Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
January-2022 Volume 25 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2022 Volume 25 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

miR‑30a‑5p induces the adipogenic differentiation of bone marrow mesenchymal stem cells by targeting FAM13A/Wnt/β‑catenin signaling in aplastic anemia

  • Authors:
    • Enbo Wang
    • Yunyan Zhang
    • Rongmei Ding
    • Xiaohua Wang
    • Shumin Zhang
    • Xinghua Li
  • View Affiliations / Copyright

    Affiliations: Department of Blood Transfusion, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222061, P.R. China, Department of Laboratory Medicine, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222061, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 27
    |
    Published online on: November 23, 2021
       https://doi.org/10.3892/mmr.2021.12543
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Aplastic anemia (AA) is a bone marrow failure syndrome with high morbidity and mortality. Bone marrow (BM)‑mesenchymal stem cells (MSCs) are the main components of the BM microenvironment, and dysregulation of BM‑MSC adipogenic differentiation is a pathologic hallmark of AA. MicroRNAs (miRNAs/miRs) are crucial regulators of multiple pathological processes such as AA. However, the role of miR‑30a‑5p in the modulation of BM‑MSC adipogenic differentiation in AA remains unclear. The present study aimed to explore the effect of miR‑30a‑5p on AA BM‑MSC adipogenic differentiation and the underlying mechanism. The levels of miR‑30a‑5p expression and family with sequence similarity 13, member A (FAM13A) mRNA expression in BM‑MSCs were quantified using reverse transcription‑quantitative (RT‑q) PCR. The mRNA expression levels of adipogenesis‑associated factors [fatty acid‑binding protein 4 (FABP4), lipoprotein lipase (LPL), perilipin‑1 (PLIN1), peroxisome proliferator‑activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα)] were analyzed using RT‑qPCR. Lipid droplet accumulation was evaluated using Oil Red O staining in BM‑MSCs. The interaction between miR‑30a‑5p and the FAM13A 3'‑untranslated region was identified by TargetScan, and a dual‑luciferase reporter assay was used to confirm the interaction. The expression levels of FAM13A and Wnt/β‑catenin pathway‑related proteins were examined via western blotting. The results showed that miR‑30a‑5p expression levels were significantly elevated in BM‑MSCs from patients with AA compared with those in control subjects (iron deficiency anemia). miR‑30a‑5p expression levels were also significantly increased in adipose‑induced BM‑MSCs in a time‑dependent manner. miR‑30a‑5p significantly promoted AA BM‑MSC adipogenic differentiation, and significantly enhanced the mRNA expression levels of FABP4, LPL, PLIN1, PPARγ and C/EBPα as well as lipid droplet accumulation. miR‑30a‑5p was also demonstrated to target FAM13A in AA BM‑MSCs. FAM13A significantly reduced BM‑MSC adipogenic differentiation by activating the Wnt/β‑catenin signaling pathway. In conclusion, miR‑30a‑5p was demonstrated to serve a role in AA BM‑MSC adipogenic differentiation by targeting the FAM13A/Wnt/β‑catenin signaling pathway. These findings suggest that miR‑30a‑5p may be a therapeutic target for AA.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Bacigalupo A: How I treat acquired aplastic anemia. Blood. 129:1428–1436. 2017. View Article : Google Scholar : PubMed/NCBI

2 

Savage SA, Viard M, O'hUigin C, Zhou W, Yeager M, Li SA, Wang T, Ramsuran V, Vince N, Vogt A, et al: Genome-wide association study identifies HLA-DPB1 as a significant risk factor for severe aplastic anemia. Am J Hum Genet. 106:264–271. 2020. View Article : Google Scholar : PubMed/NCBI

3 

Wang L and Liu H: Pathogenesis of aplastic anemia. Hematology. 24:559–566. 2019. View Article : Google Scholar : PubMed/NCBI

