Open Access

GSK1838705A, an IGF-1R inhibitor, inhibits glioma cell proliferation and suppresses tumor growth in vivo

  • Authors:
    • Xiang Zhou
    • Fazheng Shen
    • Pengju Ma
    • Hongyan Hui
    • Sujuan Pei
    • Ming Chen
    • Zhongwei Wang
    • Wenke Zhou
    • Baozhe Jin
  • View Affiliations

  • Published online on: July 28, 2015     https://doi.org/10.3892/mmr.2015.4129
  • Pages: 5641-5646
  • Copyright: © Zhou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Glioma is a type of primary malignant tumor of the central nervous system in humans. At present, standard treatment involves surgical resection, followed by radiation therapy and chemotherapy. However, the prognosis is poor and the long‑term survival rate remains low. An improved understanding of the molecular basis for glioma tumorigenesis is in urgently required. The pro‑survival effect of the insulin‑like growth factor (IGF) signaling pathway has been implicated in progression of the glioma disease state. GSK1838705A is a novel, small molecule kinase inhibitor of IGF‑IR, which inhibits IGF signal transduction and downstream target activation. Its anti-proliferative activity has been demonstrated in various tumor cell lines. The present study investigated the potential use of GSK1838705A for the treatment of glioma. Human U87MG glioma cells were used to examine the inhibitory activity of GSK1838705A in cell proliferation, migration and apoptosis. The antitumor activity of GSK1838705A was assessed in a xenograft mouse model. GSK1838705A inhibited the growth and induced the apoptosis of the U87MG glioma cells in a dose‑dependent manner. The GSK1838705A‑treated cells exhibited reduced migratory activity in response to chemoattractants. The present study further demonstrated the antitumor activity of GSK1838705A in vivo. The administration of GSK1838705A significantly inhibited the growth of glioma tumors by inducing the apoptosis of tumor cells. These results suggested that targeting IGF signaling with GSK1838705A may be a promising therapeutic strategy for the treatment of patients with glioma.

References

1 

Ohgaki H and Kleihues P: Population-based studies on incidence, survival rates and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol. 64:479–489. 2005.PubMed/NCBI

2 

Smoll NR, Gautschi OP, Schatlo B, Schaller K and Weber DC: Relative survival of patients with supratentorial low-grade gliomas. Neuro Oncol. 14:1062–1069. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Spinelli GP, Miele E, Lo Russo G, Miscusi M, Codacci-Pisanelli G, Petrozza V, Papa A, Frati L, Della Rocca C, Gulino A and Tomao S: Chemotherapy and target therapy in the management of adult high-grade gliomas. Curr Cancer Drug Targets. 12:1016–1031. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Wang Y and Jiang T: Understanding high grade glioma: Molecular mechanism, therapy and comprehensive management. Cancer Lett. 331:139–146. 2013. View Article : Google Scholar : PubMed/NCBI

5 

Newlands ES, Stevens MF, Wedge SR, Wheelhouse RT and Brock C: Temozolomide: A review of its discovery, chemical properties, pre-clinical development and clinical trials. Cancer Treat Rev. 23:35–61. 1997. View Article : Google Scholar : PubMed/NCBI

6 

Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, et al: Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 10:459–466. 2009. View Article : Google Scholar : PubMed/NCBI

7 

Cao Z, Liu LZ, Dixon DA, Zheng JZ, Chandran B and Jiang BH: Insulin-like growth factor-I induces cyclooxygenase-2 expression via PI3K, MAPK and PKC signaling pathways in human ovarian cancer cells. Cell Signal. 19:1542–1553. 2007. View Article : Google Scholar : PubMed/NCBI

8 

Weroha SJ and Haluska P: The insulin-like growth factor system in cancer. Endocrinol Metab Clin North Am. 41:335–350. vi2012. View Article : Google Scholar : PubMed/NCBI

9 

Jenkins PJ, Frajese V, Jones AM, Camacho-Hubner C, Lowe DG, Fairclough PD, Chew SL, Grossman AB, Monson JP, Besser GM, et al: Insulin-like growth factor I and the development of colorectal neoplasia in acromegaly. J Clin Endocrinol Metab. 85:3218–3221. 2000.PubMed/NCBI

10 

Lukanova A, Lundin E, Toniolo P, Micheli A, Akhmedkhanov A, Rinaldi S, Muti P, Lenner P, Biessy C, Krogh V, et al: Circulating levels of insulin-like growth factor-I and risk of ovarian cancer. Int J Cancer. 101:549–554. 2002. View Article : Google Scholar : PubMed/NCBI

11 

Roddam AW, Allen NE, Appleby P, Key TJ, Ferrucci L, Carter HB, Metter EJ, Chen C, Weiss NS, Fitzpatrick A, et al: Insulin-like growth factors, their binding proteins and prostate cancer risk: Analysis of individual patient data from 12 prospective studies. Ann Intern Med. 149:461–471. W83–W88. 2008. View Article : Google Scholar

12 

Endogenous Hormones and Breast Cancer Collaborative Group; Key TJ, Appleby PN, Reeves GK and Roddam AW: Insulin-like growth factor 1 (IGF1), IGF binding protein 3 (IGFBP3) and breast cancer risk: Pooled individual data analysis of 17 prospective studies. Lancet Oncol. 11:530–542. 2010. View Article : Google Scholar : PubMed/NCBI

13 

Hirano H, Lopes MB, Laws ER Jr, Asakura T, Goto M, Carpenter JE, Karns LR and VandenBerg SR: Insulin-like growth factor-1 content and pattern of expression correlates with histopathologic grade in diffusely infiltrating astrocytomas. Neuro Oncol. 1:109–119. 1999.

