1
|
Bacigalupo A: How I treat acquired
aplastic anemia. Blood. 129:1428–1436. 2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Savage SA, Viard M, O'hUigin C, Zhou W,
Yeager M, Li SA, Wang T, Ramsuran V, Vince N, Vogt A, et al:
Genome-wide association study identifies HLA-DPB1 as a significant
risk factor for severe aplastic anemia. Am J Hum Genet.
106:264–271. 2020. View Article : Google Scholar : PubMed/NCBI
|
3
|
Wang L and Liu H: Pathogenesis of aplastic
anemia. Hematology. 24:559–566. 2019. View Article : Google Scholar : PubMed/NCBI
|
4
|
Shallis RM, Ahmad R and Zeidan AM:
Aplastic anemia: Etiology, molecular pathogenesis, and emerging
concepts. Eur J Haematol. 101:711–720. 2018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Nombela-Arrieta C, Ritz J and Silberstein
LE: The elusive nature and function of mesenchymal stem cells. Nat
Rev Mol Cell Biol. 12:126–131. 2011. View
Article : Google Scholar : PubMed/NCBI
|
6
|
Li J, Lu S, Yang S, Xing W, Feng J, Li W,
Zhao Q, Wu H, Ge M, Ma F, et al: Impaired immunomodulatory ability
of bone marrow mesenchymal stem cells on CD4(+) T cells in aplastic
anemia. Results Immunol. 2:142–147. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Li J, Yang S, Lu S, Zhao H, Feng J, Li W,
Ma F, Ren Q, Liu B, Zhang L, et al: Differential gene expression
profile associated with the abnormality of bone marrow mesenchymal
stem cells in aplastic anemia. PLoS One. 7:e477642012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Cheng HC, Liu SW, Li W, Zhao XF, Zhao X,
Cheng M, Qiu L and Ma J: Arsenic trioxide regulates adipogenic and
osteogenic differentiation in bone marrow MSCs of aplastic anemia
patients through BMP4 gene. Acta Biochim Biophys Sin (Shanghai).
47:673–679. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Tripathy NK, Singh SP and Nityanand S:
Enhanced adipogenicity of bone marrow mesenchymal stem cells in
aplastic anemia. Stem Cells Int. 2014:2768622014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Deng S, Zeng Y, Wu L, Hu Z, Shen J, Shen
Y, Shen Y, Zhou Y, Chen J and Lin S: The regulatory roles of
VEGF-Notch signaling pathway on aplastic anemia with kidney
deficiency and blood stasis. J Cell Biochem. Sep 19–2018.(Epub
ahead of print).
|
11
|
Lu TX and Rothenberg ME: MicroRNA. J
Allergy Clin Immunol. 141:1202–1207. 2018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhou Q, Huang SX, Zhang F, Li SJ, Liu C,
Xi YY, Wang L, Wang X, He QQ, Sun CC and Li DJ: MicroRNAs: A novel
potential biomarker for diagnosis and therapy in patients with
non-small cell lung cancer. Cell Prolif. 50:e123942017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Rupaimoole R and Slack FJ: MicroRNA
therapeutics: Towards a new era for the management of cancer and
other diseases. Nat Rev Drug Discov. 16:203–222. 2017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wang Y, Niu ZY, Guo YJ, Wang LH, Lin FR
and Zhang JY: IL-11 promotes the treatment efficacy of
hematopoietic stem cell transplant therapy in aplastic anemia model
mice through a NF-κB/microRNA-204/thrombopoietin regulatory axis.
Exp Mol Med. 49:e4102017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Adhikari S and Mandal P: Integrated
analysis of global gene and microRNA expression profiling
associated with aplastic anaemia. Life Sci. 228:47–52. 2019.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Hosokawa K, Kajigaya S, Feng X, Desierto
MJ, Fernandez Ibanez MD, Rios O, Weinstein B, Scheinberg P,
Townsley DM and Young NS: A plasma microRNA signature as a
biomarker for acquired aplastic anemia. Haematologica. 102:69–78.