4 

Shallis RM, Ahmad R and Zeidan AM: Aplastic anemia: Etiology, molecular pathogenesis, and emerging concepts. Eur J Haematol. 101:711–720. 2018. View Article : Google Scholar : PubMed/NCBI

5 

Nombela-Arrieta C, Ritz J and Silberstein LE: The elusive nature and function of mesenchymal stem cells. Nat Rev Mol Cell Biol. 12:126–131. 2011. View Article : Google Scholar : PubMed/NCBI

6 

Li J, Lu S, Yang S, Xing W, Feng J, Li W, Zhao Q, Wu H, Ge M, Ma F, et al: Impaired immunomodulatory ability of bone marrow mesenchymal stem cells on CD4(+) T cells in aplastic anemia. Results Immunol. 2:142–147. 2012. View Article : Google Scholar : PubMed/NCBI

7 

Li J, Yang S, Lu S, Zhao H, Feng J, Li W, Ma F, Ren Q, Liu B, Zhang L, et al: Differential gene expression profile associated with the abnormality of bone marrow mesenchymal stem cells in aplastic anemia. PLoS One. 7:e477642012. View Article : Google Scholar : PubMed/NCBI

8 

Cheng HC, Liu SW, Li W, Zhao XF, Zhao X, Cheng M, Qiu L and Ma J: Arsenic trioxide regulates adipogenic and osteogenic differentiation in bone marrow MSCs of aplastic anemia patients through BMP4 gene. Acta Biochim Biophys Sin (Shanghai). 47:673–679. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Tripathy NK, Singh SP and Nityanand S: Enhanced adipogenicity of bone marrow mesenchymal stem cells in aplastic anemia. Stem Cells Int. 2014:2768622014. View Article : Google Scholar : PubMed/NCBI

10 

Deng S, Zeng Y, Wu L, Hu Z, Shen J, Shen Y, Shen Y, Zhou Y, Chen J and Lin S: The regulatory roles of VEGF-Notch signaling pathway on aplastic anemia with kidney deficiency and blood stasis. J Cell Biochem. Sep 19–2018.(Epub ahead of print).

11 

Lu TX and Rothenberg ME: MicroRNA. J Allergy Clin Immunol. 141:1202–1207. 2018. View Article : Google Scholar : PubMed/NCBI

12 

Zhou Q, Huang SX, Zhang F, Li SJ, Liu C, Xi YY, Wang L, Wang X, He QQ, Sun CC and Li DJ: MicroRNAs: A novel potential biomarker for diagnosis and therapy in patients with non-small cell lung cancer. Cell Prolif. 50:e123942017. View Article : Google Scholar : PubMed/NCBI

13 

Rupaimoole R and Slack FJ: MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 16:203–222. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Wang Y, Niu ZY, Guo YJ, Wang LH, Lin FR and Zhang JY: IL-11 promotes the treatment efficacy of hematopoietic stem cell transplant therapy in aplastic anemia model mice through a NF-κB/microRNA-204/thrombopoietin regulatory axis. Exp Mol Med. 49:e4102017. View Article : Google Scholar : PubMed/NCBI

15 

Adhikari S and Mandal P: Integrated analysis of global gene and microRNA expression profiling associated with aplastic anaemia. Life Sci. 228:47–52. 2019. View Article : Google Scholar : PubMed/NCBI

16 

Hosokawa K, Kajigaya S, Feng X, Desierto MJ, Fernandez Ibanez MD, Rios O, Weinstein B, Scheinberg P, Townsley DM and Young NS: A plasma microRNA signature as a biomarker for acquired aplastic anemia. Haematologica. 102:69–78. 2017. View Article : Google Scholar : PubMed/NCBI

17 

Li N, Liu L, Liu Y, Luo S, Song Y and Fang B: miR-144-3p suppresses osteogenic differentiation of BMSCs from patients with aplastic anemia through repression of TET2. Mol Ther Nucleic Acids. 19:619–626. 2020. View Article : Google Scholar : PubMed/NCBI

