|
1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Hedberg ML, Goh G, Chiosea SI, Bauman JE,
Freilino ML, Zeng Y, Wang L, Diergaarde BB, Gooding WE, Lui VW, et
al: Genetic landscape of metastatic and recurrent head and neck
squamous cell carcinoma. J Clin Invest. 126:16062016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Stewart B and Wild CP: World Cancer
Report. World Cancer Report. 45:12–351. 2014.
|
|
4
|
Miller KD, Siegel RL, Lin CC, Mariotto AB,
Kramer JL, Rowland JH, Stein KD, Alteri R and Jemal A: Cancer
treatment and survivorship statistics, 2016. CA Cancer J Clin.
66:271–289. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Guigay J, Tahara M, Licitra L, Keilholz U,
Friesland S, Witzler P and Mesía R: The evolving role of taxanes in
combination with cetuximab for the treatment of recurrent and/or
metastatic squamous cell carcinoma of the head and neck: Evidence,
advantages, and future directions. Front Oncol. 9:6682019.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Bonner JA, Harari PM, Giralt J, Azarnia N,
Shin DM, Cohen RB, Jones CU, Sur R, Raben D, Jassem J, et al:
Radiotherapy plus cetuximab for squamous-cell carcinoma of the head
and neck. N Engl J Med. 354:567–578. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Vermorken JB, Mesia R, Rivera F, Remenar
E, Kawecki A, Rottey S, Erfan J, Zabolotnyy D, Kienzer HR, Cupissol
D, et al: Platinum-based chemotherapy plus cetuximab in head and
neck cancer. N Engl J Med. 359:1116–1127. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Stabile LP, He G, Lui VW, Thomas S, Henry
C, Gubish CT, Joyce S, Quesnelle KM, Siegfried JM and Grandis JR:
c-Src activation mediates erlotinib resistance in head and neck
cancer by stimulating c-Met. Clin Cancer Res. 19:380–392. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Brand TM, Iida M and Wheeler DL: Molecular
mechanisms of resistance to the EGFR monoclonal antibody cetuximab.
Cancer Biol Ther. 11:777–792. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Leonard B, Brand TM, O'Keefe RA, Lee ED,
Zeng Y, Kemmer JD, Li H, Grandis JR and Bhola NE: BET inhibition
overcomes receptor tyrosine kinase-mediated cetuximab resistance in
HNSCC. Cancer Res. 78:4331–4343. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Madoz-Gurpide J, Zazo S, Chamizo C, Casado
V, Caramés C, Gavín E, Cristóbal I, García-Foncillas J and Rojo F:
Activation of MET pathway predicts poor outcome to cetuximab in
patients with recurrent or metastatic head and neck cancer. J
Transl Med. 13:2822015. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Cho YA, Kim EK, Heo SJ, Cho BC, Kim HR,
Chung JM and Yoon SO: Alteration status and prognostic value of MET
in head and neck squamous cell carcinoma. J Cancer. 7:2197–2206.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Morello S, Olivero M, Aimetti M, Bernardi
M, Berrone S, Di Renzo MF and Giordano S: MET receptor is
overexpressed but not mutated in oral squamous cell carcinomas. J
Cell Physiol. 189:285–290. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Sablin MP, Dubot C, Klijanienko J, Vacher
S, Ouafi L, Chemlali W, Caly M, Sastre-Garau X, Lappartient E,
Mariani O, et al: Identification of new candidate therapeutic
target genes in head and neck squamous cell carcinomas. Oncotarget.
7:47418–47430. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Liska D, Chen CT, Bachleitner-Hofmann T,
Christensen JG and Weiser MR: HGF rescues colorectal cancer cells
from EGFR inhibition via MET activation. Clin Cancer Res.
