waltho JP and Craven CJ: Structure of TCTP reveals unexpected
relationship with guanine nucleotide-free chaperones. Nat Struct
Biol. 8:701–704. 2001. View
Article : Google Scholar : PubMed/NCBI
|
|
82
|
Proietti S, Cucina A, Pensotti A, Biava
PM, Minini M, Monti N, Catizone A, Ricci G, Leonetti E, Harrath AH,
et al: Active fraction from embryo fish extracts induces reversion
of the malignant invasive phenotype in breast cancer through
down-regulation of TCTP and modulation of E-cadherin/β-catenin
pathway. Int J Mol Sci. 20:21512019. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Weaver VM, Petersen OW, Wang F, Larabell
CA, Briand P, Damsky C and Bissell MJ: Reversion of the malignant
phenotype of human breast cells in three-dimensional culture and in
vivo by integrin blocking antibodies. J Cell Biol. 137:231–245.
1997. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Hendrix MJ, Seftor EA, Seftor RE,
Kasemeier-Kulesa J, Kulesa PM and Postovit LM: Reprogramming
metastatic tumour cells with embryonic microenvironments. Nat Rev
Cancer. 7:246–255. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Tabibzadeh S and Hemmati-Brivanlou A:
Lefty at the crossroads of ‘stemness’ and differentiative events.
Stem Cells. 24:1998–2006. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Postovit LM, Margaryan NV, Seftor EA,
Kirschmann DA, Lipavsky A, Wheaton WW, Abbott DE, Seftor RE and
Hendrix MJ: Human embryonic stem cell microenvironment suppresses
the tumorigenic phenotype of aggressive cancer cells. Proc Natl
Acad Sci USA. 105:4329–4334. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Topczewska JM, Postovit LM, Margaryan NV,
Sam A, Hess AR, Wheaton WW, Nickoloff BJ, Topczewski J and Hendrix
MJ: Embryonic and tumorigenic pathways converge via Nodal
signaling: Role in melanoma aggressiveness. Nat Med. 12:925–932.
2006. View
Article : Google Scholar : PubMed/NCBI
|
|
88
|
Costa FF: Non-coding RNAs: Lost in
translation? Gene. 386:1–10. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Garzon R, Fabbri M, Cimmino A, Calin GA
and Croce CM: MicroRNA expression and function in cancer. Trends
Mol Med. 12:580–587. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Costa FF, Seftor EA, Bischof JM,
Kirschmann DA, Strizzi L, Arndt K, Bonaldo Mde F, Soares MB and
Hendrix MJ: Epigenetically reprogramming metastatic tumor cells
with an embryonic microenvironment. Epigenomics. 1:387–398. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Card DA, Hebbar PB, Li L, Trotter KW,
Komatsu Y, Mishina Y and Archer TK: Oct4/Sox2-regulated miR-302
targets cyclin D1 in human embryonic stem cells. Mol Cell Biol.
28:6426–6438. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Krebs LT, Iwai N, Nonaka S, Welsh IC, Lan
Y, Jiang R, Saijoh Y, O'Brien TP, Hamada H and Gridley T: Notch
signaling regulates left-right asymmetry determination by inducing
Nodal expression. Genes Dev. 17:1207–1212. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Morgan DO: Cyclin-dependent kinases:
Engines, clocks, and microprocessors. Annu Rev Cell Dev Biol.
13:261–291. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Giuffrida D, Rogers IM, Nagy A, Calogero
AE, Brown TJ and Casper RF: Human embryonic stem cells secrete
soluble factors that inhibit cancer cell growth. Cell Prolif.
42:788–798. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Novak P, Jensen TJ, Garbe JC, Stampfer MR
and Futscher BW: Stepwise DNA methylation changes are linked to
escape from defined proliferation barriers and mammary epithelial
cell immortalization. Cancer Res. 69:5251–5258. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Hinshelwood RA and Clark SJ: Breast cancer
epigenetics: Normal human mammary epithelial cells as a model
system. J Mol Med. 86:1315–1328. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Allegrucci C, Rushton MD, Dixon JE,
Sottile V, Shah M, Kumari R, Watson S, Alberio R and Johnson AD:
Epigenetic reprogramming of breast cancer cells with oocyte
extracts. Mol Cancer. 10:72011. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Saad N, Alberio R, Johnson AD, Emes RD,
Giles TC, Clarke P, Grabowska AM and Allegrucci C: Cancer reversion
with oocyte extracts is mediated by cell cycle arrest and induction
of tumour dormancy. Oncotarget. 9:16008–16027. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Tripathi A, Kashyap A, Tripathi G, Yadav
J, Bibban R, Aggarwal N, Thakur K, Chhokar A, Jadli M, Sah AK, et
al: Tumor reversion: A dream or a reality. Biomark Res. 9:312021.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Takahashi K, Tanabe K, Ohnuki M, Narita M,
Ichisaka T, Tomoda K and Yamanaka S: Induction of pluripotent stem
cells from adult human fibroblasts by defined factors. Cell.