14 

Resnicoff M, Sell C, Rubini M, Coppola D, Ambrose D, Baserga R and Rubin R: Rat glioblastoma cells expressing an antisense RNA to the insulin-like growth factor-1 (IGF-1) receptor are nontumorigenic and induce regression of wild-type tumors. Cancer Res. 54:2218–2222. 1994.PubMed/NCBI

15 

Yin S, Girnita A, Strömberg T, Khan Z, Andersson S, Zheng H, Ericsson C, Axelson M, Nistér M, Larsson O, et al: Targeting the insulin-like growth factor-1 receptor by picropodophyllin as a treatment option for glioblastoma. Neuro Oncol. 12:19–27. 2010. View Article : Google Scholar : PubMed/NCBI

16 

Gariboldi MB, Ravizza R and Monti E: The IGFR1 inhibitor NVP-AEW541 disrupts a pro-survival and pro-angiogenic IGF-STAT3-HIF1 pathway in human glioblastoma cells. Biochem Pharmacol. 80:455–462. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Schlenska-Lange A, Knüpfer H, Lange TJ, Kiess W and Knüpfer M: Cell proliferation and migration in glioblastoma multiforme cell lines are influenced by insulin-like growth factor I in vitro. Anticancer Res. 28:1055–1060. 2008.PubMed/NCBI

18 

Sabbatini P, Korenchuk S, Rowand JL, Groy A, Liu Q, Leperi D, Atkins C, Dumble M, Yang J, Anderson K, et al: GSK1838705A inhibits the insulin-like growth factor-1 receptor and anaplastic lymphoma kinase and shows antitumor activity in experimental models of human cancers. Mol Cancer Ther. 8:2811–2820. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Bao NR, Lu M, Bin FW, Chang ZY, Meng J, Zhou LW, Guo T and Zhao JN: Systematic screen with kinases inhibitors reveals kinases play distinct roles in growth of osteoprogenitor cells. Int J Clin Exp Pathol. 6:2082–2091. 2013.PubMed/NCBI

20 

Anisimov VN and Bartke A: The key role of growth hormone-insulin-IGF-1 signaling in aging and cancer. Crit Rev Oncol Hematol. 87:201–223. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Nicoletti I, Migliorati G, Pagliacci MC, Grignani F and Riccardi C: A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods. 139:271–279. 1991. View Article : Google Scholar : PubMed/NCBI

22 

Trojan J, Cloix JF, Ardourel MY, Chatel M and Anthony DD: Insulin-like growth factor type I biology and targeting in malignant gliomas. Neuroscience. 145:795–811. 2007. View Article : Google Scholar : PubMed/NCBI

23 

Freeman DJ, Li AG, Wei G, Li HH, Kertesz N, Lesche R, Whale AD, Martinez-Diaz H, Rozengurt N, Cardiff RD, et al: PTEN tumor suppressor regulates p53 protein levels and activity through phosphatase-dependent and -independent mechanisms. Cancer Cell. 3:117–130. 2003. View Article : Google Scholar : PubMed/NCBI

24 

Choe G, Horvath S, Cloughesy TF, Crosby K, Seligson D, Palotie A, Inge L, Smith BL, Sawyers CL and Mischel PS: Analysis of the phosphatidylinositol 3′-kinase signaling pathway in glioblastoma patients in vivo. Cancer Res. 63:2742–2746. 2003.PubMed/NCBI

25 

Ishii N, Maier D, Merlo A, Tada M, Sawamura Y, Diserens AC and Van Meir EG: Frequent co-alterations of TP53, p16/CDKN2A, p14ARF, PTEN tumor suppressor genes in human glioma cell lines. Brain Pathol. 9:469–479. 1999. View Article : Google Scholar : PubMed/NCBI

26 

Poulaki V, Mitsiades CS, McMullan C, Sykoutri D, Fanourakis G, Kotoula V, Tseleni-Balafouta S, Koutras DA and Mitsiades N: Regulation of vascular endothelial growth factor expression by insulin-like growth factor I in thyroid carcinomas. J Clin Endocrinol Metab. 88:5392–5398. 2003. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October 2015
Volume 12 Issue 4

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Zhou, X., Shen, F., Ma, P., Hui, H., Pei, S., Chen, M. ... Jin, B. (2015). GSK1838705A, an IGF-1R inhibitor, inhibits glioma cell proliferation and suppresses tumor growth in vivo. Molecular Medicine Reports, 12, 5641-5646. https://doi.org/10.3892/mmr.2015.4129
MLA
Zhou, X., Shen, F., Ma, P., Hui, H., Pei, S., Chen, M., Wang, Z., Zhou, W., Jin, B."GSK1838705A, an IGF-1R inhibitor, inhibits glioma cell proliferation and suppresses tumor growth in vivo". Molecular Medicine Reports 12.4 (2015): 5641-5646.
Chicago
Zhou, X., Shen, F., Ma, P., Hui, H., Pei, S., Chen, M., Wang, Z., Zhou, W., Jin, B."GSK1838705A, an IGF-1R inhibitor, inhibits glioma cell proliferation and suppresses tumor growth in vivo". Molecular Medicine Reports 12, no. 4 (2015): 5641-5646. https://doi.org/10.3892/mmr.2015.4129