Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
October-2023 Volume 28 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2023 Volume 28 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Adipose tissue‑derived extracellular vesicles:
Systemic messengers in health and disease (Review)

  • Authors:
    • Xiaobo Yang
    • Jiayue Hao
    • Jie Luo
    • Xinliang Lu
    • Xianghui Kong
  • View Affiliations / Copyright

    Affiliations: Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China, Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zheijiang 310058, P.R. China, Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zheijiang 310006, P.R. China, Bone Marrow Transplantation Center and Institute of Immunology of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China, Bone Marrow Transplantation Center and Institute of Immunology of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
    Copyright: © Yang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 189
    |
    Published online on: August 23, 2023
       https://doi.org/10.3892/mmr.2023.13076
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Adipose tissue (AT) is a complicated metabolic organ consisting of a heterogeneous population of cells that exert wide‑ranging effects on the regulation of systemic metabolism and in maintaining metabolic homeostasis. Various obesity‑related complications are associated with the development of dysfunctional AT. As an essential transmitter of intercellular information, extracellular vesicles (EVs) have recently been recognized as crucial in regulating multiple physiological functions. AT‑derived extracellular vesicles (ADEVs) have been shown to facilitate cellular communication both inside and between ATs and other peripheral organs. Here, the role of EVs released from ATs in the homeostasis of metabolic and cardiovascular diseases, cancer, and neurological disorders by delivering lipids, proteins, and nucleic acids between different cells is summarized. Furthermore, the differences in the sources of ADEVs, such as adipocytes, AT macrophages, AT‑derived stem cells, and AT‑derived mesenchymal stem cells, are also discussed. This review may provide valuable information for the potential application of ADEVs in metabolic syndrome, cardiovascular diseases, cancer, and neurological disorders.
View Figures

Figure 1

Figure 2

View References

1 

Mohammed MS, Sendra S, Lloret J and Bosch I: Systems and WBANs for Controlling Obesity. J Healthc Eng. 2018:15647482018. View Article : Google Scholar : PubMed/NCBI

2 

Kusminski CM, Bickel PE and Scherer PE: Targeting adipose tissue in the treatment of obesity-associated diabetes. Nat Rev Drug Discov. 15:639–660. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Abu-Farha M, Al-Mulla F, Thanaraj TA, Kavalakatt S, Ali H, Abdul Ghani M and Abubaker J: Impact of Diabetes in Patients Diagnosed With COVID-19. Front Immunol. 11:5768182020. View Article : Google Scholar : PubMed/NCBI

4 

Goodman KE, Magder LS, Baghdadi JD, Pineles L, Levine AR, Perencevich EN and Harris AD: Impact of sex and metabolic comorbidities on coronavirus disease 2019 (COVID-19) mortality risk across age groups: 66 646 inpatients across 613 U.S. Hospitals. Clin Infect Dis. 73:e4113–e4123. 2021. View Article : Google Scholar : PubMed/NCBI

5 

Piroth L, Cottenet J, Mariet AS, Bonniaud P, Blot M, Tubert-Bitter P and Quantin C: Comparison of the characteristics, morbidity, and mortality of COVID-19 and seasonal influenza: A nationwide, population-based retrospective cohort study. Lancet Respir Med. 9:251–259. 2021. View Article : Google Scholar : PubMed/NCBI

6 

Ottaviani E, Malagoli D and Franceschi C: The evolution of the adipose tissue: A neglected enigma. Gen Comp Endocrinol. 174:1–4. 2011. View Article : Google Scholar : PubMed/NCBI

7 

Unamuno X, Gomez-Ambrosi J, Rodriguez A, Becerril S, Fruhbeck G and Catalan V: Adipokine dysregulation and adipose tissue inflammation in human obesity. Eur J Clin Invest. 48:e129972018. View Article : Google Scholar : PubMed/NCBI

8 

Burhans MS, Hagman DK, Kuzma JN, Schmidt KA and Kratz M: Contribution of adipose tissue inflammation to the development of type 2 diabetes Mellitus. Compr Physiol. 9:1–58. 2018. View Article : Google Scholar : PubMed/NCBI

9 

Berg AH, Combs TP, Du X, Brownlee M and Scherer PE: The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med. 7:947–953. 2001. View Article : Google Scholar : PubMed/NCBI

10 

Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, Sugiyama T, Miyagishi M, Hara K, Tsunoda M, et al: Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 423:762–769. 2003. View Article : Google Scholar : PubMed/NCBI

11 

Hefetz-Sela S and Scherer PE: Adipocytes: Impact on tumor growth and potential sites for therapeutic intervention. Pharmacol Ther. 138:197–210. 2013. View Article : Google Scholar : PubMed/NCBI

12 

Igata M, Motoshima H, Tsuruzoe K, Kojima K, Matsumura T, Kondo T, Taguchi T, Nakamaru K, Yano M, Kukidome D, et al: Adenosine monophosphate-activated protein kinase suppresses vascular smooth muscle cell proliferation through the inhibition of cell cycle progression. Circ Res. 97:837–844. 2005. View Article : Google Scholar : PubMed/NCBI

13 

Douros JD, Baltzegar DA, Reading BJ, Seale AP, Lerner DT, Grau EG and Borski RJ: Leptin stimulates cellular glycolysis through a STAT3 dependent mechanism in Tilapia. Front Endocrinol (Lausanne). 9:4652018. View Article : Google Scholar : PubMed/NCBI