18 

Zhao J, Wang C, Song Y and Fang B: Arsenic trioxide and microRNA-204 display contrary effects on regulating adipogenic and osteogenic differentiation of mesenchymal stem cells in aplastic anemia. Acta Biochim Biophys Sin (Shanghai). 46:885–893. 2014. View Article : Google Scholar : PubMed/NCBI

19 

Zhu J, Zeng Y, Li W, Qin H, Lei Z, Shen D, Gu D, Huang JA and Liu Z: CD73/NT5E is a target of miR-30a-5p and plays an important role in the pathogenesis of non-small cell lung cancer. Mol Cancer. 16:342017. View Article : Google Scholar : PubMed/NCBI

20 

Li L, Kang L, Zhao W, Feng Y, Liu W, Wang T, Mai H, Huang J, Chen S, Liang Y, et al: miR-30a-5p suppresses breast tumor growth and metastasis through inhibition of LDHA-mediated Warburg effect. Cancer Lett. 400:89–98. 2017. View Article : Google Scholar : PubMed/NCBI

21 

Murinello S, Usui Y, Sakimoto S, Kitano M, Aguilar E, Friedlander HM, Schricker A, Wittgrove C, Wakabayashi Y, Dorrell MI, et al: miR-30a-5p inhibition promotes interaction of Fas+ endothelial cells and FasL+ microglia to decrease pathological neovascularization and promote physiological angiogenesis. Glia. 67:332–344. 2019. View Article : Google Scholar : PubMed/NCBI

22 

Cui S, Soni CB, Xie J, Li Y, Zhu H, Wu F and Zhi X: MiR-30a-5p accelerates adipogenesis by negatively regulating Sirtuin 1. Int J Clin Exp Pathol. 11:5203–5212. 2018.PubMed/NCBI

23 

Corvol H, Hodges CA, Drumm ML and Guillot L: Moving beyond genetics: Is FAM13A a major biological contributor in lung physiology and chronic lung diseases? J Med Genet. 51:646–649. 2014. View Article : Google Scholar : PubMed/NCBI

24 

Liang C, Li A, Raza SHA, Khan R, Wang X, Wang S, Wang G, Zhang Y and Zan L: The Molecular characteristics of the FAM13A gene and the role of transcription factors ACSL1 and ASCL2 in its core promoter region. Genes (Basel). 10:9812019. View Article : Google Scholar : PubMed/NCBI

25 

Lin X, Li Y, Gong L, Yun JH, Xu S, Tesfaigzi Y, Qiao D and Zhou X: Tempo-spatial regulation of the Wnt pathway by FAM13A modulates the stemness of alveolar epithelial progenitors. EBioMedicine. 69:1034632021. View Article : Google Scholar : PubMed/NCBI

26 

Eisenhut F, Heim L, Trump S, Mittler S, Sopel N, Andreev K, Ferrazzi F, Ekici AB, Rieker R, Springel R, et al: FAM13A is associated with non-small cell lung cancer (NSCLC) progression and controls tumor cell proliferation and survival. Oncoimmunology. 6:e12565262017. View Article : Google Scholar : PubMed/NCBI

27 

Zhang Y, Wang S, Wang C, Xiao J, Zhang S and Zhou H: High expression of FAM13A was associated with increasing the liver cirrhosis risk. Mol Genet Genomic Med. 7:e5432019. View Article : Google Scholar : PubMed/NCBI

28 

Corvol H, Rousselet N, Thompson KE, Berdah L, Cottin G, Foussigniere T, Longchampt E, Fiette L, Sage E, Prunier C, et al: FAM13A is a modifier gene of cystic fibrosis lung phenotype regulating rhoa activity, actin cytoskeleton dynamics and epithelial-mesenchymal transition. J Cyst Fibros. 17:190–203. 2018. View Article : Google Scholar : PubMed/NCBI