17:472–482. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Scagliotti G, Moro-Sibilot D, Kollmeier J,
Favaretto A, Cho EK, Grosch H, Kimmich M, Girard N, Tsai CM, Hsia
TC, et al: A randomized-controlled phase 2 Study of the MET
antibody emibetuzumab in combination with erlotinib as first-line
treatment for EGFR-mutation positive NSCLC patients. J Thorac
Oncol. 15:80–90. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Sim WJ, Iyengar PV, Lama D, Lui SKL, Ng
HC, Haviv-Shapira L, Domany E, Kappei D, Tan TZ, Saei A, et al:
c-Met activation leads to the establishment of a TGFβ-receptor
regulatory network in bladder cancer progression. Nat Commun.
10:43492019. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Giordano S, Di Renzo MF, Narsimhan RP,
Cooper CS, Rosa C and Comoglio PM: Biosynthesis of the protein
encoded by the c-met proto-oncogene. Oncogene. 4:1383–1388.
1989.PubMed/NCBI
|
|
19
|
Ferracini R, Longati P, Naldini L, Vigna E
and Comoglio PM: Identification of the major autophosphorylation
site of the Met/hepatocyte growth factor receptor tyrosine kinase.
J Biol Chem. 266:19558–19564. 1991.PubMed/NCBI
|
|
20
|
Zhen Z, Giordano S, Longati P, Medico E,
Campiglio M and Comoglio PM: Structural and functional domains
critical for constitutive activation of the HGF-receptor (Met).
Oncogene. 9:1691–1697. 1994.PubMed/NCBI
|
|
21
|
Ponzetto C, Bardelli A, Maina F, Longati
P, Panayotou G, Dhand R, Waterfield MD and Comoglio PM: A novel
recognition motif for phosphatidylinositol 3-kinase binding
mediates its association with the hepatocyte growth factor/scatter
factor receptor. Mol Cell Biol. 13:4600–4608. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Weidner KM, Di Cesare S, Sachs M,
Brinkmann V, Behrens J and Birchmeier W: Interaction between Gab1
and the c-Met receptor tyrosine kinase is responsible for
epithelial morphogenesis. Nature. 384:173–176. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Zhu H, Naujokas MA, Fixman ED, Torossian K
and Park M: Tyrosine 1356 in the carboxyl-terminal tail of the
HGF/SF receptor is essential for the transduction of signals for
cell motility and morphogenesis. J Biol Chem. 269:29943–29948.
1994.PubMed/NCBI
|
|
24
|
Hardy-Werbin M, Del Rey-Vergara R,
Galindo-Campos MA, Moliner L and Arriola E: MET inhibitors in small
cell lung cancer: From the bench to the bedside. Cancers (Basel).
11:14042019. View Article : Google Scholar
|
|
25
|
Czyz M: HGF/c-MET signaling in melanocytes
and melanoma. Int J Mol Sci. 19:38442018. View Article : Google Scholar
|
|
26
|
Huang X, Gan G, Wang X, Xu T and Xie W:
The HGF-MET axis coordinates liver cancer metabolism and autophagy
for chemotherapeutic resistance. Autophagy. 15:1258–1279. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Zhang Y, Xia M, Jin K, Wang S, Wei H, Fan
C, Wu Y, Li X, Li X, Li G, et al: Function of the c-Met receptor
tyrosine kinase in carcinogenesis and associated therapeutic
opportunities. Mol Cancer. 17:452018. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Zhang H, Feng Q, Chen WD and Wang YD:
HGF/c-MET: A promising therapeutic target in the digestive system
cancers. Int J Mol Sci. 19:32952018. View Article : Google Scholar
|
|
29
|
Comoglio PM, Trusolino L and Boccaccio C:
Known and novel roles of the MET oncogene in cancer: A coherent
approach to targeted therapy. Nat Rev Cancer. 18:341–358. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Hartmann S, Bhola NE and Grandis JR:
HGF/Met signaling in head and neck cancer: Impact on the tumor
microenvironment. Clin Cancer Res. 22:4005–4013. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Szturz P, Raymond E, Abitbol C, Albert S,
de Gramont A and Faivre S: Understanding c-MET signalling in
squamous cell carcinoma of the head and neck. Crit Rev Oncol
Hematol. 111:39–51. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Nandagopal L, Sonpavde GP and Agarwal N:
Investigational MET inhibitors to treat Renal cell carcinoma.