14 

Huang Z and Xu A: Adipose extracellular vesicles in intercellular and inter-organ crosstalk in metabolic health and diseases. Front Immunol. 12:6086802021. View Article : Google Scholar : PubMed/NCBI

15 

Padilla J, Vieira-Potter VJ, Jia G and Sowers JR: Role of perivascular adipose tissue on vascular reactive oxygen species in type 2 diabetes: A give-and-take relationship. Diabetes. 64:1904–1906. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Kern PA, Ranganathan S, Li C, Wood L and Ranganathan G: Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab. 280:E745–E751. 2001. View Article : Google Scholar : PubMed/NCBI

17 

Keller S, Sanderson MP, Stoeck A and Altevogt P: Exosomes: From biogenesis and secretion to biological function. Immunol Lett. 107:102–108. 2006. View Article : Google Scholar : PubMed/NCBI

18 

Thomou T, Mori MA, Dreyfuss JM, Konishi M, Sakaguchi M, Wolfrum C, Rao TN, Winnay JN, Garcia-Martin R, Grinspoon SK, et al: Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature. 542:450–455. 2017. View Article : Google Scholar : PubMed/NCBI

19 

Rome S, Blandin A and Le Lay S: Adipocyte-Derived extracellular vesicles: State of the art. Int J Mol Sci. 22:17882021. View Article : Google Scholar : PubMed/NCBI

20 

Vidal M: Exosomes: Revisiting their role as ‘garbage bags’. Traffic. 20:815–828. 2019. View Article : Google Scholar : PubMed/NCBI

21 

van der Pol E, Boing AN, Harrison P, Sturk A and Nieuwland R: Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev. 64:676–705. 2012. View Article : Google Scholar : PubMed/NCBI

22 

Tricarico C, Clancy J and D'Souza-Schorey C: Biology and biogenesis of shed microvesicles. Small GTPases. 8:220–232. 2017. View Article : Google Scholar : PubMed/NCBI

23 

Cai H, Reinisch K and Ferro-Novick S: Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev Cell. 12:671–682. 2007. View Article : Google Scholar : PubMed/NCBI

24 

Escola JM, Kleijmeer MJ, Stoorvogel W, Griffith JM, Yoshie O and Geuze HJ: Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J Biol Chem. 273:20121–20127. 1998. View Article : Google Scholar : PubMed/NCBI

25 

Giebel B and Helmbrecht C: Methods to Analyze EVs. Methods Mol Biol. 1545:1–20. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Wolf P: The nature and significance of platelet products in human plasma. Br J Haematol. 13:269–288. 1967. View Article : Google Scholar : PubMed/NCBI

27 

Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A and Rak J: Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol. 10:619–624. 2008. View Article : Google Scholar : PubMed/NCBI

28 

Harding C, Heuser J and Stahl P: Endocytosis and intracellular processing of transferrin and colloidal gold-transferrin in rat reticulocytes: Demonstration of a pathway for receptor shedding. Eur J Cell Biol. 35:256–263. 1984.PubMed/NCBI

29 

Pan BT, Teng K, Wu C, Adam M and Johnstone RM: Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol. 101:942–948. 1985. View Article : Google Scholar : PubMed/NCBI

30 

Kalra H, Drummen GP and Mathivanan S: Focus on extracellular vesicles: Introducing the next small big thing. Int J Mol Sci. 17:1702016. View Article : Google Scholar : PubMed/NCBI

31 

Minciacchi VR, Freeman MR and Di Vizio D: Extracellular vesicles in cancer: Exosomes, microvesicles and the emerging role of large oncosomes. Semin Cell Dev Biol. 40:41–51. 2015. View Article : Google Scholar : PubMed/NCBI

32 

Raposo G and Stoorvogel W: Extracellular vesicles: Exosomes, microvesicles, and friends. J Cell Biol. 200:373–383. 2013. View Article : Google Scholar : PubMed/NCBI

33 

Mulcahy LA, Pink RC and Carter DR: Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles. 3:2014. View Article : Google Scholar : PubMed/NCBI

34 

Llorente A, Skotland T, Sylvanne T, Kauhanen D, Rog T, Orlowski A, Vattulainen I, Ekroos K and Sandvig K: Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochim Biophys Acta. 1831:1302–1309. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Laulagnier K, Javalet C, Hemming FJ, Chivet M, Lachenal G, Blot B, Chatellard C and Sadoul R: Amyloid precursor protein products concentrate in a subset of exosomes specifically endocytosed by neurons. Cell Mol Life Sci. 75:757–773. 2018. View Article : Google Scholar : PubMed/NCBI

36 

Vargas A, Zhou S, Ethier-Chiasson M, Flipo D, Lafond J, Gilbert C and Barbeau B: Syncytin proteins incorporated in placenta exosomes are important for cell uptake and show variation in abundance in serum exosomes from patients with preeclampsia. FASEB J. 28:3703–3719. 2014. View Article : Google Scholar : PubMed/NCBI

37 

Kamerkar S, LeBleu VS, Sugimoto H, Yang S, Ruivo CF, Melo SA, Lee JJ and Kalluri R: Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature. 546:498–503. 2017. View Article : Google Scholar : PubMed/NCBI

38 

van Niel G, D'Angelo G and Raposo G: Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 19:213–228. 2018. View Article : Google Scholar : PubMed/NCBI

