Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
February-2023 Volume 27 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2023 Volume 27 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

WNT5A, β‑catenin and SUFU expression patterns, and the significance of microRNA deregulation in placentas with intrauterine growth restriction

  • Authors:
    • Ida Marija Sola
    • Valentina Karin-Kujundzic
    • Frane Paic
    • Lada Lijovic
    • Mislav Glibo
    • Nikola Serman
    • Tihana Duic
    • Anita Skrtic
    • Krunoslav Kuna
    • Semir Vranic
    • Ljiljana Serman
  • View Affiliations / Copyright

    Affiliations: Department of Obstetrics and Gynecology, University Hospital Sestre Milosrdnice, 10000 Zagreb, Croatia, Department of Biology, University of Zagreb, 10000 Zagreb, Croatia, Department of Anesthesiology and Critical Care, General Hospital Fra Mihovil Sučić, 80101 Livno, Bosnia and Herzegovina, Zagreb Emergency Medicine Service, University of Zagreb, 10000 Zagreb, Croatia, Centre of Excellence in Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia, College of Medicine, QU Health, Qatar University, 2713 Doha, Qatar
    Copyright: © Sola et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 28
    |
    Published online on: December 13, 2022
       https://doi.org/10.3892/mmr.2022.12914
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Placental insufficiency is a common cause of intrauterine growth restriction (IUGR). It affects ~10% of pregnancies and increases fetal and neonatal morbidity and mortality. Although Wnt and Hh pathways are crucial for embryonic development and placentation, their role in the pathology of IUGR is still not sufficiently explored. The present study analyzed the expression of positive regulators of the Wnt pathway, WNT5A and β‑catenin, and the expression of the Hh pathway negative regulator suppressor of fused (SUFU). Immunohistochemical and reverse transcription‑quantitative PCR (RT‑qPCR) assays were performed on 34 IUGR and 18 placental tissue samples from physiologic singleton‑term pregnancies. Epigenetic mechanisms of SUFU gene regulation were also investigated by methylation‑specific PCR analysis of its promoter and RT‑qPCR analysis of miR‑214‑3p and miR‑378a‑5p expression. WNT5A protein expression was higher in endothelial cells of placental villi from IUGR compared with control tissues. That was also the case for β‑catenin protein expression in trophoblasts and endothelial cells and SUFU protein expression in trophoblasts from IUGR placentas. The SUFU gene promoter remained unmethylated in all tissue samples, while miR‑214‑3p and miR‑378a‑5p were downregulated in IUGR. The present results suggested altered Wnt and Hh signaling in IUGR. DNA methylation did not appear to be a mechanism of SUFU regulation in the pathogenesis of IUGR, but its expression could be regulated by miRNA targeting.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

ACOG Practice bulletin no. 134, . Fetal growth restriction. Obstet Gynecol. 121:1122–1133. 2013. View Article : Google Scholar : PubMed/NCBI

2 

Hutter D, Kingdom J and Jaeggi E: Causes and mechanisms of intrauterine hypoxia and its impact on the fetal cardiovascular system: A review. Int J Pediatr. 2010:4013232010. View Article : Google Scholar : PubMed/NCBI

3 

Krishna U and Bhalerao S: Placental insufficiency and fetal growth restriction. J Obstet Gynaecol India. 61:505–511. 2011. View Article : Google Scholar : PubMed/NCBI

4 

Pollack RN and Divon MY: Intrauterine growth retardation: Definition, classification, and etiology. Clin Obstet Gynecol. 35:99–107. 1992. View Article : Google Scholar : PubMed/NCBI

5 

Guellec I, Lapillonne A, Renolleau S, Charlaluk ML, Roze JC, Marret S, Vieux R, Monique K and Ancel PY; EPIPAGE Study Group, : Neurologic outcomes at school age in very preterm infants born with severe or mild growth restriction. Pediatrics. 127:e883–e891. 2011. View Article : Google Scholar : PubMed/NCBI