Expert Opin Investig Drugs. 28:851–860. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Cheng F and Guo D: MET in glioma:
Signaling pathways and targeted therapies. J Exp Clin Cancer Res.
38:2702019. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Cancer Genome Atlas Network, .
Comprehensive genomic characterization of head and neck squamous
cell carcinomas. Nature. 51:576–582. 2015.
|
|
35
|
Gao P, Li C, Chang Z, Wang X and Xuan M:
Carcinoma associated fibroblasts derived from oral squamous cell
carcinoma promote lymphangiogenesis via c-Met/PI3K/AKT in vitro.
Oncol Lett. 15:331–337. 2018.PubMed/NCBI
|
|
36
|
Knowles LM, Stabile LP, Egloff AM,
Rothstein ME, Thomas SM, Gubish CT, Lerner EC, Seethala RR, Suzuki
S, Quesnelle KM, et al: HGF and c-Met participate in paracrine
tumorigenic pathways in head and neck squamous cell cancer. Clin
Cancer Res. 15:3740–3750. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wang M, Wu C, Guo Y, Cao X, Zheng W and
Fan GK: The primary growth of laryngeal squamous cell carcinoma
cells in vitro is effectively supported by paired cancer-associated
fibroblasts alone. Tumour Bio. 39:10104283177055122017.
|
|
38
|
Awad MM, Oxnard GR, Jackman DM, Savukoski
DO, Hall D, Shivdasani P, Heng JC, Dahlberg SE, Jänne PA, Verma S,
et al: MET exon 14 mutations in non-small-cell lung cancer are
associated with advanced age and stage-dependent MET genomic
amplification and c-Met overexpression. J Clin Oncol. 34:721–730.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Rotow JK, Gui P, Wu W, Raymond VM, Lanman
RB, Kaye FJ, Peled N, Fece de la Cruz F, Nadres B, Corcoran RB, et
al: Co-occurring alterations in the RAS-MAPK pathway limit response
to MET inhibitor treatment in MET exon 14 skipping
mutation-positive lung cancer. Clin Cancer Res. 26:439–449. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Vsiansky V, Gumulec J, Raudenska M and
Masarik M: Prognostic role of c-Met in head and neck squamous cell
cancer tissues: A meta-analysis. Sci Rep. 8:103702018. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Yang H, Wen L, Wen M, Liu T, Zhao L, Wu B,
Yun Y, Liu W, Wang H, Wang Y and Wen N: FoxM1 promotes
epithelial-mesenchymal transition, invasion, and migration of
tongue squamous cell carcinoma cells through a c-Met/AKT-dependent
positive feedback loop. Anticancer Drugs. 29:216–226. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Seiwert TY, Jagadeeswaran R, Faoro L,
Faoro L, Janamanchi V, Nallasura V, El Dinali M, Yala S, Kanteti R,
Cohen EE, et al: The MET receptor tyrosine kinase is a potential
novel therapeutic target for head and neck squamous cell carcinoma.
Cancer Res. 69:3021–3031. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Chen YS, Wang JT, Chang YF, Liu BY, Wang
YP, Sun A and Chiang CP: Expression of hepatocyte growth factor and
c-met protein is significantly associated with the progression of
oral squamous cell carcinoma in Taiwan. J Oral Pathol Med.
33:209–217. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Kim CH, Moon SK, Bae JH, Lee JH, Han JH,
Kim K and Choi EC: Expression of hepatocyte growth factor and c-Met
in hypopharyngeal squamous cell carcinoma. Acta Otolaryngol.