39 

Jeppesen DK, Fenix AM, Franklin JL, Higginbotham JN, Zhang Q, Zimmerman LJ, Liebler DC, Ping J, Liu Q, Evans R, et al: Reassessment of exosome composition. Cell. 177:428–445. e182019. View Article : Google Scholar : PubMed/NCBI

40 

Corrado C, Raimondo S, Saieva L, Flugy AM, De Leo G and Alessandro R: Exosome-mediated crosstalk between chronic myelogenous leukemia cells and human bone marrow stromal cells triggers an interleukin 8-dependent survival of leukemia cells. Cancer Lett. 348:71–76. 2014. View Article : Google Scholar : PubMed/NCBI

41 

Ailawadi S, Wang X, Gu H and Fan GC: Pathologic function and therapeutic potential of exosomes in cardiovascular disease. Biochim Biophys Acta. 1852:1–11. 2015. View Article : Google Scholar : PubMed/NCBI

42 

van Marken Lichtenbelt W: Brown adipose tissue and the regulation of nonshivering thermogenesis. Curr Opin Clin Nutr Metab Care. 15:547–552. 2012. View Article : Google Scholar : PubMed/NCBI

43 

Lee YH, Kim SN, Kwon HJ and Granneman JG: Metabolic heterogeneity of activated beige/brite adipocytes in inguinal adipose tissue. Sci Rep. 7:397942017. View Article : Google Scholar : PubMed/NCBI

44 

Keipert S and Jastroch M: Brite/beige fat and UCP1 - is it thermogenesis? Biochim Biophys Acta. 1837:1075–1082. 2014. View Article : Google Scholar : PubMed/NCBI

45 

Wang Z, Ning T, Song A, Rutter J, Wang QA and Jiang L: Chronic cold exposure enhances glucose oxidation in brown adipose tissue. EMBO Rep. 21:e500852020. View Article : Google Scholar : PubMed/NCBI

46 

Shamsi BH, Ma C, Naqvi S and Xiao Y: Effects of pioglitazone mediated activation of PPAR-ү on CIDEC and obesity related changes in mice. PLoS One. 9:e1069922014. View Article : Google Scholar : PubMed/NCBI

47 

Giampietro L, Gallorini M, De Filippis B, Amoroso R, Cataldi A and di Giacomo V: PPAR-ү agonist GL516 reduces oxidative stress and apoptosis occurrence in a rat astrocyte cell line. Neurochem Int. 126:239–245. 2019. View Article : Google Scholar : PubMed/NCBI

48 

Jung SM, Sanchez-Gurmaches J and Guertin DA: Brown adipose tissue development and metabolism. Handb Exp Pharmacol. 251:3–36. 2019. View Article : Google Scholar : PubMed/NCBI

49 

Lau P, Tuong ZK, Wang SC, Fitzsimmons RL, Goode JM, Thomas GP, Cowin GJ, Pearen MA, Mardon K, Stow JL and Muscat GE: Roralpha deficiency and decreased adiposity are associated with induction of thermogenic gene expression in subcutaneous white adipose and brown adipose tissue. Am J Physiol Endocrinol Metab. 308:E159–E171. 2015. View Article : Google Scholar : PubMed/NCBI

50 

Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G, et al: Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 150:366–376. 2012. View Article : Google Scholar : PubMed/NCBI

51 

Ikeda K, Maretich P and Kajimura S: The common and distinct features of brown and beige adipocytes. Trends Endocrinol Metab. 29:191–200. 2018. View Article : Google Scholar : PubMed/NCBI

52 

Pinckard KM and Stanford KI: The heartwarming effect of brown adipose tissue. Mol Pharmacol. 102:460–471. 2022. View Article : Google Scholar : PubMed/NCBI

53 

Berbee JF, Boon MR, Khedoe PP, Bartelt A, Schlein C, Worthmann A, Kooijman S, Hoeke G, Mol IM, John C, et al: Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development. Nat Commun. 6:63562015. View Article : Google Scholar : PubMed/NCBI

54 

Altshuler-Keylin S, Shinoda K, Hasegawa Y, Ikeda K, Hong H, Kang Q, Yang Y, Perera RM, Debnath J and Kajimura S: Beige adipocyte maintenance is regulated by autophagy-induced mitochondrial clearance. Cell Metab. 24:402–419. 2016. View Article : Google Scholar : PubMed/NCBI

55 

Rosen ED and Spiegelman BM: Adipocytes as regulators of energy balance and glucose homeostasis. Nature. 444:847–853. 2006. View Article : Google Scholar : PubMed/NCBI

56 

Arner P: Regional adipocity in man. J Endocrinol. 155:191–192. 1997. View Article : Google Scholar : PubMed/NCBI

57 

Chen SX, Zhang LJ and Gallo RL: Dermal white adipose tissue: A newly recognized layer of skin innate defense. J Invest Dermatol. 139:1002–1009. 2019. View Article : Google Scholar : PubMed/NCBI

58 

Zhang LJ, Guerrero-Juarez CF, Hata T, Bapat SP, Ramos R, Plikus MV and Gallo RL: Innate immunity. Dermal adipocytes protect against invasive Staphylococcus aureus skin infection. Science. 347:67–71. 2015. View Article : Google Scholar : PubMed/NCBI

