
Adipose tissue‑derived extracellular vesicles:
Systemic messengers in health and disease (Review)
- Authors:
- Xiaobo Yang
- Jiayue Hao
- Jie Luo
- Xinliang Lu
- Xianghui Kong
-
Affiliations: Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China, Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zheijiang 310058, P.R. China, Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zheijiang 310006, P.R. China, Bone Marrow Transplantation Center and Institute of Immunology of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China, Bone Marrow Transplantation Center and Institute of Immunology of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China - Published online on: August 23, 2023 https://doi.org/10.3892/mmr.2023.13076
- Article Number: 189
-
Copyright: © Yang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Mohammed MS, Sendra S, Lloret J and Bosch I: Systems and WBANs for Controlling Obesity. J Healthc Eng. 2018:15647482018. View Article : Google Scholar : PubMed/NCBI | |
Kusminski CM, Bickel PE and Scherer PE: Targeting adipose tissue in the treatment of obesity-associated diabetes. Nat Rev Drug Discov. 15:639–660. 2016. View Article : Google Scholar : PubMed/NCBI | |
Abu-Farha M, Al-Mulla F, Thanaraj TA, Kavalakatt S, Ali H, Abdul Ghani M and Abubaker J: Impact of Diabetes in Patients Diagnosed With COVID-19. Front Immunol. 11:5768182020. View Article : Google Scholar : PubMed/NCBI | |
Goodman KE, Magder LS, Baghdadi JD, Pineles L, Levine AR, Perencevich EN and Harris AD: Impact of sex and metabolic comorbidities on coronavirus disease 2019 (COVID-19) mortality risk across age groups: 66 646 inpatients across 613 U.S. Hospitals. Clin Infect Dis. 73:e4113–e4123. 2021. View Article : Google Scholar : PubMed/NCBI | |
Piroth L, Cottenet J, Mariet AS, Bonniaud P, Blot M, Tubert-Bitter P and Quantin C: Comparison of the characteristics, morbidity, and mortality of COVID-19 and seasonal influenza: A nationwide, population-based retrospective cohort study. Lancet Respir Med. 9:251–259. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ottaviani E, Malagoli D and Franceschi C: The evolution of the adipose tissue: A neglected enigma. Gen Comp Endocrinol. 174:1–4. 2011. View Article : Google Scholar : PubMed/NCBI | |
Unamuno X, Gomez-Ambrosi J, Rodriguez A, Becerril S, Fruhbeck G and Catalan V: Adipokine dysregulation and adipose tissue inflammation in human obesity. Eur J Clin Invest. 48:e129972018. View Article : Google Scholar : PubMed/NCBI | |
Burhans MS, Hagman DK, Kuzma JN, Schmidt KA and Kratz M: Contribution of adipose tissue inflammation to the development of type 2 diabetes Mellitus. Compr Physiol. 9:1–58. 2018. View Article : Google Scholar : PubMed/NCBI | |
Berg AH, Combs TP, Du X, Brownlee M and Scherer PE: The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med. 7:947–953. 2001. View Article : Google Scholar : PubMed/NCBI | |
Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, Sugiyama T, Miyagishi M, Hara K, Tsunoda M, et al: Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 423:762–769. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hefetz-Sela S and Scherer PE: Adipocytes: Impact on tumor growth and potential sites for therapeutic intervention. Pharmacol Ther. 138:197–210. 2013. View Article : Google Scholar : PubMed/NCBI | |
Igata M, Motoshima H, Tsuruzoe K, Kojima K, Matsumura T, Kondo T, Taguchi T, Nakamaru K, Yano M, Kukidome D, et al: Adenosine monophosphate-activated protein kinase suppresses vascular smooth muscle cell proliferation through the inhibition of cell cycle progression. Circ Res. 97:837–844. 2005. View Article : Google Scholar : PubMed/NCBI | |
Douros JD, Baltzegar DA, Reading BJ, Seale AP, Lerner DT, Grau EG and Borski RJ: Leptin stimulates cellular glycolysis through a STAT3 dependent mechanism in Tilapia. Front Endocrinol (Lausanne). 9:4652018. View Article : Google Scholar : PubMed/NCBI | |
Huang Z and Xu A: Adipose extracellular vesicles in intercellular and inter-organ crosstalk in metabolic health and diseases. Front Immunol. 12:6086802021. View Article : Google Scholar : PubMed/NCBI | |