29 

Yao MY, Zhang WH, Ma WT, Liu QH, Xing LH and Zhao GF: microRNA-328 in exosomes derived from M2 macrophages exerts a promotive effect on the progression of pulmonary fibrosis via FAM13A in a rat model. Exp Mol Med. 51:1–16. 2019. View Article : Google Scholar

30 

Fathzadeh M, Li J, Rao A, Cook N, Chennamsetty I, Seldin M, Zhou X, Sangwung P, Gloudemans MJ, Keller M, et al: FAM13A affects body fat distribution and adipocyte function. Nat Commun. 11:14652020. View Article : Google Scholar : PubMed/NCBI

31 

Park E, Kim J, Yeo S, Kim G, Ko EH, Lee SW, Li WY, Choi CW and Jeong SY: Antiadipogenic effects of loganic Acid in 3T3-L1 preadipocytes and ovariectomized mice. Molecules. 23:16632018. View Article : Google Scholar : PubMed/NCBI

32 

Li X, Peng B, Zhu X, Wang P, Sun K, Lei X, He H, Tian Y, Mo S, Zhang R and Yang L: MiR-210-3p inhibits osteogenic differentiation and promotes adipogenic differentiation correlated with Wnt signaling in ERα-deficient rBMSCs. J Cell Physiol. 234:23475–23484. 2019. View Article : Google Scholar : PubMed/NCBI

33 

Yang X, Wang G, Wang Y, Zhou J, Yuan H, Li X, Liu Y and Wang B: Histone demethylase KDM7A reciprocally regulates adipogenic and osteogenic differentiation via regulation of C/EBPα and canonical Wnt signalling. J Cell Mol Med. 23:2149–2162. 2019. View Article : Google Scholar : PubMed/NCBI

34 

Yang Y, Qi Q, Wang Y, Shi Y, Yang W, Cen Y, Zhu E, Li X, Chen D and Wang B: Cysteine-rich protein 61 regulates adipocyte differentiation from mesenchymal stem cells through mammalian target of rapamycin complex 1 and canonical Wnt signaling. FASEB J. 32:3096–3107. 2018. View Article : Google Scholar : PubMed/NCBI

35 

Jin Z, Chung JW, Mei W, Strack S, He C, Lau GW and Yang J: Regulation of nuclear-cytoplasmic shuttling and function of Family with sequence similarity 13, member A (Fam13a), by B56-containing PP2As and Akt. Mol Biol Cell. 26:1160–1173. 2015. View Article : Google Scholar : PubMed/NCBI

36 

Wang X, Wang K, Han L, Zhang A, Shi Z, Zhang K, Zhang H, Yang S, Pu P, Shen C, et al: PRDM1 is directly targeted by miR-30a-5p and modulates the Wnt/β-catenin pathway in a Dkk1-dependent manner during glioma growth. Cancer Lett. 331:211–219. 2013. View Article : Google Scholar : PubMed/NCBI

37 

Killick SB, Bown N, Cavenagh J, Dokal I, Foukaneli T, Hill A, Hillmen P, Ireland R, Kulasekararaj A, Mufti G, et al: Guidelines for the diagnosis and management of adult aplastic anaemia. Br J Haematol. 172:187–207. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Zhang X, Liu L, Dou C, Cheng P, Liu L, Liu H, Ren S, Wang C, Jia S, Chen L, et al: PPAR Gamma-regulated MicroRNA 199a-5p underlies bone marrow adiposity in aplastic anemia. Mol Ther Nucleic Acids. 17:678–687. 2019. View Article : Google Scholar : PubMed/NCBI

39 

Nandy SB, Mohanty S, Singh M, Behari M and Airan B: Fibroblast Growth Factor-2 alone as an efficient inducer for differentiation of human bone marrow mesenchymal stem cells into dopaminergic neurons. J Biomed Sci. 21:832014. View Article : Google Scholar : PubMed/NCBI