59 

Fruhbeck G: Overview of adipose tissue and its role in obesity and metabolic disorders. Methods Mol Biol. 456:1–22. 2008. View Article : Google Scholar : PubMed/NCBI

60 

Salvador J, Silva C, Pujante P and Fruhbeck G: Abdominal obesity: An indicator of cardiometabolic risk. Endocrinol Nutr. 55:420–432. 2008.(In English, Spanish). View Article : Google Scholar : PubMed/NCBI

61 

Scheja L and Heeren J: The endocrine function of adipose tissues in health and cardiometabolic disease. Nat Rev Endocrinol. 15:507–524. 2019. View Article : Google Scholar : PubMed/NCBI

62 

Stern JH, Rutkowski JM and Scherer PE: Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab. 23:770–784. 2016. View Article : Google Scholar : PubMed/NCBI

63 

Eto H, Suga H, Matsumoto D, Inoue K, Aoi N, Kato H, Araki J and Yoshimura K: Characterization of structure and cellular components of aspirated and excised adipose tissue. Plast Reconstr Surg. 124:1087–1097. 2009. View Article : Google Scholar : PubMed/NCBI

64 

Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP and Hedrick MH: Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 7:211–228. 2001. View Article : Google Scholar : PubMed/NCBI

65 

Brown JC, Shang H, Li Y, Yang N, Patel N and Katz AJ: Isolation of adipose-derived stromal vascular fraction cells using a novel point-of-care device: Cell characterization and review of the literature. Tissue Eng Part C Methods. 23:125–135. 2017. View Article : Google Scholar : PubMed/NCBI

66 

Wu H and Ballantyne CM: Metabolic inflammation and insulin resistance in obesity. Circ Res. 126:1549–1564. 2020. View Article : Google Scholar : PubMed/NCBI

67 

Hollenberg CH and Vost A: Regulation of DNA synthesis in fat cells and stromal elements from rat adipose tissue. J Clin Invest. 47:2485–2498. 1969. View Article : Google Scholar : PubMed/NCBI

68 

Panina YA, Yakimov AS, Komleva YK, Morgun AV, Lopatina OL, Malinovskaya NA, Shuvaev AN, Salmin VV, Taranushenko TE and Salmina AB: Plasticity of adipose tissue-derived stem cells and regulation of angiogenesis. Front Physiol. 9:16562018. View Article : Google Scholar : PubMed/NCBI

69 

Cao Y: Adipose tissue angiogenesis as a therapeutic target for obesity and metabolic diseases. Nat Rev Drug Discov. 9:107–115. 2010. View Article : Google Scholar : PubMed/NCBI

70 

Mahlakoiv T, Flamar AL, Johnston LK, Moriyama S, Putzel GG, Bryce PJ and Artis D: Stromal cells maintain immune cell homeostasis in adipose tissue via production of interleukin-33. Sci Immunol. 4:eaax04162019. View Article : Google Scholar : PubMed/NCBI

71 

Sun C, Berry WL and Olson LE: PDGFRα controls the balance of stromal and adipogenic cells during adipose tissue organogenesis. Development. 144:83–94. 2017. View Article : Google Scholar : PubMed/NCBI

72 

Mclaughlin T, Ackerman SE, Shen L and Engleman E: Role of innate and adaptive immunity in obesity-associated metabolic disease. J Clin Invest. 127:5–13. 2017. View Article : Google Scholar : PubMed/NCBI

73 

Rochette L, Mazini L, Malka G, Zeller M, Cottin Y and Vergely C: The crosstalk of adipose-derived stem cells (ADSC), oxidative stress, and inflammation in protective and adaptive responses. Int J Mol Sci. 21:92622020. View Article : Google Scholar : PubMed/NCBI

74 

Hui X, Zhang M, Gu P, Li K, Gao Y, Wu D, Wang Y and Xu A: Adipocyte SIRT1 controls systemic insulin sensitivity by modulating macrophages in adipose tissue. EMBO Rep. 18:645–657. 2017. View Article : Google Scholar : PubMed/NCBI

75 

Hotamisligil GS: Inflammation, metaflammation and immunometabolic disorders. Nature. 542:177–185. 2017. View Article : Google Scholar : PubMed/NCBI

76 

Hotamisligil GS: Foundations of immunometabolism and implications for metabolic health and disease. Immunity. 47:406–420. 2017. View Article : Google Scholar : PubMed/NCBI

77 

Man K, Kutyavin VI and Chawla A: Tissue immunometabolism: Development, physiology, and pathobiology. Cell Metab. 25:11–26. 2017. View Article : Google Scholar : PubMed/NCBI

78 

Clement E, Lazar I, Attane C, Carrie L, Dauvillier S, Ducoux-Petit M, Esteve D, Menneteau T, Moutahir M, Le Gonidec S, et al: Adipocyte extracellular vesicles carry enzymes and fatty acids that stimulate mitochondrial metabolism and remodeling in tumor cells. EMBO J. 39:e1025252020. View Article : Google Scholar : PubMed/NCBI

79 

Hartwig S, De Filippo E, Goddeke S, Knebel B, Kotzka J, Al-Hasani H, Roden M, Lehr S and Sell H: Exosomal proteins constitute an essential part of the human adipose tissue secretome. Biochim Biophys Acta Proteins Proteom. 1867:1401722019. View Article : Google Scholar : PubMed/NCBI

80 

Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ and Lotvall JO: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 9:654–659. 2007. View Article : Google Scholar : PubMed/NCBI