126:88–94. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Chu LP, Franck D, Parachoniak CA, Gregg
JP, Moore MG, Farwell DG, Rao S, Heilmann AM, Erlich RL, Ross JS,
et al: MET genomic alterations in head and neck squamous cell
carcinoma (HNSCC): Rapid response to crizotinib in a patient with
HNSCC with a novel MET R1004G mutation. Oncologist. 24:1305–1308.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Di Renzo MF, Olivero M, Martone T, Maffe
A, Maggiora P, Stefani AD, Valente G, Giordano S, Cortesina G and
Comoglio PM: Somatic mutations of the MET oncogene are selected
during metastatic spread of human HNSC carcinomas. Oncogene.
19:1547–1555. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Simiczyjew A, Pietraszek-Gremplewicz K,
Dratkiewicz E, Podgórska M, Matkowski R, Ziętek M and Nowak D:
Combination of selected MET and EGFR inhibitors decreases melanoma
cells' invasive abilities. Front Pharmacol. 10:11162019. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Yu Y, Abudula M, Li C, Chen Z, Zhang Y and
Chen Y: Icotinib-resistant HCC827 cells produce exosomes with mRNA
MET oncogenes and mediate the migration and invasion of NSCLC.
Respi Res. 20:2172019. View Article : Google Scholar
|
|
49
|
Lee BS, Kang S, Kim KA, Song YJ, Cheong
KH, Cha HY and Kim CH: Met degradation by SAIT301, a Met monoclonal
antibody, reduces the invasion and migration of nasopharyngeal
cancer cells via inhibition of EGR-1 expression. Cell Death Dis.
5:e11592014. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zeng Q, McCauley LK and Wang CY:
Hepatocyte growth factor inhibits anoikis by induction of activator
protein 1-dependent cyclooxygenase-2. Implication in head and neck
squamous cell carcinoma progression. J Biol Chem. 277:50137–50142.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Dong G, Chen Z, Li ZY, Yeh NT, Bancroft CC
and Van Waes C: Hepatocyte growth factor/scatter factor-induced
activation of MEK and PI3K signal pathways contributes to
expression of proangiogenic cytokines interleukin-8 and vascular
endothelial growth factor in head and neck squamous cell carcinoma.
Cancer Res. 61:5911–5918. 2001.PubMed/NCBI
|
|
52
|
Worden B, Yang XP, Lee TL, Bagain L, Yeh
NT, Cohen JG, Van Waes C and Chen Z: Hepatocyte growth
factor/scatter factor differentially regulates expression of
proangiogenic factors through Egr-1 in head and neck squamous cell
carcinoma. Cancer Res. 65:7071–7080. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Sundelin K, Roberg K, Grenman R and
Hakansson L: Effects of cytokines on matrix metalloproteinase
expression in oral squamous cell carcinoma in vitro. Acta
Otolaryngol. 125:765–773. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Kumar D, New J, Vishwakarma V, Joshi R,
Enders J, Lin F, Dasari S, Gutierrez WR, Leef G, Ponnurangam S, et
al: Cancer-associated fibroblasts drive glycolysis in a targetable
signaling loop implicated in head and neck squamous cell carcinoma
progression. Cancer Res. 78:3769–3782. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Saintigny P, William WN Jr, Foy JP,
Papadimitrakopoulou V, Lang W, Zhang L, Fan YH, Feng L, Kim ES,
El-Naggar AK, et al: Met receptor tyrosine kinase and
chemoprevention of oral cancer. J Natl Cancer Inst. 110:250–257.
2018. View Article : Google Scholar
|
|
56
|
Kim CH, Lee JS, Kang SO, Bae JH, Hong SP
and Kahng H: Serum hepatocyte growth factor as a marker of tumor
activity in head and neck squamous cell carcinoma. Oral Oncol.