6 

Sacchi C, Marino C, Nosarti C, Vieno A, Visentin S and Simonelli A: Association of intrauterine growth restriction and small for gestational age status with childhood cognitive outcomes: A systematic review and meta-analysis. JAMA Pediatr. 174:772–781. 2020. View Article : Google Scholar : PubMed/NCBI

7 

Levine TA, Grunau RE, McAuliffe FM, Pinnamaneni R, Foran A and Alderdice FA: Early childhood neurodevelopment after intrauterine growth restriction: A systematic review. Pediatrics. 135:126–141. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Latos PA and Hemberger M: From the stem of the placental tree: Trophoblast stem cells and their progeny. Development. 143:3650–3660. 2016. View Article : Google Scholar : PubMed/NCBI

9 

Hemberger M, Hanna CW and Dean W: Mechanisms of early placental development in mouse and humans. Nat Rev Genet. 21:27–43. 2020. View Article : Google Scholar : PubMed/NCBI

10 

Knöfler M and Pollheimer J: Human placental trophoblast invasion and differentiation: A particular focus on Wnt signaling. Front Genet. 4:1902013. View Article : Google Scholar : PubMed/NCBI

11 

Matsuura K, Jigami T, Taniue K, Morishita Y, Adachi S, Senda T, Nonaka A, Aburatani H, Nakamura T and Akiyama T: Identification of a link between Wnt/β-catenin signalling and the cell fusion pathway. Nat Commun. 2:5482011. View Article : Google Scholar : PubMed/NCBI

12 

Aoki M, Mieda M, Ikeda T, Hamada Y, Nakamura H and Okamoto H: R-spondin3 is required for mouse placental development. Dev Biol. 301:218–226. 2007. View Article : Google Scholar : PubMed/NCBI

13 

Miller JR: The Wnts. Genome Biol. 3:Reviews30012002.PubMed/NCBI

14 

Logan CY and Nusse R: The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 20:781–810. 2004. View Article : Google Scholar : PubMed/NCBI

15 

Cadigan KM and Peifer M: Wnt signaling from development to disease: Insights from model systems. Cold Spring Harb Perspect Biol. 1:a0028812009. View Article : Google Scholar : PubMed/NCBI

16 

van Amerongen R and Nusse R: Towards an integrated view of Wnt signaling in development. Development. 136:3205–3214. 2009. View Article : Google Scholar : PubMed/NCBI

17 

MacDonald BT, Tamai K and He X: Wnt/beta-catenin signaling: Components, mechanisms, and diseases. Dev Cell. 17:9–26. 2009. View Article : Google Scholar : PubMed/NCBI

18 

Kaufmann P, Black S and Huppertz B: Endovascular trophoblast invasion: Implications for the pathogenesis of intrauterine growth retardation and preeclampsia. Biol Reprod. 69:1–7. 2003. View Article : Google Scholar : PubMed/NCBI

19 

Sonderegger S, Pollheimer J and Knöfler M: Wnt signalling in implantation, decidualisation and placental differentiation-review. Placenta. 31:839–847. 2010. View Article : Google Scholar : PubMed/NCBI

20 

Ma XR, Edmund Sim UH, Pauline B, Patricia L and Rahman J: Overexpression of WNT2 and TSG101 genes in colorectal carcinoma. Trop Biomed. 25:46–57. 2008.PubMed/NCBI

21 

Geng M, Cao YC, Chen YJ, Jiang H, Bi LQ and Liu XH: Loss of Wnt5a and Ror2 protein in hepatocellular carcinoma associated with poor prognosis. World J Gastroenterol. 18:1328–1338. 2012. View Article : Google Scholar : PubMed/NCBI

22 

Bui TD, Zhang L, Rees MC, Bicknell R and Harris AL: Expression and hormone regulation of Wnt2, 3, 4, 5a, 7a, 7b and 10b in normal human endometrium and endometrial carcinoma. Br J Cancer. 75:1131–1136. 1997. View Article : Google Scholar : PubMed/NCBI

23 

Ge JF, Xu YY, Qin G, Cheng JQ and Chen FH: Resveratrol Ameliorates the anxiety- and depression-like behavior of subclinical hypothyroidism rat: Possible involvement of the HPT Axis, HPA Axis, and Wnt/β-Catenin Pathway. Front Endocrinol (Lausanne). 7:442016. View Article : Google Scholar : PubMed/NCBI