2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Li N, Liu L, Liu Y, Luo S, Song Y and Fang
B: miR-144-3p suppresses osteogenic differentiation of BMSCs from
patients with aplastic anemia through repression of TET2. Mol Ther
Nucleic Acids. 19:619–626. 2020. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhao J, Wang C, Song Y and Fang B: Arsenic
trioxide and microRNA-204 display contrary effects on regulating
adipogenic and osteogenic differentiation of mesenchymal stem cells
in aplastic anemia. Acta Biochim Biophys Sin (Shanghai).
46:885–893. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhu J, Zeng Y, Li W, Qin H, Lei Z, Shen D,
Gu D, Huang JA and Liu Z: CD73/NT5E is a target of miR-30a-5p and
plays an important role in the pathogenesis of non-small cell lung
cancer. Mol Cancer. 16:342017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Li L, Kang L, Zhao W, Feng Y, Liu W, Wang
T, Mai H, Huang J, Chen S, Liang Y, et al: miR-30a-5p suppresses
breast tumor growth and metastasis through inhibition of
LDHA-mediated Warburg effect. Cancer Lett. 400:89–98. 2017.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Murinello S, Usui Y, Sakimoto S, Kitano M,
Aguilar E, Friedlander HM, Schricker A, Wittgrove C, Wakabayashi Y,
Dorrell MI, et al: miR-30a-5p inhibition promotes interaction of
Fas+ endothelial cells and FasL+ microglia to decrease pathological
neovascularization and promote physiological angiogenesis. Glia.
67:332–344. 2019. View Article : Google Scholar : PubMed/NCBI
|
22
|
Cui S, Soni CB, Xie J, Li Y, Zhu H, Wu F
and Zhi X: MiR-30a-5p accelerates adipogenesis by negatively
regulating Sirtuin 1. Int J Clin Exp Pathol. 11:5203–5212.
2018.PubMed/NCBI
|
23
|
Corvol H, Hodges CA, Drumm ML and Guillot
L: Moving beyond genetics: Is FAM13A a major biological contributor
in lung physiology and chronic lung diseases? J Med Genet.
51:646–649. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Liang C, Li A, Raza SHA, Khan R, Wang X,
Wang S, Wang G, Zhang Y and Zan L: The Molecular characteristics of
the FAM13A gene and the role of transcription factors ACSL1 and
ASCL2 in its core promoter region. Genes (Basel). 10:9812019.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Lin X, Li Y, Gong L, Yun JH, Xu S,
Tesfaigzi Y, Qiao D and Zhou X: Tempo-spatial regulation of the Wnt
pathway by FAM13A modulates the stemness of alveolar epithelial
progenitors. EBioMedicine. 69:1034632021. View Article : Google Scholar : PubMed/NCBI
|
26
|
Eisenhut F, Heim L, Trump S, Mittler S,
Sopel N, Andreev K, Ferrazzi F, Ekici AB, Rieker R, Springel R, et
al: FAM13A is associated with non-small cell lung cancer (NSCLC)
progression and controls tumor cell proliferation and survival.
Oncoimmunology. 6:e12565262017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zhang Y, Wang S, Wang C, Xiao J, Zhang S
and Zhou H: High expression of FAM13A was associated with
increasing the liver cirrhosis risk. Mol Genet Genomic Med.
7:e5432019. View Article : Google Scholar : PubMed/NCBI
|
28
|
Corvol H, Rousselet N, Thompson KE, Berdah
L, Cottin G, Foussigniere T, Longchampt E, Fiette L, Sage E,
Prunier C, et al: FAM13A is a modifier gene of cystic fibrosis lung
phenotype regulating rhoa activity, actin cytoskeleton dynamics and
epithelial-mesenchymal transition. J Cyst Fibros. 17:190–203. 2018.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Yao MY, Zhang WH, Ma WT, Liu QH, Xing LH
and Zhao GF: microRNA-328 in exosomes derived from M2 macrophages
exerts a promotive effect on the progression of pulmonary fibrosis
via FAM13A in a rat model. Exp Mol Med. 51:1–16. 2019. View Article : Google Scholar
|
30
|
Fathzadeh M, Li J, Rao A, Cook N,
Chennamsetty I, Seldin M, Zhou X, Sangwung P, Gloudemans MJ, Keller
M, et al: FAM13A affects body fat distribution and adipocyte
function. Nat Commun. 11:14652020. View Article : Google Scholar : PubMed/NCBI
|
31
|
Park E, Kim J, Yeo S, Kim G, Ko EH, Lee
SW, Li WY, Choi CW and Jeong SY: Antiadipogenic effects of loganic
Acid in 3T3-L1 preadipocytes and ovariectomized mice. Molecules.
