1
|
Hoste EA and Kellum JA: Acute kidney
injury: Epidemiology and diagnostic criteria. Curr Opin Crit Care.
12:531–537. 2006. View Article : Google Scholar : PubMed/NCBI
|
2
|
Uchino S, Kellum JA, Bellomo R, Doig GS,
Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Macedo E, et al:
Acute renal failure in critically ill patients: A multinational,
multicenter study. JAMA. 294:813–818. 2005. View Article : Google Scholar : PubMed/NCBI
|
3
|
Nisula S, Kaukonen KM, Vaara ST, Korhonen
AM, Poukkanen M, Karlsson S, Haapio M, Inkinen O, Parviainen I,
Suojaranta-Ylinen R, et al: Incidence, risk factors and 90-day
mortality of patients with acute kidney injury in Finnish intensive
care units: The FINNAKI study. Intensive Care Med. 39:420–428.
2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kellum JA, Lameire N, Aspelin P, Barsoum
RS, Burdmann EA, Goldstein SL, Herzog CA, Joannidis M, Kribben A,
Levey AS, et al: Kidney disease: Improving global outcomes (KDIGO)
acute kidney injury work group. KDIGO clinical practice guideline
for acute kidney injury. Kidney Int Suppl. 2:1–138. 2012.
|
5
|
Liang R, Zhao Q, Jian G, Cheng D, Wang N,
Zhang G and Wang F: Tanshinone IIA attenuates contrast-induced
nephropathy via Nrf2 activation in rats. Cell Physiol Biochem.
46:2616–2623. 2018. View Article : Google Scholar : PubMed/NCBI
|
6
|
Wu R, Kong Y, Yin J, Liang R, Lu Z, Wang
N, Zhao Q, Zhou Y, Yan C, Wang F and Liang M: Antithrombin III is a
novel predictor for contrast induced nephropathy after coronary
angiography. Kidney Blood Press Res. 43:170–180. 2018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kong Y, Yin J, Cheng D, Lu Z, Wang N, Wang
F and Liang M: Antithrombin III attenuates AKI following acute
severe pancreatitis. Shock. 49:572–579. 2018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Mårtensson J and Bellomo R:
Pathophysiology of septic acute kidney injury. Contrib Nephrol.
187:36–46. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Skube SJ, Katz SA, Chipman JG and
Tignanelli CJ: Acute kidney injury and sepsis. Surg Infect
(Larchmt). 19:216–224. 2018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zarbock A, Gomez H and Kellum JA:
Sepsis-induced acute kidney injury revisited: Pathophysiology,
prevention and future therapies. Curr Opin Crit Care. 20:588–595.
2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Gomez H, Ince C, De Backer D, Pickkers P,
Payen D, Hotchkiss J and Kellum JA: A unified theory of
sepsis-induced acute kidney injury: Inflammation, microcirculatory
dysfunction, bioenergetics, and the tubular cell adaptation to
injury. Shock. 41:3–11. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Jacobs R, Honore PM, Joannes-Boyau O, Boer
W, De Regt J, De Waele E, Collin V and Spapen HD: Septic acute
kidney injury: The culprit is inflammatory apoptosis rather than
ischemic necrosis. Blood Purif. 32:262–265. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wan L, Bagshaw SM, Langenberg C, Saotome
T, May C and Bellomo R: Pathophysiology of septic acute kidney
injury: What do we really know? Crit Care Med 36 (4 Suppl).
S198–S203. 2008. View Article : Google Scholar
|
14
|
Tomar S, Nagarkatti M and Nagarkatti PS:
3,3′-Diindolylmethane attenuates LPS-mediated acute liver failure
by regulating miRNAs to target IRAK4 and suppress Toll-like
receptor signalling. Br J Pharmacol. 172:2133–2147. 2015.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Cho HJ, Seon MR, Lee YM, Kim J, Kim JK,
Kim SG and Park JH: 3,3′-Diindolylmethane suppresses the
inflammatory response to lipopolysaccharide in murine macrophages.
J Nutr. 138:17–23. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Busbee PB, Nagarkatti M and Nagarkatti PS:
Natural indoles, indole-3-carbinol (I3C) and 3,3′-diindolylmethane
(DIM), attenuate staphylococcal enterotoxin B-mediated liver injury
by downregulating miR-31 expression and promoting
caspase-2-mediated apoptosis. PLoS One. 10:e01185062015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Li J, Wu Q, Deng W and Tang Q: GW26-e4573
Anti-inflammatory effect of 3,3′-Diindolylmethane on LPS-induced
inflammatory injury in neonatal rat cardiac myocytes via
suppressing TLR-4/MAPKs signaling pathways. J Am College Cardiol.
