
WNT5A, β‑catenin and SUFU expression patterns, and the significance of microRNA deregulation in placentas with intrauterine growth restriction
- Authors:
- Ida Marija Sola
- Valentina Karin-Kujundzic
- Frane Paic
- Lada Lijovic
- Mislav Glibo
- Nikola Serman
- Tihana Duic
- Anita Skrtic
- Krunoslav Kuna
- Semir Vranic
- Ljiljana Serman
-
Affiliations: Department of Obstetrics and Gynecology, University Hospital Sestre Milosrdnice, 10000 Zagreb, Croatia, Department of Biology, University of Zagreb, 10000 Zagreb, Croatia, Department of Anesthesiology and Critical Care, General Hospital Fra Mihovil Sučić, 80101 Livno, Bosnia and Herzegovina, Zagreb Emergency Medicine Service, University of Zagreb, 10000 Zagreb, Croatia, Centre of Excellence in Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia, College of Medicine, QU Health, Qatar University, 2713 Doha, Qatar - Published online on: December 13, 2022 https://doi.org/10.3892/mmr.2022.12914
- Article Number: 28
-
Copyright: © Sola et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
ACOG Practice bulletin no. 134, . Fetal growth restriction. Obstet Gynecol. 121:1122–1133. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hutter D, Kingdom J and Jaeggi E: Causes and mechanisms of intrauterine hypoxia and its impact on the fetal cardiovascular system: A review. Int J Pediatr. 2010:4013232010. View Article : Google Scholar : PubMed/NCBI | |
Krishna U and Bhalerao S: Placental insufficiency and fetal growth restriction. J Obstet Gynaecol India. 61:505–511. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pollack RN and Divon MY: Intrauterine growth retardation: Definition, classification, and etiology. Clin Obstet Gynecol. 35:99–107. 1992. View Article : Google Scholar : PubMed/NCBI | |
Guellec I, Lapillonne A, Renolleau S, Charlaluk ML, Roze JC, Marret S, Vieux R, Monique K and Ancel PY; EPIPAGE Study Group, : Neurologic outcomes at school age in very preterm infants born with severe or mild growth restriction. Pediatrics. 127:e883–e891. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sacchi C, Marino C, Nosarti C, Vieno A, Visentin S and Simonelli A: Association of intrauterine growth restriction and small for gestational age status with childhood cognitive outcomes: A systematic review and meta-analysis. JAMA Pediatr. 174:772–781. 2020. View Article : Google Scholar : PubMed/NCBI | |
Levine TA, Grunau RE, McAuliffe FM, Pinnamaneni R, Foran A and Alderdice FA: Early childhood neurodevelopment after intrauterine growth restriction: A systematic review. Pediatrics. 135:126–141. 2015. View Article : Google Scholar : PubMed/NCBI | |
Latos PA and Hemberger M: From the stem of the placental tree: Trophoblast stem cells and their progeny. Development. 143:3650–3660. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hemberger M, Hanna CW and Dean W: Mechanisms of early placental development in mouse and humans. Nat Rev Genet. 21:27–43. 2020. View Article : Google Scholar : PubMed/NCBI | |
Knöfler M and Pollheimer J: Human placental trophoblast invasion and differentiation: A particular focus on Wnt signaling. Front Genet. 4:1902013. View Article : Google Scholar : PubMed/NCBI | |
Matsuura K, Jigami T, Taniue K, Morishita Y, Adachi S, Senda T, Nonaka A, Aburatani H, Nakamura T and Akiyama T: Identification of a link between Wnt/β-catenin signalling and the cell fusion pathway. Nat Commun. 2:5482011. View Article : Google Scholar : PubMed/NCBI | |
Aoki M, Mieda M, Ikeda T, Hamada Y, Nakamura H and Okamoto H: R-spondin3 is required for mouse placental development. Dev Biol. 301:218–226. 2007. View Article : Google Scholar : PubMed/NCBI | |
Miller JR: The Wnts. Genome Biol. 3:Reviews30012002.PubMed/NCBI | |
