1
|
Sakalihasan N, Limet R and Defawe OD:
Abdominal aortic aneurysm. Lancet. 365:1577–1589. 2005. View Article : Google Scholar
|
2
|
Boddy AM, Lenk GM, Lillvis JH, Nischan J,
Kyo Y and Kuivaniemi H: Basic research studies to understand
aneurysm disease. Drug News Perspect. 21:142–148. 2008.PubMed/NCBI
|
3
|
Curci JA and Thompson RW: Adaptive
cellular immunity in aortic aneurysms: Cause, consequence, or
context? J Clin Invest. 114:168–171. 2004. View Article : Google Scholar : PubMed/NCBI
|
4
|
Svensjo S, Björck M and Wanhainen A:
Update on screening for abdominal aortic aneurysm: A topical
review. Eur J Vasc Endovasc Surg. 48:659–667. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kuivaniemi H and Elmore JR: Opportunities
in abdominal aortic aneurysm research: Epidemiology, genetics, and
pathophysiology. Ann Vasc Surg. 26:862–870. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Shimizu K, Mitchell RN and Libby P:
Inflammation and cellular immune responses in abdominal aortic
aneurysms. Arterioscler Thromb Vasc Biol. 26:987–994. 2006.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Daugherty A and Cassis LA: Mouse models of
abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol.
24:429–434. 2004. View Article : Google Scholar : PubMed/NCBI
|
8
|
Rowe VL, Stevens SL, Reddick TT, Freeman
MB, Donnell R, Carroll RC and Goldman MH: Vascular smooth muscle
cell apoptosis in aneurysmal, occlusive, and normal human aortas. J
Vasc Surg. 31:567–576. 2000. View Article : Google Scholar : PubMed/NCBI
|
9
|
Allaire E, Muscatelli-Groux B, Mandet C,
Guinault AM, Bruneval P, Desgranges P, Clowes A, Méllière D and
Becquemin JP: Paracrine effect of vascular smooth muscle cells in
the prevention of aortic aneurysm formation. J Vasc Surg.
36:1018–1026. 2002. View Article : Google Scholar : PubMed/NCBI
|
10
|
Choke E, Cockerill G, Wilson WR, Sayed S,
Dawson J, Loftus I and Thompson MM: A review of biological factors
implicated in abdominal aortic aneurysm rupture. Eur J Vasc
Endovasc Surg. 30:227–244. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Rotmans JI, Velema E, Verhagen HJ,
Blankensteijn JD, de Kleijn DP, Stroes ES and Pasterkamp G: Matrix
metalloproteinase inhibition reduces intimal hyperplasia in a
porcine arteriovenous-graft model. J Vasc Surg. 39:432–439. 2004.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Kuivaniemi H, Platsoucas CD and Tilson MD
III: Aortic aneurysms: An immune disease with a strong genetic
component. Circulation. 117:242–252. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Abdul-Hussien H, Hanemaaijer R, Kleemann
R, Verhaaren BF, van Bockel JH and Lindeman JH: The pathophysiology
of abdominal aortic aneurysm growth: Corresponding and discordant
inflammatory and proteolytic processes in abdominal aortic and
popliteal artery aneurysms. J Vasc Surg. 51:1479–1487. 2010.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Lenk GM, Tromp G, Weinsheimer S, Gatalica
Z, Berguer R and Kuivaniemi H: Whole genome expression profiling
reveals a significant role for immune function in human abdominal
aortic aneurysms. BMC Genomics. 8:2372007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Pahl MC, Derr K, Gäbel G, Hinterseher I,
Elmore JR, Schworer CM, Peeler TC, Franklin DP, Gray JL, Carey DJ,
et al: MicroRNA expression signature in human abdominal aortic
aneurysms. BMC Med Genomics. 5:252012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Stather P, Sylvius N, Sidloff D, Dattani
N, Verissimo A, Wild JB, Butt HZ, Choke E, Sayers RD and Bown MJ:
Identification of microRNAs associated with abdominal aortic
aneurysms and peripheral arterial disease. Br J Surg. 102:755–766.