81 

Liu T, Sun YC, Cheng P and Shao HG: Adipose tissue macrophage-derived exosomal miR-29a regulates obesity-associated insulin resistance. Biochem Biophys Res Commun. 515:352–358. 2019. View Article : Google Scholar : PubMed/NCBI

82 

Geng L, Lam K and Xu A: The therapeutic potential of FGF21 in metabolic diseases: From bench to clinic. Nat Rev Endocrinol. 16:654–667. 2020. View Article : Google Scholar : PubMed/NCBI

83 

Gao J, Li X, Wang Y, Cao Y, Yao D, Sun L, Qin L, Qiu H and Zhan X: Adipocyte-derived extracellular vesicles modulate appetite and weight through mTOR signalling in the hypothalamus. Acta Physiol (Oxf). 228:e133392020. View Article : Google Scholar : PubMed/NCBI

84 

Lee JE, Moon PG, Lee IK and Baek MC: Proteomic Analysis of extracellular vesicles released by adipocytes of otsuka long-evans tokushima fatty (OLETF) Rats. Protein J. 34:220–235. 2015. View Article : Google Scholar : PubMed/NCBI

85 

Sano S, Izumi Y, Yamaguchi T, Yamazaki T, Tanaka M, Shiota M, Osada-Oka M, Nakamura Y, Wei M, Wanibuchi H, et al: Lipid synthesis is promoted by hypoxic adipocyte-derived exosomes in 3T3-L1 cells. Biochem Biophys Res Commun. 445:327–333. 2014. View Article : Google Scholar : PubMed/NCBI

86 

Kranendonk ME, Visseren FL, van Balkom BW, Nolte-'t Hoen EN, van Herwaarden JA, de Jager W, Schipper HS, Brenkman AB, Verhaar MC, Wauben MH and Kalkhoven E: Human adipocyte extracellular vesicles in reciprocal signaling between adipocytes and macrophages. Obesity (Silver Spring). 22:1296–1308. 2014. View Article : Google Scholar : PubMed/NCBI

87 

Phoonsawat W, Aoki-Yoshida A, Tsuruta T and Sonoyama K: Adiponectin is partially associated with exosomes in mouse serum. Biochem Biophys Res Commun. 448:261–266. 2014. View Article : Google Scholar : PubMed/NCBI

88 

Crewe C and Scherer PE: Intercellular and interorgan crosstalk through adipocyte extracellular vesicles. Rev Endocr Metab Disord. 23:61–69. 2022. View Article : Google Scholar : PubMed/NCBI

89 

Connolly KD, Wadey RM, Mathew D, Johnson E, Rees DA and James PE: Evidence for adipocyte-derived extracellular vesicles in the human circulation. Endocrinology. 159:3259–3267. 2018. View Article : Google Scholar : PubMed/NCBI

90 

Lazar I, Clement E, Dauvillier S, Milhas D, Ducoux-Petit M, Legonidec S, Moro C, Soldan V, Dalle S, Balor S, et al: Adipocyte Exosomes Promote Melanoma Aggressiveness through Fatty Acid Oxidation: A Novel Mechanism Linking Obesity and Cancer. Cancer Res. 76:4051–4057. 2016. View Article : Google Scholar : PubMed/NCBI

91 

Ying W, Riopel M, Bandyopadhyay G, Dong Y, Birmingham A, Seo JB, Ofrecio JM, Wollam J, Hernandez-Carretero A, Fu W, et al: Adipose tissue macrophage-derived exosomal miRNAs Can modulate in vivo and in vitro insulin sensitivity. Cell. 171:372–384.e12. 2017. View Article : Google Scholar : PubMed/NCBI

92 

Bassi EJ, Moraes-Vieira PM, Moreira-Sa CS, Almeida DC, Vieira LM, Cunha CS, Hiyane MI, Basso AS, Pacheco-Silva A and Camara NO: Immune regulatory properties of allogeneic adipose-derived mesenchymal stem cells in the treatment of experimental autoimmune diabetes. Diabetes. 61:2534–2545. 2012. View Article : Google Scholar : PubMed/NCBI

93 

Mizuno H, Tobita M and Uysal AC: Concise review: Adipose-derived stem cells as a novel tool for future regenerative medicine. Stem Cells. 30:804–810. 2012. View Article : Google Scholar : PubMed/NCBI

94 

Gonzalez MA, Gonzalez-Rey E, Rico L, Buscher D and Delgado M: Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology. 136:978–989. 2009. View Article : Google Scholar : PubMed/NCBI

95 

Garcia-Contreras M, Vera-Donoso CD, Hernandez-Andreu JM, Garcia-Verdugo JM and Oltra E: Therapeutic potential of human adipose-derived stem cells (ADSCs) from cancer patients: A pilot study. PLoS One. 9:e1132882014. View Article : Google Scholar : PubMed/NCBI

96 

Zhao H, Shang Q, Pan Z, Bai Y, Li Z, Zhang H, Zhang Q, Guo C, Zhang L and Wang Q: Exosomes from adipose-derived stem cells attenuate adipose inflammation and obesity through polarizing M2 macrophages and beiging in white adipose tissue. Diabetes. 67:235–247. 2018. View Article : Google Scholar : PubMed/NCBI

