1
|
Leonardi DB, Abbate M, Riccheri MC, Nuñez
M, Alfonso G, Gueron G, De Siervi A, Vazquez E and Cotignola J:
Improving risk stratification of patients with childhood acute
lymphoblastic leukemia: Glutathione-S-Transferases polymorphisms
are associated with increased risk of relapse. Oncotarget.
8:110–117. 2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Jaime-Perez JC, Pinzon-Uresti MA,
Jimènez-Castillo RA, Colunga-Pedraza JE, González-Llano Ó and
Gómez-Almaguer D: Relapse of childhood acute lymphoblastic leukemia
and outcomes at a reference center in Latin America: Organomegaly
at diagnosis is a significant clinical predictor. Hematology.
23:1–9. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Mahjoubi F and Akbari S: Multidrug
resistance-associated protein 1 predicts relapse in Iranian
childhood acute lymphoblastic leukemia. Asian Pac J Cancer Prev.
13:2285–2289. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Zareifar S, Monabati A, Saeed A, Fakhraee
F and Cohan N: The association of glutathione S-transferase gene
mutations (including GSTT1 and GSTM1) with the prognostic factors
and relapse in acute lymphoblastic leukemia. Pediatr Hematol Oncol.
30:568–573. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hunyadi A, Csábi J, Martins A, Molnar J,
Balázs A, Tóth G and Backstabbing P-gp: Side-chain cleaved
ecdysteroid 2,3-dioxolanes hyper-sensitize MDR cancer cells to
doxorubicin without efflux inhibition. Molecules. 22(pii): pp.
E1992017, View Article : Google Scholar : PubMed/NCBI
|
6
|
Cai J, Fang L, Huang Y, Li R, Xu X, Hu Z,
Zhang L, Yang Y, Zhu X, Zhang H, et al: Simultaneous overactivation
of Wnt/β-catenin and TGFβ signalling by miR-128-3p confers
chemoresistance-associated metastasis in NSCLC. Nat Commun.
8:158702017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ashihara E, Takada T and Maekawa T:
Targeting the canonical Wnt/β-catenin pathway in hematological
malignancies. Cancer Sci. 106:665–671. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Lu C, Cui C, Liu B, Zou S, Song H, Tian H,
Zhao J and Li Y: FERMT3 contributes to glioblastoma cell
proliferation and chemoresistance to temozolomide through integrin
mediated Wnt signaling. Neurosci Lett. 657:77–83. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ma LS, Jiang CY, Cui M, Lu R, Liu SS,
Zheng BB, Li L and Li X: Fluopsin C induces oncosis of human breast
adenocarcinoma cells. Acta Pharmacol Sin. 34:1093–1100. 2013.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Si L, Tian H, Yue W, Li L, Li S, Gao C and
Qi L: Potential use of microRNA-200c as a prognostic marker in
non-small cell lung cancer. Oncol Lett. 14:4325–4330. 2017.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Dandekar S, Romanos-Sirakis E, Pais F,
Bhatla T, Jones C, Bourgeois W, Hunger SP, Raetz EA, Hermiston ML,
Dasgupta R, et al: Wnt inhibition leads to improved
chemosensitivity in paediatric acute lymphoblastic leukaemia. Br J
Haematol. 167:87–99. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Scheijen B, Boer JM, Marke R, Tijchon E,
van Ingen Schenau D, Waanders E, van Emst L, van der Meer LT,
Pieters R, Escherich G, et al: Tumor suppressors BTG1 and IKZF1
cooperate during mouse leukemia development and increase relapse
risk in B-cell precursor acute lymphoblastic leukemia patients.
Haematologica. 102:541–551. 2017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Luis TC, Ichii M, Brugman MH, Kincade P
and Staal FJ: Wnt signaling strength regulates normal hematopoiesis
and its deregulation is involved in leukemia development. Leukemia.
26:414–421. 2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Ge X and Wang X: Role of Wnt canonical
pathway in hematological malignancies. J Hematol Oncol. 3:332010.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Undi RB, Gutti U, Sahu I, Sarvothaman S,
Pasupuleti SR, Kandi R and Gutti RK: Wnt signaling: Role in
regulation of haematopoiesis. Indian J Hematol Blood Transfus.
32:123–134. 2016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Yang Y, Mallampati S, Sun B, Zhang J, Kim
SB, Lee JS, Gong Y, Cai Z and Sun X: Wnt pathway contributes to the
protection by bone marrow stromal cells of acute lymphoblastic
leukemia cells and is a potential therapeutic target. Cancer Lett.
333:9–17. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Hamdoun S, Fleischer E, Klinger A and
Efferth T: Lawsone derivatives target the Wnt/β-catenin signaling
pathway in multidrug-resistant acute lymphoblastic leukemia cells.