Logan CY and Nusse R: The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 20:781–810. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cadigan KM and Peifer M: Wnt signaling from development to disease: Insights from model systems. Cold Spring Harb Perspect Biol. 1:a0028812009. View Article : Google Scholar : PubMed/NCBI | |
van Amerongen R and Nusse R: Towards an integrated view of Wnt signaling in development. Development. 136:3205–3214. 2009. View Article : Google Scholar : PubMed/NCBI | |
MacDonald BT, Tamai K and He X: Wnt/beta-catenin signaling: Components, mechanisms, and diseases. Dev Cell. 17:9–26. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kaufmann P, Black S and Huppertz B: Endovascular trophoblast invasion: Implications for the pathogenesis of intrauterine growth retardation and preeclampsia. Biol Reprod. 69:1–7. 2003. View Article : Google Scholar : PubMed/NCBI | |
Sonderegger S, Pollheimer J and Knöfler M: Wnt signalling in implantation, decidualisation and placental differentiation-review. Placenta. 31:839–847. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ma XR, Edmund Sim UH, Pauline B, Patricia L and Rahman J: Overexpression of WNT2 and TSG101 genes in colorectal carcinoma. Trop Biomed. 25:46–57. 2008.PubMed/NCBI | |
Geng M, Cao YC, Chen YJ, Jiang H, Bi LQ and Liu XH: Loss of Wnt5a and Ror2 protein in hepatocellular carcinoma associated with poor prognosis. World J Gastroenterol. 18:1328–1338. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bui TD, Zhang L, Rees MC, Bicknell R and Harris AL: Expression and hormone regulation of Wnt2, 3, 4, 5a, 7a, 7b and 10b in normal human endometrium and endometrial carcinoma. Br J Cancer. 75:1131–1136. 1997. View Article : Google Scholar : PubMed/NCBI | |
Ge JF, Xu YY, Qin G, Cheng JQ and Chen FH: Resveratrol Ameliorates the anxiety- and depression-like behavior of subclinical hypothyroidism rat: Possible involvement of the HPT Axis, HPA Axis, and Wnt/β-Catenin Pathway. Front Endocrinol (Lausanne). 7:442016. View Article : Google Scholar : PubMed/NCBI | |
Oishi I, Suzuki H, Onishi N, Takada R, Kani S, Ohkawara B, Koshida I, Suzuki K, Yamada G, Schwabe GC, et al: The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes Cells. 8:645–654. 2003. View Article : Google Scholar : PubMed/NCBI | |
Tang Y, Gholamin S, Schubert S, Willardson MI, Lee A, Bandopadhayay P, Bergthold G, Masoud S, Nguyen B, Vue N, et al: Epigenetic targeting of Hedgehog pathway transcriptional output through BET bromodomain inhibition. Nat Med. 20:732–740. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rubin LL and de Sauvage FJ: Targeting the Hedgehog pathway in cancer. Nat Rev Drug Discov. 5:1026–1033. 2006. View Article : Google Scholar : PubMed/NCBI | |
Jia Y, Wang Y and Xie J: The Hedgehog pathway: Role in cell differentiation, polarity and proliferation. Arch Toxicol. 89:179–191. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jeng KS, Chang CF and Lin SS: Sonic Hedgehog signaling in organogenesis, tumors, and tumor microenvironments. Int J Mol Sci. 21:7582020. View Article : Google Scholar : PubMed/NCBI | |
Min TH, Kriebel M, Hou S and Pera EM: The dual regulator Sufu integrates Hedgehog and Wnt signals in the early Xenopus embryo. Dev Biol. 358:262–276. 2011. View Article : Google Scholar : PubMed/NCBI | |
Koukoura O, Sifakis S and Spandidos DA: DNA methylation in the human placenta and fetal growth (review). Mol Med Rep. 5:883–889. 2012. View Article : Google Scholar : PubMed/NCBI | |