97 

Jung YJ, Kim HK, Cho Y, Choi JS, Woo CH, Lee KS, Sul JH, Lee CM, Han J, Park JH, et al: Cell reprogramming using extracellular vesicles from differentiating stem cells into white/beige adipocytes. Sci Adv. 6:eaay67212020. View Article : Google Scholar : PubMed/NCBI

98 

Fuster JJ, Ouchi N, Gokce N and Walsh K: Obesity-Induced changes in adipose tissue microenvironment and their impact on cardiovascular disease. Circ Res. 118:1786–1807. 2016. View Article : Google Scholar : PubMed/NCBI

99 

Zhao S, Kusminski CM and Scherer PE: Adiponectin, leptin and cardiovascular disorders. Circ Res. 128:136–149. 2021. View Article : Google Scholar : PubMed/NCBI

100 

Weisberg SP, Hunter D, Huber R, Lemieux J, Slaymaker S, Vaddi K, Charo I, Leibel RL and Ferrante AJ: CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest. 116:115–124. 2006. View Article : Google Scholar : PubMed/NCBI

101 

Lumeng CN, Bodzin JL and Saltiel AR: Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 117:175–184. 2007. View Article : Google Scholar : PubMed/NCBI

102 

Deng ZB, Poliakov A, Hardy RW, Clements R, Liu C, Liu Y, Wang J, Xiang X, Zhang S, Zhuang X, et al: Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance. Diabetes. 58:2498–2505. 2009. View Article : Google Scholar : PubMed/NCBI

103 

Pan Y, Hui X, Hoo RLC, Ye D, Chan CYC, Feng T, Wang Y, Lam KSL and Xu A: Adipocyte-secreted exosomal microRNA-34a inhibits M2 macrophage polarization to promote obesity-induced adipose inflammation. J Clin Invest. 129:834–849. 2019. View Article : Google Scholar : PubMed/NCBI

104 

James DE, Stockli J and Birnbaum MJ: The aetiology and molecular landscape of insulin resistance. Nat Rev Mol Cell Biol. 22:751–771. 2021. View Article : Google Scholar : PubMed/NCBI

105 

Yu Y, Du H, Wei S, Feng L, Li J, Yao F, Zhang M, Hatch GM and Chen L: Adipocyte-Derived exosomal MiR-27a induces insulin resistance in skeletal muscle through repression of PPARү. Theranostics. 8:2171–2188. 2018. View Article : Google Scholar : PubMed/NCBI

106 

Li D, Song H, Shuo L, Wang L, Xie P, Li W, Liu J, Tong Y, Zhang CY, Jiang X, et al: Gonadal white adipose tissue-derived exosomal MiR-222 promotes obesity-associated insulin resistance. Aging (Albany NY). 12:22719–22743. 2020.PubMed/NCBI

107 

Kranendonk ME, Visseren FL, van Herwaarden JA, Nolte-'t Hoen EN, de Jager W, Wauben MH and Kalkhoven E: Effect of extracellular vesicles of human adipose tissue on insulin signaling in liver and muscle cells. Obesity (Silver Spring). 22:2216–2223. 2014. View Article : Google Scholar : PubMed/NCBI

108 

Gao X, Salomon C and Freeman DJ: Extracellular vesicles from adipose tissue-A potential role in obesity and type 2 diabetes? Front Endocrinol (Lausanne). 8:2022017. View Article : Google Scholar : PubMed/NCBI

109 

Eguchi A, Lazic M, Armando AM, Phillips SA, Katebian R, Maraka S, Quehenberger O, Sears DD and Feldstein AE: Circulating adipocyte-derived extracellular vesicles are novel markers of metabolic stress. J Mol Med (Berl). 94:1241–1253. 2016. View Article : Google Scholar : PubMed/NCBI

110 

Katayama M, Wiklander OPB, Fritz T, Caidahl K, El-Andaloussi S, Zierath JR and Krook A: Circulating exosomal miR-20b-5p is elevated in type 2 diabetes and could impair insulin action in human skeletal muscle. Diabetes. 68:515–526. 2019. View Article : Google Scholar : PubMed/NCBI

111 

Kranendonk ME, de Kleijn DP, Kalkhoven E, Kanhai DA, Uiterwaal CS, van der Graaf Y, Pasterkamp G and Visseren FL; SMART Study Group, : Extracellular vesicle markers in relation to obesity and metabolic complications in patients with manifest cardiovascular disease. Cardiovasc Diabetol. 13:372014. View Article : Google Scholar : PubMed/NCBI

112 

Su S, Guntur AR, Nguyen DC, Fakory SS, Doucette CC, Leech C, Lotana H, Kelley M, Kohli J, Martino J, et al: A renewable source of human beige adipocytes for development of therapies to treat metabolic Syndrome. Cell Rep. 25:3215–3228,e9. 2018. View Article : Google Scholar : PubMed/NCBI

113 

Connolly KD, Rees DA and James PE: Role of adipocyte-derived extracellular vesicles in vascular inflammation. Free Radic Biol Med. 172:58–64. 2021. View Article : Google Scholar : PubMed/NCBI

114 

Dai W, Liu Z, Yang S and Kong J: Inflamed adipose tissue: Therapeutic Targets for obesity-related endothelial injury. Endocrinology. 164:bqad0942023. View Article : Google Scholar : PubMed/NCBI