40 

Wang D, Wang Y, Xu S, Wang F, Wang B, Han K, Sun D and Li L: Epigallocatechin-3-gallate protects against hydrogen peroxide-induced inhibition of osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Stem Cells Int. 2016:75327982016. View Article : Google Scholar : PubMed/NCBI

41 

Zhang H, Zhang B, Tao Y, Cheng M, Hu J, Xu M and Chen H: Isolation and characterization of mesenchymal stem cells from whole human umbilical cord applying a single enzyme approach. Cell Biochem Funct. 30:643–649. 2012. View Article : Google Scholar : PubMed/NCBI

42 

Andrews FV, Kim SM, Edwards L and Schlezinger JJ: Identifying adipogenic chemicals: Disparate effects in 3T3-L1, OP9 and primary mesenchymal multipotent cell models. Toxicol In Vitro. 67:1049042020. View Article : Google Scholar : PubMed/NCBI

43 

Zhang S, Zhao C, Liu S, Wang Y, Zhao Y, Guan W and Zhu Z: Characteristics and multi-lineage differentiation of bone marrow mesenchymal stem cells derived from the Tibetan mastiff. Mol Med Rep. 18:2097–2109. 2018.PubMed/NCBI

44 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

45 

Sakai T, Nishida Y, Hamada S, Koike H, Ikuta K, Ota T and Ishiguro N: Immunohistochemical staining with non-phospho β-catenin as a diagnostic and prognostic tool of COX-2 inhibitor therapy for patients with extra-peritoneal desmoid-type fibromatosis. Diagn Pathol. 12:662017. View Article : Google Scholar : PubMed/NCBI

46 

Yoshida Y, Yamasaki S, Oi K, Kuranobu T, Nojima T, Miyaki S, Ida H and Sugiyama E: IL-1β enhances wnt signal by inhibiting DKK1. Inflammation. 41:1945–1954. 2018. View Article : Google Scholar : PubMed/NCBI

47 

Jumpertz S, Hennes T, Asare Y, Schutz AK and Bernhagen J: CSN5/JAB1 suppresses the WNT inhibitor DKK1 in colorectal cancer cells. Cell Signal. 34:38–46. 2017. View Article : Google Scholar : PubMed/NCBI

48 

El-Mahgoub ER, Ahmed E, Afifi RA, Kamal MA and Mousa SM: Mesenchymal stem cells from pediatric patients with aplastic anemia: Isolation, characterization, adipogenic, and osteogenic differentiation. Fetal Pediatr Pathol. 33:9–15. 2014. View Article : Google Scholar : PubMed/NCBI

49 

Medinger M, Drexler B, Lengerke C and Passweg J: Pathogenesis of acquired aplastic anemia and the role of the bone marrow microenvironment. Front Oncol. 8:5872018. View Article : Google Scholar : PubMed/NCBI

50 

Gonzaga VF, Wenceslau CV, Lisboa GS, Frare EO and Kerkis I: Mesenchymal stem cell benefits observed in bone marrow failure and acquired aplastic anemia. Stem Cells Int. 2017:80765292017. View Article : Google Scholar : PubMed/NCBI

51 

Li Y, Wang F, Guo R, Zhang Y, Chen D, Li X, Tian W, Xie X and Jiang Z: Exosomal sphingosine 1-phosphate secreted by mesenchymal stem cells regulated Treg/Th17 balance in aplastic anemia. IUBMB Life. 71:1284–1292. 2019. View Article : Google Scholar : PubMed/NCBI

52 

Sieff CA: Introduction to acquired and inherited bone marrow failure. Hematol Oncol Clin North Am. 32:569–580. 2018. View Article : Google Scholar : PubMed/NCBI

53 

Luzzatto L and Risitano AM: Advances in understanding the pathogenesis of acquired aplastic anaemia. Br J Haematol. 182:758–776. 2018. View Article : Google Scholar : PubMed/NCBI