43:1021–1025. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Uchida D, Kawamata H, Omotehara F,
Nakashiro Ki, Kimura-Yanagawa T, Hino S, Begum NM, Hoque MO,
Yoshida H, Sato M and Fujimori T: Role of HGF/c-met system in
invasion and metastasis of oral squamous cell carcinoma cells in
vitro and its clinical significance. Int J Cancer. 93:489–496.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Hong DY, Lee BJ, Lee JC, Choi JS, Wang SG
and Ro JH: Expression of VEGF, HGF, IL-6, IL-8, MMP-9, telomerase
in peripheral blood of patients with head and neck squamous cell
carcinoma. Clin Exp Otorhinolaryngol. 2:186–192. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Sawatsubashi M, Sasatomi E, Mizokami H,
Tokunaga O and Shin T: Expression of c-Met in laryngeal carcinoma.
Virchows Archiv. 432:331–335. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Arnold L, Enders J and Thomas SM:
Activated HGF-c-Met axis in head and neck cancer. Cancers (Basel).
9:1692017. View Article : Google Scholar
|
|
61
|
Yucel OT, Sungur A and Kaya S: c-met
overexpression in supraglottic laryngeal squamous cell carcinoma
and its relation to lymph node metastases. Otolaryngol Head Neck
Surg. 130:698–703. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Galeazzi E, Olivero M, Gervasio FC, De
Stefani A, Valente G, Comoglio PM, Di Renzo MF and Cortesina G:
Detection of MET oncogene/hepatocyte growth factor receptor in
lymph node metastases from head and neck squamous cell carcinomas.
Eur Arch Otorhinolaryngol. 254 (Suppl 1):S138–S143. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Montag M, Dyckhoff G, Lohr J, Helmke BM,
Herrmann E, Plinkert PK and Herold-Mende C: Angiogenic growth
factors in tissue homogenates of HNSCC: Expression pattern,
prognostic relevance, and interrelationships. Cancer Sci.
100:1210–1218. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Allen C, Duffy S, Teknos T, Islam M, Chen
Z, Albert PS, Wolf G and Van Waes C: Nuclear factor-kappaB-related
serum factors as longitudinal biomarkers of response and survival
in advanced oropharyngeal carcinoma. Clin Cancer Res. 13:3182–3190.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Li W, Zheng H, Xu J, Cao S, Xu X and Xiao
P: Imaging c-Met expression using 18F-labeled binding peptide in
human cancer xenografts. PLoS One. 13:e01990242018. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Szturz P, Budikova M, Vermorken JB, Horová
I, Gál B, Raymond E, de Gramont A and Faivre S: Prognostic value of
c-MET in head and neck cancer: A systematic review and
meta-analysis of aggregate data. Oral Oncol. 74:68–76. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Fiedler M, Weber F, Hautmann MG, Haubner
F, Reichert TE, Klingelhöffer C, Schreml S, Meier JK, Hartmann A
and Ettl T: Biological predictors of radiosensitivity in head and
neck squamous cell carcinoma. Clin Oral Investig. 22:189–200. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
da Costa AA, Costa FD, Araújo DV,
Camandaroba MP, de Jesus VH, Oliveira A, Alves AC, Stecca C,
Machado L, de Oliveira AC, et al: The roles of PTEN, cMET, and p16
in resistance to cetuximab in head and neck squamous cell
carcinoma. Med Oncol. 36:82018. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Freudlsperger C, Alexander D, Reinert S
and Hoffmann J: Prognostic value of c-Met expression in oral
squamous cell carcinoma. Exp Ther Med. 1:69–72. 2010.PubMed/NCBI
|
|
70
|
Brusevold IJ, Soland TM, Khuu C,
Christoffersen T and Bryne M: Nuclear and cytoplasmic expression of
Met in oral squamous cell carcinoma and in an organotypic oral
cancer model. Eur J Oral Sci. 118:342–349. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Kwon MJ, Kim DH, Park HR, Shin HS, Kwon
JH, Lee DJ, Kim JH, Cho SJ and Nam ES: Frequent hepatocyte growth
factor overexpression and low frequency of c-Met gene amplification
in human papillomavirus-negative tonsillar squamous cell carcinoma
and their prognostic significances. Hum Pathol. 45:1327–1338. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Galon J and Bruni D: Tumor immunology and
tumor evolution: Intertwined histories. Immunity. 52:55–81. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Garner H and de Visser KE: Immune
crosstalk in cancer progression and metastatic spread: A complex
conversation. Nat Rev Immunol. 20:483–497. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Li T, Fan J, Wang B, Traugh N, Chen Q, Liu
JS, Li B and Liu XS: TIMER: A web server for comprehensive analysis
of tumor-infiltrating immune cells. Cancer Res. 77:e108–e110. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Li B, Severson E, Pignon JC, Zhao H, Li T,
Novak J, Jiang P, Shen H, Aster JC, Rodig S, et al: Comprehensive
analyses of tumor immunity: Implications for cancer immunotherapy.