Serman L, Vlahović M, Sijan M, Bulić-Jakus F, Serman A, Sincić N, Matijević R, Jurić-Lekić G and Katusić A: The impact of 5-azacytidine on placental weight, glycoprotein pattern and proliferating cell nuclear antigen expression in rat placenta. Placenta. 28:803–811. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chelbi ST, Mondon F, Jammes H, Buffat C, Mignot TM, Tost J, Busato F, Gut I, Rebourcet R, Laissue P, et al: Expressional and epigenetic alterations of placental serine protease inhibitors: SERPINA3 is a potential marker of preeclampsia. Hypertension. 49:76–83. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ferreira JC, Choufani S, Grafodatskaya D, Butcher DT, Zhao C, Chitayat D, Shuman C, Kingdom J, Keating S and Weksberg R: WNT2 promoter methylation in human placenta is associated with low birthweight percentile in the neonate. Epigenetics. 6:440–449. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dexheimer PJ and Cochella L: MicroRNAs: From mechanism to organism. Front Cell Dev Biol. 8:4092020. View Article : Google Scholar : PubMed/NCBI | |
Duchaine TF and Fabian MR: Mechanistic insights into MicroRNA-Mediated gene silencing. Cold Spring Harb Perspect Biol. 11:a0327712019. View Article : Google Scholar : PubMed/NCBI | |
Gebert LFR and MacRae IJ: Regulation of microRNA function in animals. Nat Rev Mol Cell Biol. 20:21–37. 2019. View Article : Google Scholar : PubMed/NCBI | |
Paul P, Chakraborty A, Sarkar D, Langthasa M, Rahman M, Bari M, Singha RS, Malakar AK and Chakraborty S: Interplay between miRNAs and human diseases. J Cell Physiol. 233:2007–2018. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ciesla M, Skrzypek K, Kozakowska M, Loboda A, Jozkowicz A and Dulak J: MicroRNAs as biomarkers of disease onset. Anal Bioanal Chem. 401:2051–2061. 2011. View Article : Google Scholar : PubMed/NCBI | |
Huang W: MicroRNAs: Biomarkers, diagnostics, and therapeutics. Methods Mol Biol. 1617:57–67. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kochhar P, Dwarkanath P, Ravikumar G, Thomas A, Crasta J, Thomas T, Kurpad AV and Mukhopadhyay A: Placental expression of miR-21-5p, miR-210-3p and miR-141-3p: Relation to human fetoplacental growth. Eur J Clin Nutr. 76:730–738. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zarkovic M, Hufsky F, Markert UR and Marz M: The Role of Non-Coding RNAs in the Human Placenta. Cells. 11:15882022. View Article : Google Scholar : PubMed/NCBI | |
Xu P, Ma Y, Wu H and Wang YL: Placenta-Derived MicroRNAs in the pathophysiology of Human pregnancy. Front Cell Dev Biol. 9:6463262021. View Article : Google Scholar : PubMed/NCBI | |
Awamleh Z, Gloor GB and Han VKM: Placental microRNAs in pregnancies with early onset intrauterine growth restriction and preeclampsia: Potential impact on gene expression and pathophysiology. BMC Med Genomics. 12:912019. View Article : Google Scholar : PubMed/NCBI | |
He S, Yang F, Yang M, An W, Maguire EM, Chen Q, Xiao R, Wu W, Zhang L, Wang W and Xiao Q: miR-214-3p-Sufu-GLI1 is a novel regulatory axis controlling inflammatory smooth muscle cell differentiation from stem cells and neointimal hyperplasia. Stem Cell Res Ther. 11:4652020. View Article : Google Scholar : PubMed/NCBI | |
Lee DY, Deng Z, Wang CH and Yang BB: MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc Natl Acad Sci USA. 104:20350–20355. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hyun J, Wang S, Kim J, Rao KM, Park SY, Chung I, Ha CS, Kim SW, Yun YH and Jung Y: MicroRNA-378 limits activation of hepatic stellate cells and liver fibrosis by suppressing Gli3 expression. Nat Commun. 7:109932016. View Article : Google Scholar : PubMed/NCBI | |
Kardum V, Karin V, Glibo M, Skrtic A, Martic TN, Ibisevic N, Skenderi F, Vranic S and Serman L: Methylation-associated silencing of SFRP1 gene in high-grade serous ovarian carcinomas. Ann Diagn Pathol. 31:45–49. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rizzardi AE, Johnson AT, Vogel RI, Pambuccian SE, Henriksen J, Skubitz AP, Metzger GJ and Schmechel SC: Quantitative comparison of immunohistochemical staining measured by digital image analysis versus pathologist visual scoring. Diagn Pathol. 7:422012. View Article : Google Scholar : PubMed/NCBI | |