115 

Koenen M, Hill MA, Cohen P and Sowers JR: Obesity, adipose tissue and vascular dysfunction. Circ Res. 128:951–968. 2021. View Article : Google Scholar : PubMed/NCBI

116 

Xie Z, Wang X, Liu X, Du H, Sun C, Shao X, Tian J, Gu X, Wang H, Tian J and Yu B: Adipose-Derived exosomes exert proatherogenic effects by regulating macrophage foam cell formation and polarization. J Am Heart Assoc. 7:e0074422018. View Article : Google Scholar : PubMed/NCBI

117 

Barberio MD, Kasselman LJ, Playford MP, Epstein SB, Renna HA, Goldberg M, Deleon J, Voloshyna I, Barlev A, Salama M, et al: Cholesterol efflux alterations in adolescent obesity: Role of adipose-derived extracellular vesical microRNAs. J Transl Med. 17:2322019. View Article : Google Scholar : PubMed/NCBI

118 

Fleury A, Martinez MC and Le Lay S: Extracellular vesicles as therapeutic tools in cardiovascular diseases. Front Immunol. 5:3702014. View Article : Google Scholar : PubMed/NCBI

119 

Wen Z, Li J, Fu Y, Zheng Y, Ma M and Wang C: Hypertrophic adipocyte-derived exosomal miR-802-5p contributes to insulin resistance in cardiac myocytes through targeting hSP60. Obesity (Silver Spring). 28:1932–1940. 2020. View Article : Google Scholar : PubMed/NCBI

120 

Monteiro JP, Bennett M, Rodor J, Caudrillier A, Ulitsky I and Baker AH: Endothelial function and dysfunction in the cardiovascular system: The long non-coding road. Cardiovasc Res. 115:1692–1704. 2019. View Article : Google Scholar : PubMed/NCBI

121 

Muller G: Microvesicles/exosomes as potential novel biomarkers of metabolic diseases. Diabetes Metab Syndr Obes. 5:247–282. 2012. View Article : Google Scholar : PubMed/NCBI

122 

Wadey RM, Connolly KD, Mathew D, Walters G, Rees DA and James PE: Inflammatory adipocyte-derived extracellular vesicles promote leukocyte attachment to vascular endothelial cells. Atherosclerosis. 283:19–27. 2019. View Article : Google Scholar : PubMed/NCBI

123 

Fang X, Stroud MJ, Ouyang K, Fang L, Zhang J, Dalton ND, Gu Y, Wu T, Peterson KL, Huang HD, et al: Adipocyte-specific loss of PPARү attenuates cardiac hypertrophy. JCI Insight. 1:e899082016. View Article : Google Scholar : PubMed/NCBI

124 

Gan L, Xie D, Liu J, Bond LW, Christopher TA, Lopez B, Zhang L, Gao E, Koch W, Ma XL and Wang Y: Small extracellular microvesicles mediated pathological communications between dysfunctional adipocytes and cardiomyocytes as a novel mechanism exacerbating ischemia/reperfusion injury in diabetic mice. Circulation. 141:968–983. 2020. View Article : Google Scholar : PubMed/NCBI

125 

Parekh N, Chandran U and Bandera EV: Obesity in cancer survival. Annu Rev Nutr. 32:311–342. 2012. View Article : Google Scholar : PubMed/NCBI

126 

Dirat B, Bochet L, Dabek M, Daviaud D, Dauvillier S, Majed B, Wang YY, Meulle A, Salles B, Le Gonidec S, et al: Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res. 71:2455–2465. 2011. View Article : Google Scholar : PubMed/NCBI

127 

Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, Romero IL, Carey MS, Mills GB, Hotamisligil GS, et al: Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med. 17:1498–1503. 2011. View Article : Google Scholar : PubMed/NCBI

128 

Wang J, Wu Y, Guo J, Fei X, Yu L and Ma S: Adipocyte-derived exosomes promote lung cancer metastasis by increasing MMP9 activity via transferring MMP3 to lung cancer cells. Oncotarget. 8:81880–81891. 2017. View Article : Google Scholar : PubMed/NCBI

129 

Wang Y, Chu Y, Li K, Zhang G, Guo Z, Wu X, Qiu C, Li Y, Wan X, Sui J, et al: Exosomes secreted by adipose-derived mesenchymal stem cells foster metastasis and osteosarcoma proliferation by increasing COLGALT2 expression. Front Cell Dev Biol. 8:3532020. View Article : Google Scholar : PubMed/NCBI

130 

Gangadaran P, Rajendran RL, Oh JM, Oh EJ, Hong CM, Chung HY, Lee J and Ahn BC: Identification of angiogenic cargo in extracellular vesicles secreted from human adipose tissue-derived stem cells and induction of angiogenesis in vitro and in vivo. Pharmaceutics. 13:4952021. View Article : Google Scholar : PubMed/NCBI

131 

Khanh VC, Fukushige M, Moriguchi K, Yamashita T, Osaka M, Hiramatsu Y and Ohneda O: Type 2 diabetes mellitus induced paracrine effects on breast cancer metastasis through extracellular vesicles derived from human mesenchymal stem cells. Stem Cells Dev. 29:1382–1394. 2020. View Article : Google Scholar : PubMed/NCBI

132 

Mattiske S, Suetani RJ, Neilsen PM and Callen DF: The oncogenic role of miR-155 in breast cancer. Cancer Epidemiol Biomarkers Prev. 21:1236–1243. 2012. View Article : Google Scholar : PubMed/NCBI