24 

Oishi I, Suzuki H, Onishi N, Takada R, Kani S, Ohkawara B, Koshida I, Suzuki K, Yamada G, Schwabe GC, et al: The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes Cells. 8:645–654. 2003. View Article : Google Scholar : PubMed/NCBI

25 

Tang Y, Gholamin S, Schubert S, Willardson MI, Lee A, Bandopadhayay P, Bergthold G, Masoud S, Nguyen B, Vue N, et al: Epigenetic targeting of Hedgehog pathway transcriptional output through BET bromodomain inhibition. Nat Med. 20:732–740. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Rubin LL and de Sauvage FJ: Targeting the Hedgehog pathway in cancer. Nat Rev Drug Discov. 5:1026–1033. 2006. View Article : Google Scholar : PubMed/NCBI

27 

Jia Y, Wang Y and Xie J: The Hedgehog pathway: Role in cell differentiation, polarity and proliferation. Arch Toxicol. 89:179–191. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Jeng KS, Chang CF and Lin SS: Sonic Hedgehog signaling in organogenesis, tumors, and tumor microenvironments. Int J Mol Sci. 21:7582020. View Article : Google Scholar : PubMed/NCBI

29 

Min TH, Kriebel M, Hou S and Pera EM: The dual regulator Sufu integrates Hedgehog and Wnt signals in the early Xenopus embryo. Dev Biol. 358:262–276. 2011. View Article : Google Scholar : PubMed/NCBI

30 

Koukoura O, Sifakis S and Spandidos DA: DNA methylation in the human placenta and fetal growth (review). Mol Med Rep. 5:883–889. 2012. View Article : Google Scholar : PubMed/NCBI

31 

Serman L, Vlahović M, Sijan M, Bulić-Jakus F, Serman A, Sincić N, Matijević R, Jurić-Lekić G and Katusić A: The impact of 5-azacytidine on placental weight, glycoprotein pattern and proliferating cell nuclear antigen expression in rat placenta. Placenta. 28:803–811. 2007. View Article : Google Scholar : PubMed/NCBI

32 

Chelbi ST, Mondon F, Jammes H, Buffat C, Mignot TM, Tost J, Busato F, Gut I, Rebourcet R, Laissue P, et al: Expressional and epigenetic alterations of placental serine protease inhibitors: SERPINA3 is a potential marker of preeclampsia. Hypertension. 49:76–83. 2007. View Article : Google Scholar : PubMed/NCBI

33 

Ferreira JC, Choufani S, Grafodatskaya D, Butcher DT, Zhao C, Chitayat D, Shuman C, Kingdom J, Keating S and Weksberg R: WNT2 promoter methylation in human placenta is associated with low birthweight percentile in the neonate. Epigenetics. 6:440–449. 2011. View Article : Google Scholar : PubMed/NCBI

34 

Dexheimer PJ and Cochella L: MicroRNAs: From mechanism to organism. Front Cell Dev Biol. 8:4092020. View Article : Google Scholar : PubMed/NCBI

35 

Duchaine TF and Fabian MR: Mechanistic insights into MicroRNA-Mediated gene silencing. Cold Spring Harb Perspect Biol. 11:a0327712019. View Article : Google Scholar : PubMed/NCBI

36 

Gebert LFR and MacRae IJ: Regulation of microRNA function in animals. Nat Rev Mol Cell Biol. 20:21–37. 2019. View Article : Google Scholar : PubMed/NCBI

37 

Paul P, Chakraborty A, Sarkar D, Langthasa M, Rahman M, Bari M, Singha RS, Malakar AK and Chakraborty S: Interplay between miRNAs and human diseases. J Cell Physiol. 233:2007–2018. 2018. View Article : Google Scholar : PubMed/NCBI

38 

Ciesla M, Skrzypek K, Kozakowska M, Loboda A, Jozkowicz A and Dulak J: MicroRNAs as biomarkers of disease onset. Anal Bioanal Chem. 401:2051–2061. 2011. View Article : Google Scholar : PubMed/NCBI