Padilla J, Vieira-Potter VJ, Jia G and Sowers JR: Role of perivascular adipose tissue on vascular reactive oxygen species in type 2 diabetes: A give-and-take relationship. Diabetes. 64:1904–1906. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kern PA, Ranganathan S, Li C, Wood L and Ranganathan G: Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab. 280:E745–E751. 2001. View Article : Google Scholar : PubMed/NCBI | |
Keller S, Sanderson MP, Stoeck A and Altevogt P: Exosomes: From biogenesis and secretion to biological function. Immunol Lett. 107:102–108. 2006. View Article : Google Scholar : PubMed/NCBI | |
Thomou T, Mori MA, Dreyfuss JM, Konishi M, Sakaguchi M, Wolfrum C, Rao TN, Winnay JN, Garcia-Martin R, Grinspoon SK, et al: Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature. 542:450–455. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rome S, Blandin A and Le Lay S: Adipocyte-Derived extracellular vesicles: State of the art. Int J Mol Sci. 22:17882021. View Article : Google Scholar : PubMed/NCBI | |
Vidal M: Exosomes: Revisiting their role as ‘garbage bags’. Traffic. 20:815–828. 2019. View Article : Google Scholar : PubMed/NCBI | |
van der Pol E, Boing AN, Harrison P, Sturk A and Nieuwland R: Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev. 64:676–705. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tricarico C, Clancy J and D'Souza-Schorey C: Biology and biogenesis of shed microvesicles. Small GTPases. 8:220–232. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cai H, Reinisch K and Ferro-Novick S: Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev Cell. 12:671–682. 2007. View Article : Google Scholar : PubMed/NCBI | |
Escola JM, Kleijmeer MJ, Stoorvogel W, Griffith JM, Yoshie O and Geuze HJ: Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J Biol Chem. 273:20121–20127. 1998. View Article : Google Scholar : PubMed/NCBI | |
Giebel B and Helmbrecht C: Methods to Analyze EVs. Methods Mol Biol. 1545:1–20. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wolf P: The nature and significance of platelet products in human plasma. Br J Haematol. 13:269–288. 1967. View Article : Google Scholar : PubMed/NCBI | |
Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A and Rak J: Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol. 10:619–624. 2008. View Article : Google Scholar : PubMed/NCBI | |
Harding C, Heuser J and Stahl P: Endocytosis and intracellular processing of transferrin and colloidal gold-transferrin in rat reticulocytes: Demonstration of a pathway for receptor shedding. Eur J Cell Biol. 35:256–263. 1984.PubMed/NCBI | |
Pan BT, Teng K, Wu C, Adam M and Johnstone RM: Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol. 101:942–948. 1985. View Article : Google Scholar : PubMed/NCBI | |
Kalra H, Drummen GP and Mathivanan S: Focus on extracellular vesicles: Introducing the next small big thing. Int J Mol Sci. 17:1702016. View Article : Google Scholar : PubMed/NCBI | |
Minciacchi VR, Freeman MR and Di Vizio D: Extracellular vesicles in cancer: Exosomes, microvesicles and the emerging role of large oncosomes. Semin Cell Dev Biol. 40:41–51. 2015. View Article : Google Scholar : PubMed/NCBI | |
Raposo G and Stoorvogel W: Extracellular vesicles: Exosomes, microvesicles, and friends. J Cell Biol. 200:373–383. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mulcahy LA, Pink RC and Carter DR: Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles. 3:2014. View Article : Google Scholar : PubMed/NCBI | |
Llorente A, Skotland T, Sylvanne T, Kauhanen D, Rog T, Orlowski A, Vattulainen I, Ekroos K and Sandvig K: Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochim Biophys Acta. 1831:1302–1309. 2013. View Article : Google Scholar : PubMed/NCBI | |
Laulagnier K, Javalet C, Hemming FJ, Chivet M, Lachenal G, Blot B, Chatellard C and Sadoul R: Amyloid precursor protein products concentrate in a subset of exosomes specifically endocytosed by neurons. Cell Mol Life Sci. 75:757–773. 2018. View Article : Google Scholar : PubMed/NCBI | |