Biochem Pharmacol. 146:63–73. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Saba NS, Angelova M, Lobelle-Rich PA and
Levy LS: Disruption of pre-B-cell receptor signaling jams the
WNT/β-catenin pathway and induces cell death in B-cell acute
lymphoblastic leukemia cell lines. Leuk Res. Aug 10–2015.(Epub
ahead of print). doi: 10.1016/j.leukres.2015.08.002. View Article : Google Scholar : PubMed/NCBI
|
20
|
Hu K, Gu Y, Lou L, Liu L, Hu Y, Wang B,
Luo Y, Shi J, Yu X and Huang H: Galectin-3 mediates bone marrow
microenvironment-induced drug resistance in acute leukemia cells
via Wnt/β-catenin signaling pathway. J Hematol Oncol. 8:12015.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Seke Etet PF, Vecchio L and Nwabo Kamdje
AH: Interactions between bone marrow stromal microenvironment and
B-chronic lymphocytic leukemia cells: Any role for Notch, Wnt and
Hh signaling pathways? Cell Signal. 24:1433–1443. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Gandhirajan RK, Staib PA, Minke K, Gehrke
I, Plickert G, Schlösser A, Schmitt EK, Hallek M and Kreuzer KA:
Small molecule inhibitors of Wnt/beta-catenin/lef-1 signaling
induces apoptosis in chronic lymphocytic leukemia cells in vitro
and in vivo. Neoplasia. 12:326–335. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Bejsovec A: Wnt pathway activation: New
relations and locations. Cell. 120:11–14. 2005. View Article : Google Scholar : PubMed/NCBI
|
24
|
Drager J, Simon-Keller K, Pukrop T, Klemm
F, Wilting J, Sticht C, Dittmann K, Schulz M, Leuschner I, Marx A
and Hahn H: LEF1 reduces tumor progression and induces
myodifferentiation in a subset of rhabdomyosarcoma. Oncotarget.
8:3259–3273. 2017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Yu S, Zhou X, Steinke FC, Liu C, Chen SC,
Zagorodna O, Jing X, Yokota Y, Meyerholz DK, Mullighan CG, et al:
The TCF-1 and LEF-1 transcription factors have cooperative and
opposing roles in T cell development and malignancy. Immunity.
37:813–826. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Tiemessen MM, Baert MR, Schonewille T,
Brugman MH, Famili F, Salvatori DC, Meijerink JP, Ozbek U, Clevers
H, van Dongen JJ and Staal FJ: The nuclear effector of
Wnt-signaling, Tcf1, functions as a T-cell-specific tumor
suppressor for development of lymphomas. PLoS Biol.
10:e10014302012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Gutierrez A Jr, Tschumper RC, Wu X,
Shanafelt TD, Eckel-Passow J, Huddleston PM III, Slager SL, Kay NE
and Jelinek DF: LEF-1 is a prosurvival factor in chronic
lymphocytic leukemia and is expressed in the preleukemic state of
monoclonal B-cell lymphocytosis. Blood. 116:2975–2983. 2010.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Kuhnl A, Gökbuget N, Kaiser M, Schlee C,
Stroux A, Burmeister T, Mochmann LH, Hoelzer D, Hofmann WK, Thiel E
and Baldus CD: Overexpression of LEF1 predicts unfavorable outcome
in adult patients with B-precursor acute lymphoblastic leukemia.
Blood. 118:6362–6367. 2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Mao B, Wu W, Davidson G, Marhold J, Li M,
Mechler BM, Delius H, Hoppe D, Stannek P, Walter C, et al: Kremen
proteins are Dickkopf receptors that regulate Wnt/beta-catenin
signalling. Nature. 417:664–667. 2002. View Article : Google Scholar : PubMed/NCBI
|
30
|
Yamamoto H, Sakane H, Yamamoto H, Michiue
T and Kikuchi A: Wnt3a and Dkk1 regulate distinct internalization
pathways of LRP6 to tune the activation of beta-catenin signaling.
Dev Cell. 15:37–48. 2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Morrow CS, Peklak-Scott C, Bishwokarma B,
Kute TE, Smitherman PK and Townsend AJ: Multidrug resistance
protein 1 (MRP1, ABCC1) mediates resistance to mitoxantrone via
glutathione-dependent drug efflux. Mol Pharmacol. 69:1499–1505.
2006. View Article : Google Scholar : PubMed/NCBI
|
32
|
Sehested M, Friche E, Jensen PB and Demant
EJ: Relationship of VP-16 to the classical multidrug resistance
phenotype. Cancer Res. 52:2874–2879. 1992.PubMed/NCBI
|
33
|
Chen GK, Duran GE, Mangili A,
Beketic-Oreskovic L and Sikic BI: MDR 1 activation is the
predominant resistance mechanism selected by vinblastine in MES-SA
cells. Br J Cancer. 83:892–898. 2000. View Article : Google Scholar : PubMed/NCBI
|
34
|
Sun C, Chang L and Zhu X: Pathogenesis of
ETV6/RUNX1-positive childhood acute lymphoblastic leukemia and
mechanisms underlying its relapse. Oncotarget. 8:35445–35459.
2017.PubMed/NCBI
|