39 

Huang W: MicroRNAs: Biomarkers, diagnostics, and therapeutics. Methods Mol Biol. 1617:57–67. 2017. View Article : Google Scholar : PubMed/NCBI

40 

Kochhar P, Dwarkanath P, Ravikumar G, Thomas A, Crasta J, Thomas T, Kurpad AV and Mukhopadhyay A: Placental expression of miR-21-5p, miR-210-3p and miR-141-3p: Relation to human fetoplacental growth. Eur J Clin Nutr. 76:730–738. 2022. View Article : Google Scholar : PubMed/NCBI

41 

Zarkovic M, Hufsky F, Markert UR and Marz M: The Role of Non-Coding RNAs in the Human Placenta. Cells. 11:15882022. View Article : Google Scholar : PubMed/NCBI

42 

Xu P, Ma Y, Wu H and Wang YL: Placenta-Derived MicroRNAs in the pathophysiology of Human pregnancy. Front Cell Dev Biol. 9:6463262021. View Article : Google Scholar : PubMed/NCBI

43 

Awamleh Z, Gloor GB and Han VKM: Placental microRNAs in pregnancies with early onset intrauterine growth restriction and preeclampsia: Potential impact on gene expression and pathophysiology. BMC Med Genomics. 12:912019. View Article : Google Scholar : PubMed/NCBI

44 

He S, Yang F, Yang M, An W, Maguire EM, Chen Q, Xiao R, Wu W, Zhang L, Wang W and Xiao Q: miR-214-3p-Sufu-GLI1 is a novel regulatory axis controlling inflammatory smooth muscle cell differentiation from stem cells and neointimal hyperplasia. Stem Cell Res Ther. 11:4652020. View Article : Google Scholar : PubMed/NCBI

45 

Lee DY, Deng Z, Wang CH and Yang BB: MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc Natl Acad Sci USA. 104:20350–20355. 2007. View Article : Google Scholar : PubMed/NCBI

46 

Hyun J, Wang S, Kim J, Rao KM, Park SY, Chung I, Ha CS, Kim SW, Yun YH and Jung Y: MicroRNA-378 limits activation of hepatic stellate cells and liver fibrosis by suppressing Gli3 expression. Nat Commun. 7:109932016. View Article : Google Scholar : PubMed/NCBI

47 

Kardum V, Karin V, Glibo M, Skrtic A, Martic TN, Ibisevic N, Skenderi F, Vranic S and Serman L: Methylation-associated silencing of SFRP1 gene in high-grade serous ovarian carcinomas. Ann Diagn Pathol. 31:45–49. 2017. View Article : Google Scholar : PubMed/NCBI

48 

Rizzardi AE, Johnson AT, Vogel RI, Pambuccian SE, Henriksen J, Skubitz AP, Metzger GJ and Schmechel SC: Quantitative comparison of immunohistochemical staining measured by digital image analysis versus pathologist visual scoring. Diagn Pathol. 7:422012. View Article : Google Scholar : PubMed/NCBI

49 

Vrsalovic MM, Korac P, Dominis M, Ostojic S, Mannhalter C and Kusec R: T- and B-cell clonality and frequency of human herpes viruses-6, −8 and Epstein Barr virus in angioimmunoblastic T-cell lymphoma. Hematol Oncol. 22:169–177. 2004. View Article : Google Scholar : PubMed/NCBI

50 

Paluszczak J, Wiśniewska D, Kostrzewska-Poczekaj M, Kiwerska K, Grénman R, Mielcarek-Kuchta D and Jarmuż-Szymczak M: Prognostic significance of the methylation of Wnt pathway antagonists-CXXC4, DACT2, and the inhibitors of sonic hedgehog signaling-ZIC1, ZIC4, and HHIP in head and neck squamous cell carcinomas. Clin Oral Investig. 21:1777–1788. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

52 

Sola IM, Serman A, Karin-Kujundzic V, Paic F, Skrtic A, Slatina P, Kakarigi L, Vranic S and Serman L: Dishevelled family proteins (DVL1-3) expression in intrauterine growth restriction (IUGR) placentas. Bosn J Basic Med Sci. 21:447–453. 2021.PubMed/NCBI