Vargas A, Zhou S, Ethier-Chiasson M, Flipo D, Lafond J, Gilbert C and Barbeau B: Syncytin proteins incorporated in placenta exosomes are important for cell uptake and show variation in abundance in serum exosomes from patients with preeclampsia. FASEB J. 28:3703–3719. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kamerkar S, LeBleu VS, Sugimoto H, Yang S, Ruivo CF, Melo SA, Lee JJ and Kalluri R: Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature. 546:498–503. 2017. View Article : Google Scholar : PubMed/NCBI | |
van Niel G, D'Angelo G and Raposo G: Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 19:213–228. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jeppesen DK, Fenix AM, Franklin JL, Higginbotham JN, Zhang Q, Zimmerman LJ, Liebler DC, Ping J, Liu Q, Evans R, et al: Reassessment of exosome composition. Cell. 177:428–445. e182019. View Article : Google Scholar : PubMed/NCBI | |
Corrado C, Raimondo S, Saieva L, Flugy AM, De Leo G and Alessandro R: Exosome-mediated crosstalk between chronic myelogenous leukemia cells and human bone marrow stromal cells triggers an interleukin 8-dependent survival of leukemia cells. Cancer Lett. 348:71–76. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ailawadi S, Wang X, Gu H and Fan GC: Pathologic function and therapeutic potential of exosomes in cardiovascular disease. Biochim Biophys Acta. 1852:1–11. 2015. View Article : Google Scholar : PubMed/NCBI | |
van Marken Lichtenbelt W: Brown adipose tissue and the regulation of nonshivering thermogenesis. Curr Opin Clin Nutr Metab Care. 15:547–552. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lee YH, Kim SN, Kwon HJ and Granneman JG: Metabolic heterogeneity of activated beige/brite adipocytes in inguinal adipose tissue. Sci Rep. 7:397942017. View Article : Google Scholar : PubMed/NCBI | |
Keipert S and Jastroch M: Brite/beige fat and UCP1 - is it thermogenesis? Biochim Biophys Acta. 1837:1075–1082. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Ning T, Song A, Rutter J, Wang QA and Jiang L: Chronic cold exposure enhances glucose oxidation in brown adipose tissue. EMBO Rep. 21:e500852020. View Article : Google Scholar : PubMed/NCBI | |
Shamsi BH, Ma C, Naqvi S and Xiao Y: Effects of pioglitazone mediated activation of PPAR-ү on CIDEC and obesity related changes in mice. PLoS One. 9:e1069922014. View Article : Google Scholar : PubMed/NCBI | |
Giampietro L, Gallorini M, De Filippis B, Amoroso R, Cataldi A and di Giacomo V: PPAR-ү agonist GL516 reduces oxidative stress and apoptosis occurrence in a rat astrocyte cell line. Neurochem Int. 126:239–245. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jung SM, Sanchez-Gurmaches J and Guertin DA: Brown adipose tissue development and metabolism. Handb Exp Pharmacol. 251:3–36. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lau P, Tuong ZK, Wang SC, Fitzsimmons RL, Goode JM, Thomas GP, Cowin GJ, Pearen MA, Mardon K, Stow JL and Muscat GE: Roralpha deficiency and decreased adiposity are associated with induction of thermogenic gene expression in subcutaneous white adipose and brown adipose tissue. Am J Physiol Endocrinol Metab. 308:E159–E171. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G, et al: Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 150:366–376. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ikeda K, Maretich P and Kajimura S: The common and distinct features of brown and beige adipocytes. Trends Endocrinol Metab. 29:191–200. 2018. View Article : Google Scholar : PubMed/NCBI | |
Pinckard KM and Stanford KI: The heartwarming effect of brown adipose tissue. Mol Pharmacol. 102:460–471. 2022. View Article : Google Scholar : PubMed/NCBI | |
Berbee JF, Boon MR, Khedoe PP, Bartelt A, Schlein C, Worthmann A, Kooijman S, Hoeke G, Mol IM, John C, et al: Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development. Nat Commun. 6:63562015. View Article : Google Scholar : PubMed/NCBI | |
Altshuler-Keylin S, Shinoda K, Hasegawa Y, Ikeda K, Hong H, Kang Q, Yang Y, Perera RM, Debnath J and Kajimura S: Beige adipocyte maintenance is regulated by autophagy-induced mitochondrial clearance. Cell Metab. 24:402–419. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rosen ED and Spiegelman BM: Adipocytes as regulators of energy balance and glucose homeostasis. Nature. 444:847–853. 2006. View Article : Google Scholar : PubMed/NCBI | |