2015. View
Article : Google Scholar : PubMed/NCBI
|
17
|
Maegdefessel L, Spin JM, Raaz U, Eken SM,
Toh R, Azuma J, Adam M, Nakagami F, Heymann HM, Chernogubova E, et
al: miR-24 limits aortic vascular inflammation and murine abdominal
aneurysm development. Nature Commun. 5:52142014. View Article : Google Scholar
|
18
|
Angaji SA, Hedayati SS, Poor RH, Madani S,
Poor SS and Panahi S: Application of RNA interference in treating
human diseases. J Genet. 89:527–537. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Ambros V: The functions of animal
microRNAs. Nature. 431:350–355. 2004. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kong W, Zhao JJ, He L and Cheng JQ:
Strategies for profiling microRNA expression. J Cell Physiol.
218:22–25. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Gartel AL and Kandel ES: miRNAs: Little
known mediators of oncogenesis. Semin Cancer Biol. 18:103–110.
2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Calin GA, Sevignani C, Dumitru CD, Hyslop
T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M
and Croce CM: Human microRNA genes are frequently located at
fragile sites and genomic regions involved in cancers. Proc Natl
Acad Sci USA. 101:2999–3004. 2004. View Article : Google Scholar : PubMed/NCBI
|
24
|
Garzon R, Fabbri M, Cimmino A, Calin GA
and Croce CM: MicroRNA expression and function in cancer. Trends
Mol Med. 12:580–587. 2006. View Article : Google Scholar : PubMed/NCBI
|
25
|
Kong YW, Ferland-McCollough D, Jackson TJ
and Bushell M: microRNAs in cancer management. Lancet Oncol.
13:e249–e258. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Lee KH, Chen YL, Yeh SD, Hsiao M, Lin JT,
Goan YG and Lu PJ: MicroRNA-330 acts as tumor suppressor and
induces apoptosis of prostate cancer cells through E2F1-mediated
suppression of Akt phosphorylation. Oncogene. 28:3360–3370. 2009.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Friedman RC, Farh KK, Burge CB and Bartel
DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome
Res. 19:92–105. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Krek A, Grün D, Poy MN, Wolf R, Rosenberg
L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M
and Rajewsky N: Combinatorial microRNA target predictions. Nat
Genet. 37:495–500. 2005. View
Article : Google Scholar : PubMed/NCBI
|
29
|
Agarwal V, Bell GW, Nam JW and Bartel DP:
Predicting effective microRNA target sites in mammalian mRNAs.
Elife. 4:2015. View Article : Google Scholar
|
30
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Su Z, Yang Z, Xu Y, Chen Y and Yu Q:
MicroRNAs in apoptosis, autophagy and necroptosis. Oncotarget.
6:8474–8490. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Wang Q, Morgan S, Ren J and Liu B:
Abstract 295: Macrophages induce apoptosis of arterial smooth
muscle cells via a monocyte chemoattractant protein-1 (MCP-1)
mediated cytotoxicity. Arteriosc Thromb Vasc Biol. 33:A2952013.
|
33
|
Dietrich DR: Toxicological and
pathological applications of proliferating cell nuclear antigen
(PCNA), a novel endogenous marker for cell proliferation. Crit Rev
Toxicol. 23:77–109. 1993. View Article : Google Scholar : PubMed/NCBI
|
34
|
Reynolds N, Fantes PA and MacNeill SA: A
key role for replication factor C in DNA replication checkpoint
function in fission yeast. Nucleic Acids Res. 27:462–469. 1999.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Maalouf SW, Liu WS and Pate JL: MicroRNA
in ovarian function. Cell Tissue Res. 363:7–18. 2016. View Article : Google Scholar : PubMed/NCBI
|
36
|
Singh DK, Bose S and Kumar S: Role of
microRNA in regulating cell signaling pathways, cell cycle, and
apoptosis in non-small cell lung cancer. Curr Mol Med. Apr
29–2016.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
37
|
Sherrard R, Luehr S, Holzkamp H, McJunkin
K, Memar N and Conradt B: miRNAs cooperate in apoptosis regulation
during C. elegans development. Genes Dev. 31:209–222. 2017.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Zhang Y, Liu W, Wang H, Xu B, Li H and Cao
X: miRNA-126b regulated apoptosis of the human tongue carcinoma
cell line Tca8113-P60 via P38 signaling pathway. Int J Clin Exp
Med. 10:2654–2659. 2017.
|
39
|
Gross A, McDonnell JM and Korsmeyer SJ:
BCL-2 family members and the mitochondria in apoptosis. Genes Dev.
13:1899–1911. 1999. View Article : Google Scholar : PubMed/NCBI
|
40
|
Soutto M, Chen Z, Saleh MA, Katsha A, Zhu
S, Zaika A, Belkhiri A and El-Rifai W: TFF1 activates p53 through
down-regulation of miR-504 in gastric cancer. Oncotarget.