53 

Julian CG, Wilson MJ, Lopez M, Yamashiro H, Tellez W, Rodriguez A, Bigham AW, Shriver MD, Rodriguez C, Vargas E and Moore LG: Augmented uterine artery blood flow and oxygen delivery protect Andeans from altitude-associated reductions in fetal growth. Am J Physiol Regul Integr Comp Physiol. 296:R1564–R1575. 2009. View Article : Google Scholar : PubMed/NCBI

54 

Williams LA, Evans SF and Newnham JP: Prospective cohort study of factors influencing the relative weights of the placenta and the newborn infant. BMJ. 314:1864–1868. 1997. View Article : Google Scholar : PubMed/NCBI

55 

Thompson LP: Effects of chronic hypoxia on fetal coronary responses. High Alt Med Biol. 4:215–224. 2003. View Article : Google Scholar : PubMed/NCBI

56 

Rashid CS, Bansal A and Simmons RA: Oxidative stress, intrauterine growth restriction, and developmental programming of type 2 diabetes. Physiology (Bethesda). 33:348–359. 2018.PubMed/NCBI

57 

Zhang C, Tannous E and Zheng JJ: Oxidative stress upregulates Wnt signaling in human retinal microvascular endothelial cells through activation of disheveled. J Cell Biochem. 120:14044–14054. 2019. View Article : Google Scholar : PubMed/NCBI

58 

Funato Y, Michiue T, Asashima M and Miki H: The thioredoxin-related redox-regulating protein nucleoredoxin inhibits Wnt-beta-catenin signalling through dishevelled. Nat Cell Biol. 8:501–508. 2006. View Article : Google Scholar : PubMed/NCBI

59 

Vikram A, Kim YR, Kumar S, Naqvi A, Hoffman TA, Kumar A, Miller FJ Jr, Kim CS and Irani K: Canonical Wnt signaling induces vascular endothelial dysfunction via p66Shc-regulated reactive oxygen species. Arterioscler Thromb Vasc Biol. 34:2301–2309. 2014. View Article : Google Scholar : PubMed/NCBI

60 

Spillmann F, Van Linthout S, Miteva K, Lorenz M, Stangl V, Schultheiss HP and Tschöpe C: LXR agonism improves TNF-α-induced endothelial dysfunction in the absence of its cholesterol-modulating effects. Atherosclerosis. 232:1–9. 2014. View Article : Google Scholar : PubMed/NCBI

61 

Bretón-Romero R, Feng B, Holbrook M, Farb MG, Fetterman JL, Linder EA, Berk BD, Masaki N, Weisbrod RM, Inagaki E, et al: Endothelial dysfunction in human diabetes is mediated by Wnt5a-JNK signaling. Arterioscler Thromb Vasc Biol. 36:561–569. 2016. View Article : Google Scholar : PubMed/NCBI

62 

Caricasole A, Copani A, Caraci F, Aronica E, Rozemuller AJ, Caruso A, Storto M, Gaviraghi G, Terstappen GC and Nicoletti F: Induction of Dickkopf-1, a negative modulator of the Wnt pathway, is associated with neuronal degeneration in Alzheimer's brain. J Neurosci. 24:6021–6027. 2004. View Article : Google Scholar : PubMed/NCBI

63 

Alvarez AR, Godoy JA, Mullendorff K, Olivares GH, Bronfman M and Inestrosa NC: Wnt-3a overcomes beta-amyloid toxicity in rat hippocampal neurons. Exp Cell Res. 297:186–196. 2004. View Article : Google Scholar : PubMed/NCBI

64 

Fan M, Xu Y, Hong F, Gao X, Xin G, Hong H, Dong L and Zhao X: Rac1/β-Catenin signalling pathway contributes to trophoblast cell invasion by targeting Snail and MMP9. Cell Physiol Biochem. 38:1319–1332. 2016. View Article : Google Scholar : PubMed/NCBI