131:861–872. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Feinberg AP: Phenotypic plasticity and the
epigenetics of human disease. Nature. 447:433–440. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Redmer T, Diecke S, Grigoryan T,
Quiroga-Negreira A, Birchmeier W and Besser D: E-cadherin is
crucial for embryonic stem cell pluripotency and can replace OCT4
during somatic cell reprogramming. EMBO Rep. 12:720–726. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Feng B, Ng JH, Heng JC and Ng HH:
Molecules that promote or enhance reprogramming of somatic cells to
induced pluripotent stem cells. Cell Stem Cell. 4:301–312. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Smith ZD, Sindhu C and Meissner A:
Molecular features of cellular reprogramming and development. Nat
Rev Mol Cell Biol. 17:139–154. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Yoo J and Kim J, Baek S, Park Y, Im H and
Kim J: Cell reprogramming into the pluripotent state using graphene
based substrates. Biomaterials. 35:8321–8329. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Bizzarri M, Palombo A and Cucina A:
Theoretical aspects of systems biology. Prog Biophys Mol Biol.
112:33–43. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Nieto MA, Huang RY, Jackson RA and Thiery
JP: EMT: 2016. Cell. 166:21–45. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Abad M, Mosteiro L, Pantoja C, Cañamero M,
Rayon T, Ors I, Graña O, Megías D, Domínguez O, Martínez D, et al:
Reprogramming in vivo produces teratomas and iPS cells with
totipotency features. Nature. 502:340–345. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Ohnishi K, Semi K, Yamamoto T, Shimizu M,
Tanaka A, Mitsunaga K, Okita K, Osafune K, Arioka Y, Maeda T, et
al: Premature termination of reprogramming in vivo leads to cancer
development through altered epigenetic regulation. Cell.
156:663–677. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Inman JL, Robertson C, Mott JD and Bissell
MJ: Mammary gland development: Cell fate specification, stem cells
and the microenvironment. Development. 142:1028–1042. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Bizzarri M and Giuliani A: Representing
cancer cell trajectories in a phase-space diagram: Switching
cellular states by biological phase transitions. Applied Statistics
for Network Biology: Methods in Systems Biology. Dehmer M,
Emmert-Streib F, Graber A and Salvador A: Wiley-VCH Verlag GmbH
& Co.; pp. 377–403. 2011, View Article : Google Scholar
|
|
112
|
Lin SL, Chang DC, Chang-Lin S, Lin CH, Wu
DT, Chen DT and Ying SY: Mir-302 reprograms human skin cancer cells
into a pluripotent ES-cell-like state. RNA. 14:2115–2124. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Utikal J, Maherali N, Kulalert W and
Hochedlinger K: Sox2 is dispensable for the reprogramming of
melanocytes and melanoma cells into induced pluripotent stem cells.
J Cell Sci. 122:3502–3510. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Rapino F, Robles EF, Richter-Larrea JA,
Kallin EM, Martinez-Climent JA and Graf T: C/EBPα induces highly
efficient macrophage transdifferentiation of B lymphoma and
leukemia cell lines and impairs their tumorigenicity. Cell Rep.
3:1153–1163. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Huang P, Zhang L, Gao Y, He Z, Yao D, Wu
Z, Cen J, Chen X, Liu C, Hu Y, et al: Direct reprogramming of human
fibroblasts to functional and expandable hepatocytes. Cell Stem
Cell. 14:370–384. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
McClellan JS, Dove C, Gentles AJ, Ryan CE
and Majeti R: Reprogramming of primary human Philadelphia
chromosome-positive B cell acute lymphoblastic leukemia cells into
nonleukemic macrophages. Proc Natl Acad Sci USA. 112:4074–4079.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Zhou S, Abdouh M, Arena V, Arena M and
Arena GO: Reprogramming malignant cancer cells toward a benign
phenotype following expo-sure to human embryonic stem cell
microenvironment. PLoS One. 12:e01698992017. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Ishay-Ronen D, Diepenbruck M, Kalathur
RKR, Sugiyama N, Tiede S, Ivanek R, Bantug G, Morini MF, Wang J,
Hess C and Christofori G: Gain fat-lose metastasis: Converting
invasive breast cancer cells into adipocytes inhibits cancer
metastasis. Cancer Cell. 35:17–32.e6. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Cheng Z, He Z, Cai Y, Zhang C, Fu G, Li H,
Sun W, Liu C, Cui X, Ning B, et al: Conversion of hepatoma cells to
hepatocyte-like cells by defined hepatocyte nuclear factors. Cell
Res. 29:124–135. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Li Y, Agrawal I and Gong Z: Reversion of
tumor hepatocytes to normal hepatocytes during liver tumor
regression in an oncogene-expressing transgenic zebrafish model.
Dis Model Mech. 12:dmm0395782019. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Pensotti A, Bertolaso M and Bizzarri M: Is
cancer reversible? Rethinking carcinogenesis models-a new
epistemological tool. Biomolecules. 13:7332023. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Longo G, Miquel PA, Sonnenschein C and
Soto AM: Is information a proper observable for biological
organization? Prog Biophys Mol Biol. 109:108–114. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Kholodenko BN, Kolch W and Rukhlenko OS:
Reversing pathological cell states: The road less travelled can
extend the therapeutic horizon. Trends Cell Biol. 33:913–923. 2023.
View Article : Google Scholar : PubMed/NCBI
|