Arner P: Regional adipocity in man. J Endocrinol. 155:191–192. 1997. View Article : Google Scholar : PubMed/NCBI | |
Chen SX, Zhang LJ and Gallo RL: Dermal white adipose tissue: A newly recognized layer of skin innate defense. J Invest Dermatol. 139:1002–1009. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang LJ, Guerrero-Juarez CF, Hata T, Bapat SP, Ramos R, Plikus MV and Gallo RL: Innate immunity. Dermal adipocytes protect against invasive Staphylococcus aureus skin infection. Science. 347:67–71. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fruhbeck G: Overview of adipose tissue and its role in obesity and metabolic disorders. Methods Mol Biol. 456:1–22. 2008. View Article : Google Scholar : PubMed/NCBI | |
Salvador J, Silva C, Pujante P and Fruhbeck G: Abdominal obesity: An indicator of cardiometabolic risk. Endocrinol Nutr. 55:420–432. 2008.(In English, Spanish). View Article : Google Scholar : PubMed/NCBI | |
Scheja L and Heeren J: The endocrine function of adipose tissues in health and cardiometabolic disease. Nat Rev Endocrinol. 15:507–524. 2019. View Article : Google Scholar : PubMed/NCBI | |
Stern JH, Rutkowski JM and Scherer PE: Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab. 23:770–784. 2016. View Article : Google Scholar : PubMed/NCBI | |
Eto H, Suga H, Matsumoto D, Inoue K, Aoi N, Kato H, Araki J and Yoshimura K: Characterization of structure and cellular components of aspirated and excised adipose tissue. Plast Reconstr Surg. 124:1087–1097. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP and Hedrick MH: Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 7:211–228. 2001. View Article : Google Scholar : PubMed/NCBI | |
Brown JC, Shang H, Li Y, Yang N, Patel N and Katz AJ: Isolation of adipose-derived stromal vascular fraction cells using a novel point-of-care device: Cell characterization and review of the literature. Tissue Eng Part C Methods. 23:125–135. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wu H and Ballantyne CM: Metabolic inflammation and insulin resistance in obesity. Circ Res. 126:1549–1564. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hollenberg CH and Vost A: Regulation of DNA synthesis in fat cells and stromal elements from rat adipose tissue. J Clin Invest. 47:2485–2498. 1969. View Article : Google Scholar : PubMed/NCBI | |
Panina YA, Yakimov AS, Komleva YK, Morgun AV, Lopatina OL, Malinovskaya NA, Shuvaev AN, Salmin VV, Taranushenko TE and Salmina AB: Plasticity of adipose tissue-derived stem cells and regulation of angiogenesis. Front Physiol. 9:16562018. View Article : Google Scholar : PubMed/NCBI | |
Cao Y: Adipose tissue angiogenesis as a therapeutic target for obesity and metabolic diseases. Nat Rev Drug Discov. 9:107–115. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mahlakoiv T, Flamar AL, Johnston LK, Moriyama S, Putzel GG, Bryce PJ and Artis D: Stromal cells maintain immune cell homeostasis in adipose tissue via production of interleukin-33. Sci Immunol. 4:eaax04162019. View Article : Google Scholar : PubMed/NCBI | |
Sun C, Berry WL and Olson LE: PDGFRα controls the balance of stromal and adipogenic cells during adipose tissue organogenesis. Development. 144:83–94. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mclaughlin T, Ackerman SE, Shen L and Engleman E: Role of innate and adaptive immunity in obesity-associated metabolic disease. J Clin Invest. 127:5–13. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rochette L, Mazini L, Malka G, Zeller M, Cottin Y and Vergely C: The crosstalk of adipose-derived stem cells (ADSC), oxidative stress, and inflammation in protective and adaptive responses. Int J Mol Sci. 21:92622020. View Article : Google Scholar : PubMed/NCBI | |
Hui X, Zhang M, Gu P, Li K, Gao Y, Wu D, Wang Y and Xu A: Adipocyte SIRT1 controls systemic insulin sensitivity by modulating macrophages in adipose tissue. EMBO Rep. 18:645–657. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hotamisligil GS: Inflammation, metaflammation and immunometabolic disorders. Nature. 542:177–185. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hotamisligil GS: Foundations of immunometabolism and implications for metabolic health and disease. Immunity. 47:406–420. 2017. View Article : Google Scholar : PubMed/NCBI | |