65 

Pennington KA, Schlitt JM, Jackson DL, Schulz LC and Schust DJ: Preeclampsia: Multiple approaches for a multifactorial disease. Dis Model Mech. 5:9–18. 2012. View Article : Google Scholar : PubMed/NCBI

66 

Wu Q, Wu G and Li JX: Effect of hypoxia on expression of placental trophoblast cells SATB1 and β-catenin and its correlation with the pathogenesis of preeclampsia. Asian Pac J Trop Med. 9:567–571. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Bischof P and Campana A: Molecular mediators of implantation. Baillieres Best Pract Res Clin Obstet Gynaecol. 14:801–814. 2000. View Article : Google Scholar : PubMed/NCBI

68 

Nadeem L, Munir S, Fu G, Dunk C, Baczyk D, Caniggia I, Lye S and Peng C: Nodal signals through activin receptor-like kinase 7 to inhibit trophoblast migration and invasion: Implication in the pathogenesis of preeclampsia. Am J Pathol. 178:1177–1189. 2011. View Article : Google Scholar : PubMed/NCBI

69 

Tang C, Mei L, Pan L, Xiong W, Zhu H, Ruan H, Zou C, Tang L, Iguchi T and Wu X: Hedgehog signaling through GLI1 and GLI2 is required for epithelial-mesenchymal transition in human trophoblasts. Biochim Biophys Acta. 1850:1438–1448. 2015. View Article : Google Scholar : PubMed/NCBI

70 

Zhang Y and Zhang Y: Forkhead box C2 promotes the invasion ability of human trophoblast cells through Hedgehog (Hh) signaling pathway. Cell Biol Int. 42:859–866. 2018. View Article : Google Scholar : PubMed/NCBI

71 

Liu J, Heydeck W, Zeng H and Liu A: Dual function of suppressor of fused in Hh pathway activation and mouse spinal cord patterning. Dev Biol. 362:141–153. 2012. View Article : Google Scholar : PubMed/NCBI

72 

Tariki M, Wieczorek SA, Schneider P, Bänfer S, Veitinger S, Jacob R, Fendrich V and Lauth M: RIO kinase 3 acts as a SUFU-dependent positive regulator of Hedgehog signaling. Cell Signal. 25:2668–2675. 2013. View Article : Google Scholar : PubMed/NCBI

73 

Banister CE, Koestler DC, Maccani MA, Padbury JF, Houseman EA and Marsit CJ: Infant growth restriction is associated with distinct patterns of DNA methylation in human placentas. Epigenetics. 6:920–927. 2011. View Article : Google Scholar : PubMed/NCBI

74 

Kimura AP, Liebhaber SA and Cooke NE: Epigenetic modifications at the human growth hormone locus predict distinct roles for histone acetylation and methylation in placental gene activation. Mol Endocrinol. 18:1018–1032. 2004. View Article : Google Scholar : PubMed/NCBI

75 

Chuang HC, Chang CW, Chang GD, Yao TP and Chen H: Histone deacetylase 3 binds to and regulates the GCMa transcription factor. Nucleic Acids Res. 34:1459–1469. 2006. View Article : Google Scholar : PubMed/NCBI

76 

Fu G, Brkić J, Hayder H and Peng C: MicroRNAs in Human placental development and pregnancy complications. Int J Mol Sci. 14:5519–5544. 2013. View Article : Google Scholar : PubMed/NCBI

77 

Higashijima A, Miura K, Mishima H, Kinoshita A, Jo O, Abe S, Hasegawa Y, Miura S, Yamasaki K, Yoshida A, et al: Characterization of placenta-specific microRNAs in fetal growth restriction pregnancy. Prenat Diagn. 33:214–222. 2013. View Article : Google Scholar : PubMed/NCBI

78 

Pineles BL, Romero R, Montenegro D, Tarca AL, Han YM, Kim YM, Draghici S, Espinoza J, Kusanovic JP, Mittal P, et al: Distinct subsets of microRNAs are expressed differentially in the human placentas of patients with preeclampsia. Am J Obstet Gynecol. 196:261.e1–e6. 2007. View Article : Google Scholar : PubMed/NCBI