23:16632018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Li X, Peng B, Zhu X, Wang P, Sun K, Lei X,
He H, Tian Y, Mo S, Zhang R and Yang L: MiR-210-3p inhibits
osteogenic differentiation and promotes adipogenic differentiation
correlated with Wnt signaling in ERα-deficient rBMSCs. J Cell
Physiol. 234:23475–23484. 2019. View Article : Google Scholar : PubMed/NCBI
|
33
|
Yang X, Wang G, Wang Y, Zhou J, Yuan H, Li
X, Liu Y and Wang B: Histone demethylase KDM7A reciprocally
regulates adipogenic and osteogenic differentiation via regulation
of C/EBPα and canonical Wnt signalling. J Cell Mol Med.
23:2149–2162. 2019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Yang Y, Qi Q, Wang Y, Shi Y, Yang W, Cen
Y, Zhu E, Li X, Chen D and Wang B: Cysteine-rich protein 61
regulates adipocyte differentiation from mesenchymal stem cells
through mammalian target of rapamycin complex 1 and canonical Wnt
signaling. FASEB J. 32:3096–3107. 2018. View Article : Google Scholar : PubMed/NCBI
|
35
|
Jin Z, Chung JW, Mei W, Strack S, He C,
Lau GW and Yang J: Regulation of nuclear-cytoplasmic shuttling and
function of Family with sequence similarity 13, member A (Fam13a),
by B56-containing PP2As and Akt. Mol Biol Cell. 26:1160–1173. 2015.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Wang X, Wang K, Han L, Zhang A, Shi Z,
Zhang K, Zhang H, Yang S, Pu P, Shen C, et al: PRDM1 is directly
targeted by miR-30a-5p and modulates the Wnt/β-catenin pathway in a
Dkk1-dependent manner during glioma growth. Cancer Lett.
331:211–219. 2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Killick SB, Bown N, Cavenagh J, Dokal I,
Foukaneli T, Hill A, Hillmen P, Ireland R, Kulasekararaj A, Mufti
G, et al: Guidelines for the diagnosis and management of adult
aplastic anaemia. Br J Haematol. 172:187–207. 2016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zhang X, Liu L, Dou C, Cheng P, Liu L, Liu
H, Ren S, Wang C, Jia S, Chen L, et al: PPAR Gamma-regulated
MicroRNA 199a-5p underlies bone marrow adiposity in aplastic
anemia. Mol Ther Nucleic Acids. 17:678–687. 2019. View Article : Google Scholar : PubMed/NCBI
|
39
|
Nandy SB, Mohanty S, Singh M, Behari M and
Airan B: Fibroblast Growth Factor-2 alone as an efficient inducer
for differentiation of human bone marrow mesenchymal stem cells
into dopaminergic neurons. J Biomed Sci. 21:832014. View Article : Google Scholar : PubMed/NCBI
|
40
|
Wang D, Wang Y, Xu S, Wang F, Wang B, Han
K, Sun D and Li L: Epigallocatechin-3-gallate protects against
hydrogen peroxide-induced inhibition of osteogenic differentiation
of human bone marrow-derived mesenchymal stem cells. Stem Cells
Int. 2016:75327982016. View Article : Google Scholar : PubMed/NCBI
|
41
|
Zhang H, Zhang B, Tao Y, Cheng M, Hu J, Xu
M and Chen H: Isolation and characterization of mesenchymal stem
cells from whole human umbilical cord applying a single enzyme
approach. Cell Biochem Funct. 30:643–649. 2012. View Article : Google Scholar : PubMed/NCBI
|
42
|
Andrews FV, Kim SM, Edwards L and
Schlezinger JJ: Identifying adipogenic chemicals: Disparate effects
in 3T3-L1, OP9 and primary mesenchymal multipotent cell models.