54 

Wang J, Liu X, Hao C, Lu Y, Duan X, Liang R, Gao G and Zhang T: MEG3 modulates TIGIT expression and CD4 + T cell activation through absorbing miR-23a. Mol Cell Biochem. 454:67–76. 2019. View Article : Google Scholar : PubMed/NCBI

55 

Giudice V, Banaszak LG, Gutierrez-Rodrigues F, Kajigaya S, Panjwani R, Ibanez MDPF, Rios O, Bleck CK, Stempinski ES, Raffo DQ, et al: Circulating exosomal microRNAs in acquired aplastic anemia and myelodysplastic syndromes. Haematologica. 103:1150–1159. 2018. View Article : Google Scholar : PubMed/NCBI

56 

Wang Y, Niu ZY, Guo YJ, Wang LH, Lin FR and Zhang JY: IL-11 promotes the treatment efficacy of hematopoietic stem cell transplant therapy in aplastic anemia model mice through a NF-κB/microRNA-204/thrombopoietin regulatory axis. Exp Mol Med. 49:e4102017. View Article : Google Scholar : PubMed/NCBI

57 

Lundback V, Kulyte A, Strawbridge RJ, Ryden M, Arner P, Marcus C and Dahlman I: FAM13A and POM121C are candidate genes for fasting insulin: Functional follow-up analysis of a genome-wide association study. Diabetologia. 61:1112–1123. 2018. View Article : Google Scholar : PubMed/NCBI

58 

Wardhana DA, Ikeda K, Barinda AJ, Nugroho DB, Qurania KR, Yagi K, Miyata K, Oike Y, Hirata KI and Emoto N: Family with sequence similarity 13, member A modulates adipocyte insulin signaling and preserves systemic metabolic homeostasis. Proc Natl Acad Sci USA. 115:1529–1534. 2018. View Article : Google Scholar : PubMed/NCBI

59 

Lin X, Liou YH, Li Y, Gong L, Li Y, Hao Y, Pham B, Xu S, Jiang Z, Li L, et al: FAM13A represses AMPK activity and regulates hepatic glucose and lipid metabolism. iScience. 23:1009282020. View Article : Google Scholar : PubMed/NCBI

60 

Tang J, Zhou H, Sahay K, Xu W, Yang J, Zhang W and Chen W: Obesity-associated family with sequence similarity 13, member A (FAM13A) is dispensable for adipose development and insulin sensitivity. Int J Obes (Lond). 43:1269–1280. 2019. View Article : Google Scholar : PubMed/NCBI

61 

Xu C, Wang J, Zhu T, Shen Y, Tang X, Fang L and Xu Y: Cross-talking between PPAR and WNT signaling and its regulation in mesenchymal stem cell differentiation. Curr Stem Cell Res Ther. 11:247–254. 2016. View Article : Google Scholar : PubMed/NCBI

62 

Yuan Z, Li Q, Luo S, Liu Z, Luo D, Zhang B, Zhang D, Rao P and Xiao J: PPARγ and Wnt signaling in adipogenic and osteogenic differentiation of mesenchymal stem cells. Curr Stem Cell Res Ther. 11:216–225. 2016. View Article : Google Scholar : PubMed/NCBI

63 

Hou X, Wang Z, Ding F, He Y, Wang P, Liu X, Xu F, Wang J and Yang Y: Taurine transporter regulates adipogenic differentiation of human adipose-derived stem cells through affecting Wnt/β-catenin signaling pathway. Int J Biol Sci. 15:1104–1112. 2019. View Article : Google Scholar : PubMed/NCBI

64 

Qi Q, Wang Y, Wang X, Yang J, Xie Y, Zhou J, Li X and Wang B: Histone demethylase KDM4A regulates adipogenic and osteogenic differentiation via epigenetic regulation of C/EBPα and canonical Wnt signaling. Cell Mol Life Sci. 77:2407–2421. 2020. View Article : Google Scholar : PubMed/NCBI