133 

Balaban S, Shearer RF, Lee LS, van Geldermalsen M, Schreuder M, Shtein HC, Cairns R, Thomas KC, Fazakerley DJ, Grewal T, et al: Adipocyte lipolysis links obesity to breast cancer growth: Adipocyte-derived fatty acids drive breast cancer cell proliferation and migration. Cancer Metab. 5:12017. View Article : Google Scholar : PubMed/NCBI

134 

Kuo CY and Ann DK: When fats commit crimes: Fatty acid metabolism, cancer stemness and therapeutic resistance. Cancer Commun (Lond). 38:472018. View Article : Google Scholar : PubMed/NCBI

135 

Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC, Ju S, Mu J, Zhang L, Steinman L, et al: Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther. 19:1769–1779. 2011. View Article : Google Scholar : PubMed/NCBI

136 

Hardy J: Amyloid, the presenilins and Alzheimer's disease. Trends Neurosci. 20:154–159. 1997. View Article : Google Scholar : PubMed/NCBI

137 

Selkoe DJ: The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer's disease. Trends Cell Biol. 8:447–453. 1998. View Article : Google Scholar : PubMed/NCBI

138 

Katsuda T, Tsuchiya R, Kosaka N, Yoshioka Y, Takagaki K, Oki K, Takeshita F, Sakai Y, Kuroda M and Ochiya T: Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes. Sci Rep. 3:11972013. View Article : Google Scholar : PubMed/NCBI

139 

Garcia-Contreras M and Thakor AS: Human adipose tissue-derived mesenchymal stem cells and their extracellular vesicles modulate lipopolysaccharide activated human microglia. Cell Death Discov. 7:982021. View Article : Google Scholar : PubMed/NCBI

140 

Geng W, Tang H, Luo S, Lv Y, Liang D, Kang X and Hong W: Exosomes from miRNA-126-modified ADSCs promotes functional recovery after stroke in rats by improving neurogenesis and suppressing microglia activation. Am J Transl Res. 11:780–792. 2019.PubMed/NCBI

141 

Jiang M, Wang H, Jin M, Yang X, Ji H, Jiang Y, Zhang H, Wu F, Wu G, Lai X, et al: Exosomes from MiR-30d-5p-ADSCs reverse acute ischemic stroke-induced, autophagy-mediated brain injury by promoting M2 microglial/macrophage polarization. Cell Physiol Biochem. 47:864–878. 2018. View Article : Google Scholar : PubMed/NCBI

142 

Takahashi Y and Takakura Y: Extracellular vesicle-based therapeutics: Extracellular vesicles as therapeutic targets and agents. Pharmacol Ther. 242:1083522023. View Article : Google Scholar : PubMed/NCBI

143 

Greening DW, Xu R, Ale A, Hagemeyer CE and Chen W: Extracellular vesicles as next generation immunotherapeutics. Semin Cancer Biol. 90:73–100. 2023. View Article : Google Scholar : PubMed/NCBI

144 

Kwan HY, Chen M, Xu K and Chen B: The impact of obesity on adipocyte-derived extracellular vesicles. Cell Mol Life Sci. 78:7275–7288. 2021. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yang X, Hao J, Luo J, Lu X and Kong X: Adipose tissue‑derived extracellular vesicles: <br />Systemic messengers in health and disease (Review). Mol Med Rep 28: 189, 2023.
APA
Yang, X., Hao, J., Luo, J., Lu, X., & Kong, X. (2023). Adipose tissue‑derived extracellular vesicles: <br />Systemic messengers in health and disease (Review). Molecular Medicine Reports, 28, 189. https://doi.org/10.3892/mmr.2023.13076
MLA
Yang, X., Hao, J., Luo, J., Lu, X., Kong, X."Adipose tissue‑derived extracellular vesicles: <br />Systemic messengers in health and disease (Review)". Molecular Medicine Reports 28.4 (2023): 189.
Chicago
Yang, X., Hao, J., Luo, J., Lu, X., Kong, X."Adipose tissue‑derived extracellular vesicles: <br />Systemic messengers in health and disease (Review)". Molecular Medicine Reports 28, no. 4 (2023): 189. https://doi.org/10.3892/mmr.2023.13076
Copy and paste a formatted citation
x
Spandidos Publications style
Yang X, Hao J, Luo J, Lu X and Kong X: Adipose tissue‑derived extracellular vesicles: <br />Systemic messengers in health and disease (Review). Mol Med Rep 28: 189, 2023.
APA
Yang, X., Hao, J., Luo, J., Lu, X., & Kong, X. (2023). Adipose tissue‑derived extracellular vesicles: <br />Systemic messengers in health and disease (Review). Molecular Medicine Reports, 28, 189. https://doi.org/10.3892/mmr.2023.13076
MLA
Yang, X., Hao, J., Luo, J., Lu, X., Kong, X."Adipose tissue‑derived extracellular vesicles: <br />Systemic messengers in health and disease (Review)". Molecular Medicine Reports 28.4 (2023): 189.
Chicago
Yang, X., Hao, J., Luo, J., Lu, X., Kong, X."Adipose tissue‑derived extracellular vesicles: <br />Systemic messengers in health and disease (Review)". Molecular Medicine Reports 28, no. 4 (2023): 189. https://doi.org/10.3892/mmr.2023.13076
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team