Man K, Kutyavin VI and Chawla A: Tissue immunometabolism: Development, physiology, and pathobiology. Cell Metab. 25:11–26. 2017. View Article : Google Scholar : PubMed/NCBI | |
Clement E, Lazar I, Attane C, Carrie L, Dauvillier S, Ducoux-Petit M, Esteve D, Menneteau T, Moutahir M, Le Gonidec S, et al: Adipocyte extracellular vesicles carry enzymes and fatty acids that stimulate mitochondrial metabolism and remodeling in tumor cells. EMBO J. 39:e1025252020. View Article : Google Scholar : PubMed/NCBI | |
Hartwig S, De Filippo E, Goddeke S, Knebel B, Kotzka J, Al-Hasani H, Roden M, Lehr S and Sell H: Exosomal proteins constitute an essential part of the human adipose tissue secretome. Biochim Biophys Acta Proteins Proteom. 1867:1401722019. View Article : Google Scholar : PubMed/NCBI | |
Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ and Lotvall JO: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 9:654–659. 2007. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Sun YC, Cheng P and Shao HG: Adipose tissue macrophage-derived exosomal miR-29a regulates obesity-associated insulin resistance. Biochem Biophys Res Commun. 515:352–358. 2019. View Article : Google Scholar : PubMed/NCBI | |
Geng L, Lam K and Xu A: The therapeutic potential of FGF21 in metabolic diseases: From bench to clinic. Nat Rev Endocrinol. 16:654–667. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gao J, Li X, Wang Y, Cao Y, Yao D, Sun L, Qin L, Qiu H and Zhan X: Adipocyte-derived extracellular vesicles modulate appetite and weight through mTOR signalling in the hypothalamus. Acta Physiol (Oxf). 228:e133392020. View Article : Google Scholar : PubMed/NCBI | |
Lee JE, Moon PG, Lee IK and Baek MC: Proteomic Analysis of extracellular vesicles released by adipocytes of otsuka long-evans tokushima fatty (OLETF) Rats. Protein J. 34:220–235. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sano S, Izumi Y, Yamaguchi T, Yamazaki T, Tanaka M, Shiota M, Osada-Oka M, Nakamura Y, Wei M, Wanibuchi H, et al: Lipid synthesis is promoted by hypoxic adipocyte-derived exosomes in 3T3-L1 cells. Biochem Biophys Res Commun. 445:327–333. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kranendonk ME, Visseren FL, van Balkom BW, Nolte-'t Hoen EN, van Herwaarden JA, de Jager W, Schipper HS, Brenkman AB, Verhaar MC, Wauben MH and Kalkhoven E: Human adipocyte extracellular vesicles in reciprocal signaling between adipocytes and macrophages. Obesity (Silver Spring). 22:1296–1308. 2014. View Article : Google Scholar : PubMed/NCBI | |
Phoonsawat W, Aoki-Yoshida A, Tsuruta T and Sonoyama K: Adiponectin is partially associated with exosomes in mouse serum. Biochem Biophys Res Commun. 448:261–266. 2014. View Article : Google Scholar : PubMed/NCBI | |
Crewe C and Scherer PE: Intercellular and interorgan crosstalk through adipocyte extracellular vesicles. Rev Endocr Metab Disord. 23:61–69. 2022. View Article : Google Scholar : PubMed/NCBI | |
Connolly KD, Wadey RM, Mathew D, Johnson E, Rees DA and James PE: Evidence for adipocyte-derived extracellular vesicles in the human circulation. Endocrinology. 159:3259–3267. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lazar I, Clement E, Dauvillier S, Milhas D, Ducoux-Petit M, Legonidec S, Moro C, Soldan V, Dalle S, Balor S, et al: Adipocyte Exosomes Promote Melanoma Aggressiveness through Fatty Acid Oxidation: A Novel Mechanism Linking Obesity and Cancer. Cancer Res. 76:4051–4057. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ying W, Riopel M, Bandyopadhyay G, Dong Y, Birmingham A, Seo JB, Ofrecio JM, Wollam J, Hernandez-Carretero A, Fu W, et al: Adipose tissue macrophage-derived exosomal miRNAs Can modulate in vivo and in vitro insulin sensitivity. Cell. 171:372–384.e12. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bassi EJ, Moraes-Vieira PM, Moreira-Sa CS, Almeida DC, Vieira LM, Cunha CS, Hiyane MI, Basso AS, Pacheco-Silva A and Camara NO: Immune regulatory properties of allogeneic adipose-derived mesenchymal stem cells in the treatment of experimental autoimmune diabetes. Diabetes. 61:2534–2545. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mizuno H, Tobita M and Uysal AC: Concise review: Adipose-derived stem cells as a novel tool for future regenerative medicine. Stem Cells. 30:804–810. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gonzalez MA, Gonzalez-Rey E, Rico L, Buscher D and Delgado M: Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology. 136:978–989. 2009. View Article : Google Scholar : PubMed/NCBI | |