Vrsalovic MM, Korac P, Dominis M, Ostojic S, Mannhalter C and Kusec R: T- and B-cell clonality and frequency of human herpes viruses-6, −8 and Epstein Barr virus in angioimmunoblastic T-cell lymphoma. Hematol Oncol. 22:169–177. 2004. View Article : Google Scholar : PubMed/NCBI | |
Paluszczak J, Wiśniewska D, Kostrzewska-Poczekaj M, Kiwerska K, Grénman R, Mielcarek-Kuchta D and Jarmuż-Szymczak M: Prognostic significance of the methylation of Wnt pathway antagonists-CXXC4, DACT2, and the inhibitors of sonic hedgehog signaling-ZIC1, ZIC4, and HHIP in head and neck squamous cell carcinomas. Clin Oral Investig. 21:1777–1788. 2017. View Article : Google Scholar : PubMed/NCBI | |
Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI | |
Sola IM, Serman A, Karin-Kujundzic V, Paic F, Skrtic A, Slatina P, Kakarigi L, Vranic S and Serman L: Dishevelled family proteins (DVL1-3) expression in intrauterine growth restriction (IUGR) placentas. Bosn J Basic Med Sci. 21:447–453. 2021.PubMed/NCBI | |
Julian CG, Wilson MJ, Lopez M, Yamashiro H, Tellez W, Rodriguez A, Bigham AW, Shriver MD, Rodriguez C, Vargas E and Moore LG: Augmented uterine artery blood flow and oxygen delivery protect Andeans from altitude-associated reductions in fetal growth. Am J Physiol Regul Integr Comp Physiol. 296:R1564–R1575. 2009. View Article : Google Scholar : PubMed/NCBI | |
Williams LA, Evans SF and Newnham JP: Prospective cohort study of factors influencing the relative weights of the placenta and the newborn infant. BMJ. 314:1864–1868. 1997. View Article : Google Scholar : PubMed/NCBI | |
Thompson LP: Effects of chronic hypoxia on fetal coronary responses. High Alt Med Biol. 4:215–224. 2003. View Article : Google Scholar : PubMed/NCBI | |
Rashid CS, Bansal A and Simmons RA: Oxidative stress, intrauterine growth restriction, and developmental programming of type 2 diabetes. Physiology (Bethesda). 33:348–359. 2018.PubMed/NCBI | |
Zhang C, Tannous E and Zheng JJ: Oxidative stress upregulates Wnt signaling in human retinal microvascular endothelial cells through activation of disheveled. J Cell Biochem. 120:14044–14054. 2019. View Article : Google Scholar : PubMed/NCBI | |
Funato Y, Michiue T, Asashima M and Miki H: The thioredoxin-related redox-regulating protein nucleoredoxin inhibits Wnt-beta-catenin signalling through dishevelled. Nat Cell Biol. 8:501–508. 2006. View Article : Google Scholar : PubMed/NCBI | |
Vikram A, Kim YR, Kumar S, Naqvi A, Hoffman TA, Kumar A, Miller FJ Jr, Kim CS and Irani K: Canonical Wnt signaling induces vascular endothelial dysfunction via p66Shc-regulated reactive oxygen species. Arterioscler Thromb Vasc Biol. 34:2301–2309. 2014. View Article : Google Scholar : PubMed/NCBI | |
Spillmann F, Van Linthout S, Miteva K, Lorenz M, Stangl V, Schultheiss HP and Tschöpe C: LXR agonism improves TNF-α-induced endothelial dysfunction in the absence of its cholesterol-modulating effects. Atherosclerosis. 232:1–9. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bretón-Romero R, Feng B, Holbrook M, Farb MG, Fetterman JL, Linder EA, Berk BD, Masaki N, Weisbrod RM, Inagaki E, et al: Endothelial dysfunction in human diabetes is mediated by Wnt5a-JNK signaling. Arterioscler Thromb Vasc Biol. 36:561–569. 2016. View Article : Google Scholar : PubMed/NCBI | |
Caricasole A, Copani A, Caraci F, Aronica E, Rozemuller AJ, Caruso A, Storto M, Gaviraghi G, Terstappen GC and Nicoletti F: Induction of Dickkopf-1, a negative modulator of the Wnt pathway, is associated with neuronal degeneration in Alzheimer's brain. J Neurosci. 24:6021–6027. 2004. View Article : Google Scholar : PubMed/NCBI | |
Alvarez AR, Godoy JA, Mullendorff K, Olivares GH, Bronfman M and Inestrosa NC: Wnt-3a overcomes beta-amyloid toxicity in rat hippocampal neurons. Exp Cell Res. 297:186–196. 2004. View Article : Google Scholar : PubMed/NCBI | |