65 

Ai G, Meng M, Wang L, Shao X, Li Y, Cheng J, Tong X and Cheng Z: microRNA-196a promotes osteogenic differentiation and inhibit adipogenic differentiation of adipose stem cells via regulating β-catenin pathway. Am J Transl Res. 11:3081–3091. 2019.PubMed/NCBI

66 

Chen XJ, Shen YS, He MC, Yang F, Yang P, Pang FX, He W, Cao YM and Wei QS: Polydatin promotes the osteogenic differentiation of human bone mesenchymal stem cells by activating the BMP2-Wnt/beta-catenin signaling pathway. Biomed Pharmacother. 112:1087462019. View Article : Google Scholar : PubMed/NCBI

67 

Shuai Y, Yang R, Mu R, Yu Y, Rong L and Jin L: MiR-199a-3p mediates the adipogenic differentiation of bone marrow-derived mesenchymal stem cells by regulating KDM6A/WNT signaling. Life Sci. 220:84–91. 2019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang E, Zhang Y, Ding R, Wang X, Zhang S and Li X: miR‑30a‑5p induces the adipogenic differentiation of bone marrow mesenchymal stem cells by targeting FAM13A/Wnt/β‑catenin signaling in aplastic anemia. Mol Med Rep 25: 27, 2022.
APA
Wang, E., Zhang, Y., Ding, R., Wang, X., Zhang, S., & Li, X. (2022). miR‑30a‑5p induces the adipogenic differentiation of bone marrow mesenchymal stem cells by targeting FAM13A/Wnt/β‑catenin signaling in aplastic anemia. Molecular Medicine Reports, 25, 27. https://doi.org/10.3892/mmr.2021.12543
MLA
Wang, E., Zhang, Y., Ding, R., Wang, X., Zhang, S., Li, X."miR‑30a‑5p induces the adipogenic differentiation of bone marrow mesenchymal stem cells by targeting FAM13A/Wnt/β‑catenin signaling in aplastic anemia". Molecular Medicine Reports 25.1 (2022): 27.
Chicago
Wang, E., Zhang, Y., Ding, R., Wang, X., Zhang, S., Li, X."miR‑30a‑5p induces the adipogenic differentiation of bone marrow mesenchymal stem cells by targeting FAM13A/Wnt/β‑catenin signaling in aplastic anemia". Molecular Medicine Reports 25, no. 1 (2022): 27. https://doi.org/10.3892/mmr.2021.12543
Copy and paste a formatted citation
x
Spandidos Publications style
Wang E, Zhang Y, Ding R, Wang X, Zhang S and Li X: miR‑30a‑5p induces the adipogenic differentiation of bone marrow mesenchymal stem cells by targeting FAM13A/Wnt/β‑catenin signaling in aplastic anemia. Mol Med Rep 25: 27, 2022.
APA
Wang, E., Zhang, Y., Ding, R., Wang, X., Zhang, S., & Li, X. (2022). miR‑30a‑5p induces the adipogenic differentiation of bone marrow mesenchymal stem cells by targeting FAM13A/Wnt/β‑catenin signaling in aplastic anemia. Molecular Medicine Reports, 25, 27. https://doi.org/10.3892/mmr.2021.12543
MLA
Wang, E., Zhang, Y., Ding, R., Wang, X., Zhang, S., Li, X."miR‑30a‑5p induces the adipogenic differentiation of bone marrow mesenchymal stem cells by targeting FAM13A/Wnt/β‑catenin signaling in aplastic anemia". Molecular Medicine Reports 25.1 (2022): 27.
Chicago
Wang, E., Zhang, Y., Ding, R., Wang, X., Zhang, S., Li, X."miR‑30a‑5p induces the adipogenic differentiation of bone marrow mesenchymal stem cells by targeting FAM13A/Wnt/β‑catenin signaling in aplastic anemia". Molecular Medicine Reports 25, no. 1 (2022): 27. https://doi.org/10.3892/mmr.2021.12543
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team