79 

Zhu XM, Han T, Sargent IL, Yin GW and Yao YQ: Differential expression profile of microRNAs in human placentas from preeclamptic pregnancies vs normal pregnancies. Am J Obstet Gynecol. 200:661.e1–e7. 2009. View Article : Google Scholar : PubMed/NCBI

80 

Donker RB, Mouillet JF, Nelson DM and Sadovsky Y: The expression of Argonaute2 and related microRNA biogenesis proteins in normal and hypoxic trophoblasts. Mol Hum Reprod. 13:273–279. 2007. View Article : Google Scholar : PubMed/NCBI

81 

Peng Y, Qin Y, Zhang X, Deng S, Yuan Y, Feng X, Chen W, Hu F, Gao Y, He J, et al: MiRNA-20b/SUFU/Wnt axis accelerates gastric cancer cell proliferation, migration and EMT. Heliyon. 7:e066952021. View Article : Google Scholar : PubMed/NCBI

82 

Alimirah F, Peng X, Gupta A, Yuan L, Welsh J, Cleary M and Mehta RG: Crosstalk between the vitamin D receptor (VDR) and miR-214 in regulating SuFu, a hedgehog pathway inhibitor in breast cancer cells. Exp Cell Res. 349:15–22. 2016. View Article : Google Scholar : PubMed/NCBI

83 

Peng Y, Zhang X, Ma Q, Yan R, Qin Y, Zhao Y, Cheng Y, Yang M, Wang Q, Feng X, et al: MiRNA-194 activates the Wnt/β-catenin signaling pathway in gastric cancer by targeting the negative Wnt regulator, SUFU. Cancer Lett. 385:117–127. 2017. View Article : Google Scholar : PubMed/NCBI

84 

Park M, Kim M, Hwang D, Park M, Kim WK, Kim SK, Shin J, Park ES, Kang CM, Paik YK and Kim H: Characterization of gene expression and activated signaling pathways in solid-pseudopapillary neoplasm of pancreas. Mod Pathol. 27:580–593. 2014. View Article : Google Scholar : PubMed/NCBI

85 

Long H, Wang Z, Chen J, Xiang T, Li Q, Diao X and Zhu B: microRNA-214 promotes epithelial-mesenchymal transition and metastasis in lung adenocarcinoma by targeting the suppressor-of-fused protein (Sufu). Oncotarget. 6:38705–38718. 2015. View Article : Google Scholar : PubMed/NCBI

86 

Ma L, Yang X, Wei R, Ye T, Zhou JK, Wen M, Men R, Li P, Dong B, Liu L, et al: MicroRNA-214 promotes hepatic stellate cell activation and liver fibrosis by suppressing Sufu expression. Cell Death Dis. 9:7182018. View Article : Google Scholar : PubMed/NCBI

87 

Tupone MG, D'Aguanno S, Di Martile M, Valentini E, Desideri M, Trisciuoglio D, Donzelli S, Sacconi A, Buglioni S, Ercolani C, et al: microRNA-378a-5p iS a novel positive regulator of melanoma progression. Oncogenesis. 9:222020. View Article : Google Scholar : PubMed/NCBI

88 

Hua Z, Lv Q, Ye W, Wong CK, Cai G, Gu D, Ji Y, Zhao C, Wang J, Yang BB and Zhang Y: MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS One. 1:e1162006. View Article : Google Scholar : PubMed/NCBI

89 

Odibo AO, Nelson D, Stamilio DM, Sehdev HM and Macones GA: Advanced maternal age is an independent risk factor for intrauterine growth restriction. Am J Perinatol. 23:325–328. 2006. View Article : Google Scholar : PubMed/NCBI

90 

Palatnik A, De Cicco S, Zhang L, Simpson P, Hibbard J and Egede LE: The association between advanced maternal age and diagnosis of small for gestational age. Am J Perinatol. 37:37–43. 2020. View Article : Google Scholar : PubMed/NCBI

91 

Vega J, Sáez G, Smith M, Agurto M and Morris NM: Risk factors for low birth weight and intrauterine growth retardation in Santiago, Chile. Rev Med Chil. 121:1210–1219. 1993.(In Spanish). PubMed/NCBI