Toxicol In Vitro. 67:1049042020. View Article : Google Scholar : PubMed/NCBI
|
43
|
Zhang S, Zhao C, Liu S, Wang Y, Zhao Y,
Guan W and Zhu Z: Characteristics and multi-lineage differentiation
of bone marrow mesenchymal stem cells derived from the Tibetan
mastiff. Mol Med Rep. 18:2097–2109. 2018.PubMed/NCBI
|
44
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Sakai T, Nishida Y, Hamada S, Koike H,
Ikuta K, Ota T and Ishiguro N: Immunohistochemical staining with
non-phospho β-catenin as a diagnostic and prognostic tool of COX-2
inhibitor therapy for patients with extra-peritoneal desmoid-type
fibromatosis. Diagn Pathol. 12:662017. View Article : Google Scholar : PubMed/NCBI
|
46
|
Yoshida Y, Yamasaki S, Oi K, Kuranobu T,
Nojima T, Miyaki S, Ida H and Sugiyama E: IL-1β enhances wnt signal
by inhibiting DKK1. Inflammation. 41:1945–1954. 2018. View Article : Google Scholar : PubMed/NCBI
|
47
|
Jumpertz S, Hennes T, Asare Y, Schutz AK
and Bernhagen J: CSN5/JAB1 suppresses the WNT inhibitor DKK1 in
colorectal cancer cells. Cell Signal. 34:38–46. 2017. View Article : Google Scholar : PubMed/NCBI
|
48
|
El-Mahgoub ER, Ahmed E, Afifi RA, Kamal MA
and Mousa SM: Mesenchymal stem cells from pediatric patients with
aplastic anemia: Isolation, characterization, adipogenic, and
osteogenic differentiation. Fetal Pediatr Pathol. 33:9–15. 2014.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Medinger M, Drexler B, Lengerke C and
Passweg J: Pathogenesis of acquired aplastic anemia and the role of
the bone marrow microenvironment. Front Oncol. 8:5872018.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Gonzaga VF, Wenceslau CV, Lisboa GS, Frare
EO and Kerkis I: Mesenchymal stem cell benefits observed in bone
marrow failure and acquired aplastic anemia. Stem Cells Int.
2017:80765292017. View Article : Google Scholar : PubMed/NCBI
|
51
|
Li Y, Wang F, Guo R, Zhang Y, Chen D, Li
X, Tian W, Xie X and Jiang Z: Exosomal sphingosine 1-phosphate
secreted by mesenchymal stem cells regulated Treg/Th17 balance in
aplastic anemia. IUBMB Life. 71:1284–1292. 2019. View Article : Google Scholar : PubMed/NCBI
|
52
|
Sieff CA: Introduction to acquired and
inherited bone marrow failure. Hematol Oncol Clin North Am.
32:569–580. 2018. View Article : Google Scholar : PubMed/NCBI
|
53
|
Luzzatto L and Risitano AM: Advances in
understanding the pathogenesis of acquired aplastic anaemia. Br J
Haematol. 182:758–776. 2018. View Article : Google Scholar : PubMed/NCBI
|
54
|
Wang J, Liu X, Hao C, Lu Y, Duan X, Liang
R, Gao G and Zhang T: MEG3 modulates TIGIT expression and CD4 + T
cell activation through absorbing miR-23a. Mol Cell Biochem.
454:67–76. 2019. View Article : Google Scholar : PubMed/NCBI
|
55
|
Giudice V, Banaszak LG,
Gutierrez-Rodrigues F, Kajigaya S, Panjwani R, Ibanez MDPF, Rios O,
Bleck CK, Stempinski ES, Raffo DQ, et al: Circulating exosomal
microRNAs in acquired aplastic anemia and myelodysplastic
syndromes. Haematologica. 103:1150–1159. 2018. View Article : Google Scholar : PubMed/NCBI
|
56
|
Wang Y, Niu ZY, Guo YJ, Wang LH, Lin FR
and Zhang JY: IL-11 promotes the treatment efficacy of
hematopoietic stem cell transplant therapy in aplastic anemia model
mice through a NF-κB/microRNA-204/thrombopoietin regulatory axis.