Garcia-Contreras M, Vera-Donoso CD, Hernandez-Andreu JM, Garcia-Verdugo JM and Oltra E: Therapeutic potential of human adipose-derived stem cells (ADSCs) from cancer patients: A pilot study. PLoS One. 9:e1132882014. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Shang Q, Pan Z, Bai Y, Li Z, Zhang H, Zhang Q, Guo C, Zhang L and Wang Q: Exosomes from adipose-derived stem cells attenuate adipose inflammation and obesity through polarizing M2 macrophages and beiging in white adipose tissue. Diabetes. 67:235–247. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jung YJ, Kim HK, Cho Y, Choi JS, Woo CH, Lee KS, Sul JH, Lee CM, Han J, Park JH, et al: Cell reprogramming using extracellular vesicles from differentiating stem cells into white/beige adipocytes. Sci Adv. 6:eaay67212020. View Article : Google Scholar : PubMed/NCBI | |
Fuster JJ, Ouchi N, Gokce N and Walsh K: Obesity-Induced changes in adipose tissue microenvironment and their impact on cardiovascular disease. Circ Res. 118:1786–1807. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhao S, Kusminski CM and Scherer PE: Adiponectin, leptin and cardiovascular disorders. Circ Res. 128:136–149. 2021. View Article : Google Scholar : PubMed/NCBI | |
Weisberg SP, Hunter D, Huber R, Lemieux J, Slaymaker S, Vaddi K, Charo I, Leibel RL and Ferrante AJ: CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest. 116:115–124. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lumeng CN, Bodzin JL and Saltiel AR: Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 117:175–184. 2007. View Article : Google Scholar : PubMed/NCBI | |
Deng ZB, Poliakov A, Hardy RW, Clements R, Liu C, Liu Y, Wang J, Xiang X, Zhang S, Zhuang X, et al: Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance. Diabetes. 58:2498–2505. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pan Y, Hui X, Hoo RLC, Ye D, Chan CYC, Feng T, Wang Y, Lam KSL and Xu A: Adipocyte-secreted exosomal microRNA-34a inhibits M2 macrophage polarization to promote obesity-induced adipose inflammation. J Clin Invest. 129:834–849. 2019. View Article : Google Scholar : PubMed/NCBI | |
James DE, Stockli J and Birnbaum MJ: The aetiology and molecular landscape of insulin resistance. Nat Rev Mol Cell Biol. 22:751–771. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yu Y, Du H, Wei S, Feng L, Li J, Yao F, Zhang M, Hatch GM and Chen L: Adipocyte-Derived exosomal MiR-27a induces insulin resistance in skeletal muscle through repression of PPARү. Theranostics. 8:2171–2188. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li D, Song H, Shuo L, Wang L, Xie P, Li W, Liu J, Tong Y, Zhang CY, Jiang X, et al: Gonadal white adipose tissue-derived exosomal MiR-222 promotes obesity-associated insulin resistance. Aging (Albany NY). 12:22719–22743. 2020.PubMed/NCBI | |
Kranendonk ME, Visseren FL, van Herwaarden JA, Nolte-'t Hoen EN, de Jager W, Wauben MH and Kalkhoven E: Effect of extracellular vesicles of human adipose tissue on insulin signaling in liver and muscle cells. Obesity (Silver Spring). 22:2216–2223. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gao X, Salomon C and Freeman DJ: Extracellular vesicles from adipose tissue-A potential role in obesity and type 2 diabetes? Front Endocrinol (Lausanne). 8:2022017. View Article : Google Scholar : PubMed/NCBI | |
Eguchi A, Lazic M, Armando AM, Phillips SA, Katebian R, Maraka S, Quehenberger O, Sears DD and Feldstein AE: Circulating adipocyte-derived extracellular vesicles are novel markers of metabolic stress. J Mol Med (Berl). 94:1241–1253. 2016. View Article : Google Scholar : PubMed/NCBI | |