Fan M, Xu Y, Hong F, Gao X, Xin G, Hong H, Dong L and Zhao X: Rac1/β-Catenin signalling pathway contributes to trophoblast cell invasion by targeting Snail and MMP9. Cell Physiol Biochem. 38:1319–1332. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pennington KA, Schlitt JM, Jackson DL, Schulz LC and Schust DJ: Preeclampsia: Multiple approaches for a multifactorial disease. Dis Model Mech. 5:9–18. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wu Q, Wu G and Li JX: Effect of hypoxia on expression of placental trophoblast cells SATB1 and β-catenin and its correlation with the pathogenesis of preeclampsia. Asian Pac J Trop Med. 9:567–571. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bischof P and Campana A: Molecular mediators of implantation. Baillieres Best Pract Res Clin Obstet Gynaecol. 14:801–814. 2000. View Article : Google Scholar : PubMed/NCBI | |
Nadeem L, Munir S, Fu G, Dunk C, Baczyk D, Caniggia I, Lye S and Peng C: Nodal signals through activin receptor-like kinase 7 to inhibit trophoblast migration and invasion: Implication in the pathogenesis of preeclampsia. Am J Pathol. 178:1177–1189. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tang C, Mei L, Pan L, Xiong W, Zhu H, Ruan H, Zou C, Tang L, Iguchi T and Wu X: Hedgehog signaling through GLI1 and GLI2 is required for epithelial-mesenchymal transition in human trophoblasts. Biochim Biophys Acta. 1850:1438–1448. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y and Zhang Y: Forkhead box C2 promotes the invasion ability of human trophoblast cells through Hedgehog (Hh) signaling pathway. Cell Biol Int. 42:859–866. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Heydeck W, Zeng H and Liu A: Dual function of suppressor of fused in Hh pathway activation and mouse spinal cord patterning. Dev Biol. 362:141–153. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tariki M, Wieczorek SA, Schneider P, Bänfer S, Veitinger S, Jacob R, Fendrich V and Lauth M: RIO kinase 3 acts as a SUFU-dependent positive regulator of Hedgehog signaling. Cell Signal. 25:2668–2675. 2013. View Article : Google Scholar : PubMed/NCBI | |
Banister CE, Koestler DC, Maccani MA, Padbury JF, Houseman EA and Marsit CJ: Infant growth restriction is associated with distinct patterns of DNA methylation in human placentas. Epigenetics. 6:920–927. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kimura AP, Liebhaber SA and Cooke NE: Epigenetic modifications at the human growth hormone locus predict distinct roles for histone acetylation and methylation in placental gene activation. Mol Endocrinol. 18:1018–1032. 2004. View Article : Google Scholar : PubMed/NCBI | |
Chuang HC, Chang CW, Chang GD, Yao TP and Chen H: Histone deacetylase 3 binds to and regulates the GCMa transcription factor. Nucleic Acids Res. 34:1459–1469. 2006. View Article : Google Scholar : PubMed/NCBI | |
Fu G, Brkić J, Hayder H and Peng C: MicroRNAs in Human placental development and pregnancy complications. Int J Mol Sci. 14:5519–5544. 2013. View Article : Google Scholar : PubMed/NCBI | |
Higashijima A, Miura K, Mishima H, Kinoshita A, Jo O, Abe S, Hasegawa Y, Miura S, Yamasaki K, Yoshida A, et al: Characterization of placenta-specific microRNAs in fetal growth restriction pregnancy. Prenat Diagn. 33:214–222. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pineles BL, Romero R, Montenegro D, Tarca AL, Han YM, Kim YM, Draghici S, Espinoza J, Kusanovic JP, Mittal P, et al: Distinct subsets of microRNAs are expressed differentially in the human placentas of patients with preeclampsia. Am J Obstet Gynecol. 196:261.e1–e6. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhu XM, Han T, Sargent IL, Yin GW and Yao YQ: Differential expression profile of microRNAs in human placentas from preeclamptic pregnancies vs normal pregnancies. Am J Obstet Gynecol. 200:661.e1–e7. 2009. View Article : Google Scholar : PubMed/NCBI | |