5:5663–5673. 2014. View Article : Google Scholar : PubMed/NCBI
|
41
|
Thompson RW, Liao S and Curci JA: Vascular
smooth muscle cell apoptosis in abdominal aortic aneurysms. Coron
Artery Dis. 8:623–631. 1997. View Article : Google Scholar : PubMed/NCBI
|
42
|
Inoue T and Node K: Molecular basis of
restenosis and novel issues of drug-eluting stents. Circ J.
73:615–621. 2009. View Article : Google Scholar : PubMed/NCBI
|
43
|
Doran AC, Meller N and McNamara CA: Role
of smooth muscle cells in the initiation and early progression of
atherosclerosis. Arterioscler Thromb Vasc Biol. 28:812–819. 2008.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Cai X: Regulation of smooth muscle cells
in development and vascular disease: Current therapeutic
strategies. Expert Rev Cardiovasc Ther. 4:789–800. 2006. View Article : Google Scholar : PubMed/NCBI
|
45
|
Hoshina K, Koyama H, Miyata T, Shigematsu
H, Takato T, Dalman RL and Nagawa H: Aortic wall cell proliferation
via basic fibroblast growth factor gene transfer limits progression
of experimental abdominal aortic aneurysm. J Vasc Surg. 40:512–518.
2004. View Article : Google Scholar : PubMed/NCBI
|
46
|
Scirocco A, Matarrese P, Carabotti M,
Ascione B, Malorni W and Severi C: Cellular and molecular
mechanisms of phenotypic switch in gastrointestinal smooth muscle.
J Cell Physiol. 231:295–302. 2016. View Article : Google Scholar : PubMed/NCBI
|
47
|
Charolidi N and Carroll VA: Hypoxia and
pulmonary hypertensionHypoxia and Human Diseases. InTech; 2017,
View Article : Google Scholar
|
48
|
Pei H, Tian C, Sun X, Qian X, Liu P, Liu W
and Chang Q: Overexpression of microRNA-145 promotes ascending
aortic aneurysm media remodeling through TGF-β1. Eur J Vasc
Endovasc Surg. 49:52–59. 2015. View Article : Google Scholar : PubMed/NCBI
|
49
|
Kin K, Miyagawa S, Fukushima S, Shirakawa
Y, Torikai K, Shimamura K, Daimon T, Kawahara Y, Kuratani T and
Sawa Y: Tissue-and plasma-specific microRNA signatures for
atherosclerotic abdominal aortic aneurysm. J Am Heart Assoc.
1:e0007452012. View Article : Google Scholar : PubMed/NCBI
|
50
|
Cohn DE, Fabbri M, Valeri N, Alder H,
Ivanov I, Liu CG, Croce CM and Resnick KE: Comprehensive miRNA
profiling of surgically staged endometrial cancer. Am J Obstet
Gynecol. 202:656.e1–e8. 2010. View Article : Google Scholar
|
51
|
Kwak PB, Iwasaki S and Tomari Y: The
microRNA pathway and cancer. Cancer Sci. 101:2309–2315. 2010.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Stadelmann C and Lassmann H: Detection of
apoptosis in tissue sections. Cell Tissue Res. 301:19–31. 2000.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Vaux DL and Korsmeyer SJ: Cell death in
development. Cell. 96:245–254. 1999. View Article : Google Scholar : PubMed/NCBI
|
54
|
Green DR and Reed JC: Mitochondria and
apoptosis. Science. 281:1309–1312. 1998. View Article : Google Scholar : PubMed/NCBI
|
55
|
Chekulaeva M and Filipowicz W: Mechanisms
of miRNA-mediated post-transcriptional regulation in animal cells.
Curr Opin Cell Biol. 21:452–460. 2009. View Article : Google Scholar : PubMed/NCBI
|
56
|
Harris SL and Levine AJ: The p53 pathway:
Positive and negative feedback loops. Oncogene. 24:2899–2908. 2005.
View Article : Google Scholar : PubMed/NCBI
|
57
|
Itahana K, Mao H, Jin A, Itahana Y, Clegg
HV, Lindström MS, Bhat KP, Godfrey VL, Evan GI and Zhang Y:
Targeted inactivation of Mdm2 RING finger E3 ubiquitin ligase
activity in the mouse reveals mechanistic insights into p53
regulation. Cancer Cell. 12:355–366. 2007. View Article : Google Scholar : PubMed/NCBI
|