66:C592015. View Article : Google Scholar
|
18
|
Kim HW, Kim J, Kim J, Lee S, Choi BR, Han
JS, Lee KW and Lee HJ: 3,3′-Diindolylmethane inhibits
lipopolysaccharide-induced microglial hyperactivation and
attenuates brain inflammation. Toxicol Sci. 137:158–167. 2014.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Hajra S, Basu A, Singha Roy S, Patra AR
and Bhattacharya S: Attenuation of doxorubicin-induced
cardiotoxicity and genotoxicity by an indole-based natural compound
3,3′-diindolylmethane (DIM) through activation of Nrf2/ARE
signaling pathways and inhibiting apoptosis. Free Radic Res.
51:812–827. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Tilyek A, Chai C, Hou X, Zhou B, Zhang C,
Cao Z and Yu B: The protective effects of Ribes diacanthum Pall on
cisplatin-induced nephrotoxicity in mice. J Ethnopharmacol.
178:297–306. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zarjou A and Agarwal A: Sepsis and acute
kidney injury. J Am Soc Nephrol. 22:999–1006. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Cantaluppi V, Quercia AD, Dellepiane S,
Figliolini F, Medica D and De Lena M: New mechanisms and recent
insights in the pathogenesis of acute kidney injury (AKI). G Ital
Nefrol. 29:535–547. 2012.(In Italian). PubMed/NCBI
|
23
|
Langenberg C, Bagshaw SM, May CN and
Bellomo R: The histopathology of septic acute kidney injury: A
systematic review. Crit Care. 12:R382008. View Article : Google Scholar : PubMed/NCBI
|
24
|
Lerolle N, Nochy D, Guérot E, Bruneval P,
Fagon JY, Diehl JL and Hill G: Histopathology of septic shock
induced acute kidney injury: Apoptosis and leukocytic infiltration.
Intensive Care Med. 36:471–478. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Bae EH, Kim IJ, Choi HS, Kim HY, Kim CS,
Ma SK, Kim IS and Kim SW: Tumor necrosis factor α-converting enzyme
inhibitor attenuates lipopolysaccharide-induced reactive oxygen
species and mitogen-activated protein kinase expression in human
renal proximal tubule epithelial cells. Korean J Physiol Pharmacol.
22:135–143. 2018. View Article : Google Scholar : PubMed/NCBI
|
26
|
Simon HU, Haj-Yehia A and Levi-Schaffer F:
Role of reactive oxygen species (ROS) in apoptosis induction.
Apoptosis. 5:415–418. 2000. View Article : Google Scholar : PubMed/NCBI
|
27
|
Nordberg J and Arnér ES: Reactive oxygen
species, antioxidants, and the mammalian thioredoxin system. Free
Radic Biol Med. 31:1287–1312. 2001. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kroemer G and Reed JC: Mitochondrial
control of cell death. Nat Med. 6:513–519. 2000. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kim J, Kim HY and Lee SM: Protective
effects of geniposide and genipin against hepatic
ischemia/reperfusion injury in mice. Biomol Ther (Seoul).
21:132–137. 2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Shiose A, Kuroda J, Tsuruya K, Hirai M,
Hirakata H, Naito S, Hattori M, Sakaki Y and Sumimoto H: A novel
superoxide-producing NAD(P)H oxidase in kidney. J Biol Chem.
276:1417–1423. 2001. View Article : Google Scholar : PubMed/NCBI
|
31
|
Gao L, Wu WF, Dong L, Ren GL, Li HD, Yang
Q, Li XF, Xu T, Li Z, Wu BM, et al: Protocatechuic aldehyde
attenuates cisplatin-induced acute kidney injury by suppressing
nox-mediated oxidative stress and renal inflammation. Front
Pharmacol. 7:4792016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Zhang J, Wang X, Vikash V, Ye Q, Wu D, Liu
Y and Dong W: ROS and ROS-mediated cellular signaling. Oxid Med
Cell Longev. 2016:43509652016. View Article : Google Scholar : PubMed/NCBI
|