92 

Kalinka J, Hanke W and Szymczak W: Risk factors of intrauterine growth retardation: A study of an urban population in Poland. Cent Eur J Public Health. 4:192–196. 1996.PubMed/NCBI

93 

Tierney-Gumaer R and Reifsnider E: Risk factors for low birth weight infants of Hispanic, African American, and White women in Bexar County, Texas. Public Health Nurs. 25:390–400. 2008. View Article : Google Scholar : PubMed/NCBI

94 

Yu SH, Mason J, Crum J, Cappa C and Hotchkiss DR: Differential effects of young maternal age on child growth. Glob Health Action. 9:311712016. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Sola IM, Karin-Kujundzic V, Paic F, Lijovic L, Glibo M, Serman N, Duic T, Skrtic A, Kuna K, Vranic S, Vranic S, et al: WNT5A, β‑catenin and SUFU expression patterns, and the significance of microRNA deregulation in placentas with intrauterine growth restriction. Mol Med Rep 27: 28, 2023.
APA
Sola, I.M., Karin-Kujundzic, V., Paic, F., Lijovic, L., Glibo, M., Serman, N. ... Serman, L. (2023). WNT5A, β‑catenin and SUFU expression patterns, and the significance of microRNA deregulation in placentas with intrauterine growth restriction. Molecular Medicine Reports, 27, 28. https://doi.org/10.3892/mmr.2022.12914
MLA
Sola, I. M., Karin-Kujundzic, V., Paic, F., Lijovic, L., Glibo, M., Serman, N., Duic, T., Skrtic, A., Kuna, K., Vranic, S., Serman, L."WNT5A, β‑catenin and SUFU expression patterns, and the significance of microRNA deregulation in placentas with intrauterine growth restriction". Molecular Medicine Reports 27.2 (2023): 28.
Chicago
Sola, I. M., Karin-Kujundzic, V., Paic, F., Lijovic, L., Glibo, M., Serman, N., Duic, T., Skrtic, A., Kuna, K., Vranic, S., Serman, L."WNT5A, β‑catenin and SUFU expression patterns, and the significance of microRNA deregulation in placentas with intrauterine growth restriction". Molecular Medicine Reports 27, no. 2 (2023): 28. https://doi.org/10.3892/mmr.2022.12914
Copy and paste a formatted citation
x
Spandidos Publications style
Sola IM, Karin-Kujundzic V, Paic F, Lijovic L, Glibo M, Serman N, Duic T, Skrtic A, Kuna K, Vranic S, Vranic S, et al: WNT5A, β‑catenin and SUFU expression patterns, and the significance of microRNA deregulation in placentas with intrauterine growth restriction. Mol Med Rep 27: 28, 2023.
APA
Sola, I.M., Karin-Kujundzic, V., Paic, F., Lijovic, L., Glibo, M., Serman, N. ... Serman, L. (2023). WNT5A, β‑catenin and SUFU expression patterns, and the significance of microRNA deregulation in placentas with intrauterine growth restriction. Molecular Medicine Reports, 27, 28. https://doi.org/10.3892/mmr.2022.12914
MLA
Sola, I. M., Karin-Kujundzic, V., Paic, F., Lijovic, L., Glibo, M., Serman, N., Duic, T., Skrtic, A., Kuna, K., Vranic, S., Serman, L."WNT5A, β‑catenin and SUFU expression patterns, and the significance of microRNA deregulation in placentas with intrauterine growth restriction". Molecular Medicine Reports 27.2 (2023): 28.
Chicago
Sola, I. M., Karin-Kujundzic, V., Paic, F., Lijovic, L., Glibo, M., Serman, N., Duic, T., Skrtic, A., Kuna, K., Vranic, S., Serman, L."WNT5A, β‑catenin and SUFU expression patterns, and the significance of microRNA deregulation in placentas with intrauterine growth restriction". Molecular Medicine Reports 27, no. 2 (2023): 28. https://doi.org/10.3892/mmr.2022.12914
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team