Katayama M, Wiklander OPB, Fritz T, Caidahl K, El-Andaloussi S, Zierath JR and Krook A: Circulating exosomal miR-20b-5p is elevated in type 2 diabetes and could impair insulin action in human skeletal muscle. Diabetes. 68:515–526. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kranendonk ME, de Kleijn DP, Kalkhoven E, Kanhai DA, Uiterwaal CS, van der Graaf Y, Pasterkamp G and Visseren FL; SMART Study Group, : Extracellular vesicle markers in relation to obesity and metabolic complications in patients with manifest cardiovascular disease. Cardiovasc Diabetol. 13:372014. View Article : Google Scholar : PubMed/NCBI | |
Su S, Guntur AR, Nguyen DC, Fakory SS, Doucette CC, Leech C, Lotana H, Kelley M, Kohli J, Martino J, et al: A renewable source of human beige adipocytes for development of therapies to treat metabolic Syndrome. Cell Rep. 25:3215–3228,e9. 2018. View Article : Google Scholar : PubMed/NCBI | |
Connolly KD, Rees DA and James PE: Role of adipocyte-derived extracellular vesicles in vascular inflammation. Free Radic Biol Med. 172:58–64. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dai W, Liu Z, Yang S and Kong J: Inflamed adipose tissue: Therapeutic Targets for obesity-related endothelial injury. Endocrinology. 164:bqad0942023. View Article : Google Scholar : PubMed/NCBI | |
Koenen M, Hill MA, Cohen P and Sowers JR: Obesity, adipose tissue and vascular dysfunction. Circ Res. 128:951–968. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xie Z, Wang X, Liu X, Du H, Sun C, Shao X, Tian J, Gu X, Wang H, Tian J and Yu B: Adipose-Derived exosomes exert proatherogenic effects by regulating macrophage foam cell formation and polarization. J Am Heart Assoc. 7:e0074422018. View Article : Google Scholar : PubMed/NCBI | |
Barberio MD, Kasselman LJ, Playford MP, Epstein SB, Renna HA, Goldberg M, Deleon J, Voloshyna I, Barlev A, Salama M, et al: Cholesterol efflux alterations in adolescent obesity: Role of adipose-derived extracellular vesical microRNAs. J Transl Med. 17:2322019. View Article : Google Scholar : PubMed/NCBI | |
Fleury A, Martinez MC and Le Lay S: Extracellular vesicles as therapeutic tools in cardiovascular diseases. Front Immunol. 5:3702014. View Article : Google Scholar : PubMed/NCBI | |
Wen Z, Li J, Fu Y, Zheng Y, Ma M and Wang C: Hypertrophic adipocyte-derived exosomal miR-802-5p contributes to insulin resistance in cardiac myocytes through targeting hSP60. Obesity (Silver Spring). 28:1932–1940. 2020. View Article : Google Scholar : PubMed/NCBI | |
Monteiro JP, Bennett M, Rodor J, Caudrillier A, Ulitsky I and Baker AH: Endothelial function and dysfunction in the cardiovascular system: The long non-coding road. Cardiovasc Res. 115:1692–1704. 2019. View Article : Google Scholar : PubMed/NCBI | |
Muller G: Microvesicles/exosomes as potential novel biomarkers of metabolic diseases. Diabetes Metab Syndr Obes. 5:247–282. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wadey RM, Connolly KD, Mathew D, Walters G, Rees DA and James PE: Inflammatory adipocyte-derived extracellular vesicles promote leukocyte attachment to vascular endothelial cells. Atherosclerosis. 283:19–27. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fang X, Stroud MJ, Ouyang K, Fang L, Zhang J, Dalton ND, Gu Y, Wu T, Peterson KL, Huang HD, et al: Adipocyte-specific loss of PPARү attenuates cardiac hypertrophy. JCI Insight. 1:e899082016. View Article : Google Scholar : PubMed/NCBI | |
Gan L, Xie D, Liu J, Bond LW, Christopher TA, Lopez B, Zhang L, Gao E, Koch W, Ma XL and Wang Y: Small extracellular microvesicles mediated pathological communications between dysfunctional adipocytes and cardiomyocytes as a novel mechanism exacerbating ischemia/reperfusion injury in diabetic mice. Circulation. 141:968–983. 2020. View Article : Google Scholar : PubMed/NCBI | |
Parekh N, Chandran U and Bandera EV: Obesity in cancer survival. Annu Rev Nutr. 32:311–342. 2012. View Article : Google Scholar : PubMed/NCBI | |