Exp Mol Med. 49:e4102017. View Article : Google Scholar : PubMed/NCBI
|
57
|
Lundback V, Kulyte A, Strawbridge RJ,
Ryden M, Arner P, Marcus C and Dahlman I: FAM13A and POM121C are
candidate genes for fasting insulin: Functional follow-up analysis
of a genome-wide association study. Diabetologia. 61:1112–1123.
2018. View Article : Google Scholar : PubMed/NCBI
|
58
|
Wardhana DA, Ikeda K, Barinda AJ, Nugroho
DB, Qurania KR, Yagi K, Miyata K, Oike Y, Hirata KI and Emoto N:
Family with sequence similarity 13, member A modulates adipocyte
insulin signaling and preserves systemic metabolic homeostasis.
Proc Natl Acad Sci USA. 115:1529–1534. 2018. View Article : Google Scholar : PubMed/NCBI
|
59
|
Lin X, Liou YH, Li Y, Gong L, Li Y, Hao Y,
Pham B, Xu S, Jiang Z, Li L, et al: FAM13A represses AMPK activity
and regulates hepatic glucose and lipid metabolism. iScience.
23:1009282020. View Article : Google Scholar : PubMed/NCBI
|
60
|
Tang J, Zhou H, Sahay K, Xu W, Yang J,
Zhang W and Chen W: Obesity-associated family with sequence
similarity 13, member A (FAM13A) is dispensable for adipose
development and insulin sensitivity. Int J Obes (Lond).
43:1269–1280. 2019. View Article : Google Scholar : PubMed/NCBI
|
61
|
Xu C, Wang J, Zhu T, Shen Y, Tang X, Fang
L and Xu Y: Cross-talking between PPAR and WNT signaling and its
regulation in mesenchymal stem cell differentiation. Curr Stem Cell
Res Ther. 11:247–254. 2016. View Article : Google Scholar : PubMed/NCBI
|
62
|
Yuan Z, Li Q, Luo S, Liu Z, Luo D, Zhang
B, Zhang D, Rao P and Xiao J: PPARγ and Wnt signaling in adipogenic
and osteogenic differentiation of mesenchymal stem cells. Curr Stem
Cell Res Ther. 11:216–225. 2016. View Article : Google Scholar : PubMed/NCBI
|
63
|
Hou X, Wang Z, Ding F, He Y, Wang P, Liu
X, Xu F, Wang J and Yang Y: Taurine transporter regulates
adipogenic differentiation of human adipose-derived stem cells
through affecting Wnt/β-catenin signaling pathway. Int J Biol Sci.
15:1104–1112. 2019. View Article : Google Scholar : PubMed/NCBI
|
64
|
Qi Q, Wang Y, Wang X, Yang J, Xie Y, Zhou
J, Li X and Wang B: Histone demethylase KDM4A regulates adipogenic
and osteogenic differentiation via epigenetic regulation of C/EBPα
and canonical Wnt signaling. Cell Mol Life Sci. 77:2407–2421. 2020.
View Article : Google Scholar : PubMed/NCBI
|
65
|
Ai G, Meng M, Wang L, Shao X, Li Y, Cheng
J, Tong X and Cheng Z: microRNA-196a promotes osteogenic
differentiation and inhibit adipogenic differentiation of adipose
stem cells via regulating β-catenin pathway. Am J Transl Res.
11:3081–3091. 2019.PubMed/NCBI
|
66
|
Chen XJ, Shen YS, He MC, Yang F, Yang P,
Pang FX, He W, Cao YM and Wei QS: Polydatin promotes the osteogenic
differentiation of human bone mesenchymal stem cells by activating
the BMP2-Wnt/beta-catenin signaling pathway. Biomed Pharmacother.
112:1087462019. View Article : Google Scholar : PubMed/NCBI
|
67
|
Shuai Y, Yang R, Mu R, Yu Y, Rong L and
Jin L: MiR-199a-3p mediates the adipogenic differentiation of bone
marrow-derived mesenchymal stem cells by regulating KDM6A/WNT
signaling. Life Sci. 220:84–91. 2019. View Article : Google Scholar : PubMed/NCBI
|