Donker RB, Mouillet JF, Nelson DM and Sadovsky Y: The expression of Argonaute2 and related microRNA biogenesis proteins in normal and hypoxic trophoblasts. Mol Hum Reprod. 13:273–279. 2007. View Article : Google Scholar : PubMed/NCBI | |
Peng Y, Qin Y, Zhang X, Deng S, Yuan Y, Feng X, Chen W, Hu F, Gao Y, He J, et al: MiRNA-20b/SUFU/Wnt axis accelerates gastric cancer cell proliferation, migration and EMT. Heliyon. 7:e066952021. View Article : Google Scholar : PubMed/NCBI | |
Alimirah F, Peng X, Gupta A, Yuan L, Welsh J, Cleary M and Mehta RG: Crosstalk between the vitamin D receptor (VDR) and miR-214 in regulating SuFu, a hedgehog pathway inhibitor in breast cancer cells. Exp Cell Res. 349:15–22. 2016. View Article : Google Scholar : PubMed/NCBI | |
Peng Y, Zhang X, Ma Q, Yan R, Qin Y, Zhao Y, Cheng Y, Yang M, Wang Q, Feng X, et al: MiRNA-194 activates the Wnt/β-catenin signaling pathway in gastric cancer by targeting the negative Wnt regulator, SUFU. Cancer Lett. 385:117–127. 2017. View Article : Google Scholar : PubMed/NCBI | |
Park M, Kim M, Hwang D, Park M, Kim WK, Kim SK, Shin J, Park ES, Kang CM, Paik YK and Kim H: Characterization of gene expression and activated signaling pathways in solid-pseudopapillary neoplasm of pancreas. Mod Pathol. 27:580–593. 2014. View Article : Google Scholar : PubMed/NCBI | |
Long H, Wang Z, Chen J, Xiang T, Li Q, Diao X and Zhu B: microRNA-214 promotes epithelial-mesenchymal transition and metastasis in lung adenocarcinoma by targeting the suppressor-of-fused protein (Sufu). Oncotarget. 6:38705–38718. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ma L, Yang X, Wei R, Ye T, Zhou JK, Wen M, Men R, Li P, Dong B, Liu L, et al: MicroRNA-214 promotes hepatic stellate cell activation and liver fibrosis by suppressing Sufu expression. Cell Death Dis. 9:7182018. View Article : Google Scholar : PubMed/NCBI | |
Tupone MG, D'Aguanno S, Di Martile M, Valentini E, Desideri M, Trisciuoglio D, Donzelli S, Sacconi A, Buglioni S, Ercolani C, et al: microRNA-378a-5p iS a novel positive regulator of melanoma progression. Oncogenesis. 9:222020. View Article : Google Scholar : PubMed/NCBI | |
Hua Z, Lv Q, Ye W, Wong CK, Cai G, Gu D, Ji Y, Zhao C, Wang J, Yang BB and Zhang Y: MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS One. 1:e1162006. View Article : Google Scholar : PubMed/NCBI | |
Odibo AO, Nelson D, Stamilio DM, Sehdev HM and Macones GA: Advanced maternal age is an independent risk factor for intrauterine growth restriction. Am J Perinatol. 23:325–328. 2006. View Article : Google Scholar : PubMed/NCBI | |
Palatnik A, De Cicco S, Zhang L, Simpson P, Hibbard J and Egede LE: The association between advanced maternal age and diagnosis of small for gestational age. Am J Perinatol. 37:37–43. 2020. View Article : Google Scholar : PubMed/NCBI | |
Vega J, Sáez G, Smith M, Agurto M and Morris NM: Risk factors for low birth weight and intrauterine growth retardation in Santiago, Chile. Rev Med Chil. 121:1210–1219. 1993.(In Spanish). PubMed/NCBI | |
Kalinka J, Hanke W and Szymczak W: Risk factors of intrauterine growth retardation: A study of an urban population in Poland. Cent Eur J Public Health. 4:192–196. 1996.PubMed/NCBI | |
Tierney-Gumaer R and Reifsnider E: Risk factors for low birth weight infants of Hispanic, African American, and White women in Bexar County, Texas. Public Health Nurs. 25:390–400. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yu SH, Mason J, Crum J, Cappa C and Hotchkiss DR: Differential effects of young maternal age on child growth. Glob Health Action. 9:311712016. View Article : Google Scholar : PubMed/NCBI |