Dirat B, Bochet L, Dabek M, Daviaud D, Dauvillier S, Majed B, Wang YY, Meulle A, Salles B, Le Gonidec S, et al: Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res. 71:2455–2465. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, Romero IL, Carey MS, Mills GB, Hotamisligil GS, et al: Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med. 17:1498–1503. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Wu Y, Guo J, Fei X, Yu L and Ma S: Adipocyte-derived exosomes promote lung cancer metastasis by increasing MMP9 activity via transferring MMP3 to lung cancer cells. Oncotarget. 8:81880–81891. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Chu Y, Li K, Zhang G, Guo Z, Wu X, Qiu C, Li Y, Wan X, Sui J, et al: Exosomes secreted by adipose-derived mesenchymal stem cells foster metastasis and osteosarcoma proliferation by increasing COLGALT2 expression. Front Cell Dev Biol. 8:3532020. View Article : Google Scholar : PubMed/NCBI | |
Gangadaran P, Rajendran RL, Oh JM, Oh EJ, Hong CM, Chung HY, Lee J and Ahn BC: Identification of angiogenic cargo in extracellular vesicles secreted from human adipose tissue-derived stem cells and induction of angiogenesis in vitro and in vivo. Pharmaceutics. 13:4952021. View Article : Google Scholar : PubMed/NCBI | |
Khanh VC, Fukushige M, Moriguchi K, Yamashita T, Osaka M, Hiramatsu Y and Ohneda O: Type 2 diabetes mellitus induced paracrine effects on breast cancer metastasis through extracellular vesicles derived from human mesenchymal stem cells. Stem Cells Dev. 29:1382–1394. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mattiske S, Suetani RJ, Neilsen PM and Callen DF: The oncogenic role of miR-155 in breast cancer. Cancer Epidemiol Biomarkers Prev. 21:1236–1243. 2012. View Article : Google Scholar : PubMed/NCBI | |
Balaban S, Shearer RF, Lee LS, van Geldermalsen M, Schreuder M, Shtein HC, Cairns R, Thomas KC, Fazakerley DJ, Grewal T, et al: Adipocyte lipolysis links obesity to breast cancer growth: Adipocyte-derived fatty acids drive breast cancer cell proliferation and migration. Cancer Metab. 5:12017. View Article : Google Scholar : PubMed/NCBI | |
Kuo CY and Ann DK: When fats commit crimes: Fatty acid metabolism, cancer stemness and therapeutic resistance. Cancer Commun (Lond). 38:472018. View Article : Google Scholar : PubMed/NCBI | |
Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC, Ju S, Mu J, Zhang L, Steinman L, et al: Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther. 19:1769–1779. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hardy J: Amyloid, the presenilins and Alzheimer's disease. Trends Neurosci. 20:154–159. 1997. View Article : Google Scholar : PubMed/NCBI | |
Selkoe DJ: The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer's disease. Trends Cell Biol. 8:447–453. 1998. View Article : Google Scholar : PubMed/NCBI | |
Katsuda T, Tsuchiya R, Kosaka N, Yoshioka Y, Takagaki K, Oki K, Takeshita F, Sakai Y, Kuroda M and Ochiya T: Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes. Sci Rep. 3:11972013. View Article : Google Scholar : PubMed/NCBI | |
Garcia-Contreras M and Thakor AS: Human adipose tissue-derived mesenchymal stem cells and their extracellular vesicles modulate lipopolysaccharide activated human microglia. Cell Death Discov. 7:982021. View Article : Google Scholar : PubMed/NCBI | |
Geng W, Tang H, Luo S, Lv Y, Liang D, Kang X and Hong W: Exosomes from miRNA-126-modified ADSCs promotes functional recovery after stroke in rats by improving neurogenesis and suppressing microglia activation. Am J Transl Res. 11:780–792. 2019.PubMed/NCBI | |
Jiang M, Wang H, Jin M, Yang X, Ji H, Jiang Y, Zhang H, Wu F, Wu G, Lai X, et al: Exosomes from MiR-30d-5p-ADSCs reverse acute ischemic stroke-induced, autophagy-mediated brain injury by promoting M2 microglial/macrophage polarization. Cell Physiol Biochem. 47:864–878. 2018. View Article : Google Scholar : PubMed/NCBI | |
Takahashi Y and Takakura Y: Extracellular vesicle-based therapeutics: Extracellular vesicles as therapeutic targets and agents. Pharmacol Ther. 242:1083522023. View Article : Google Scholar : PubMed/NCBI | |
Greening DW, Xu R, Ale A, Hagemeyer CE and Chen W: Extracellular vesicles as next generation immunotherapeutics. Semin Cancer Biol. 90:73–100. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kwan HY, Chen M, Xu K and Chen B: The impact of obesity on adipocyte-derived extracellular vesicles. Cell Mol Life Sci. 78:7275–7288. 2021. View Article : Google Scholar : PubMed/NCBI |