Genome Biol. 17:1742016. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Molnarfi N, Benkhoucha M, Funakoshi H,
Nakamura T and Lalive PH: Hepatocyte growth factor: A regulator of
inflammation and autoimmunity. Autoimmun Rev. 14:293–303. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Ilangumaran S, Villalobos-Hernandez A,
Bobbala D and Ramanathan S: The hepatocyte growth factor (HGF)-MET
receptor tyrosine kinase signaling pathway: Diverse roles in
modulating immune cell functions. Cytokine. 82:125–139. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Delaney B, Koh WS, Yang KH, Strom SC and
Kaminski NE: Hepatocyte growth factor enhances B-cell activity.
Life Sci. 53:Pl89–P193. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
van der Voort R, Taher TE, Keehnen RM,
Smit L, Groenink M and Pals ST: Paracrine regulation of germinal
center B cell adhesion through the c-met-hepatocyte growth
factor/scatter factor pathway. J Exp Med. 185:2121–2131. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Weimar IS, de Jong D, Muller EJ, Nakamura
T, van Gorp JM, de Gast GC and Gerritsen WR: Hepatocyte growth
factor/scatter factor promotes adhesion of lymphoma cells to
extracellular matrix molecules via alpha 4 beta 1 and alpha 5 beta
1 integrins. Blood. 89:990–1000. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Liu Z, Cai Y, Yang Y, Li A, Bi R, Wang L,
Shen X, Wang W, Jia Y, Yu B, et al: Activation of MET signaling by
HDAC6 offers a rationale for a novel ricolinostat and crizotinib
combinatorial therapeutic strategy in diffuse large B-cell
lymphoma. J Pathol. 246:141–153. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Nagata T, Murata K, Murata R, Sun SL,
Saito Y, Yamaga S, Tanaka N, Tamai K, Moriya K, Kasai N, et al:
Hepatocyte growth factor regulated tyrosine kinase substrate in the
peripheral development and function of B-cells. Biochem Biophys Res
Commun. 443:351–356. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Tjin EP, Bende RJ, Derksen PW, van
Huijstee AP, Kataoka H, Spaargaren M and Pals ST: Follicular
dendritic cells catalyze hepatocyte growth factor (HGF) activation
in the germinal center microenvironment by secreting the serine
protease HGF activator. J Immunol. 175:2807–2813. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Hladikova K, Koucky V, Boucek J, Laco J,
Grega M, Hodek M, Zábrodský M, Vošmik M, Rozkošová K, Vošmiková H,
et al: Tumor-infiltrating B cells affect the progression of
oropharyngeal squamous cell carcinoma via cell-to-cell interactions
with CD8+ T cells. J Immunother Cancer. 7:2612019.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Tamura S, Sugawara T, Tokoro Y, Taniguchi
H, Fukao K, Nakauchi H and Takahama Y: Expression and function of
c-Met, a receptor for hepatocyte growth factor, during T-cell
development. Scand J Immunol. 47:296–301. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Grenier A, Chollet-Martin S, Crestani B,
Delarche C, El Benna J, Boutten A, Andrieu V, Durand G,
Gougerot-Pocidalo MA, Aubier M and Dehoux M: Presence of a
mobilizable intracellular pool of hepatocyte growth factor in human
polymorphonuclear neutrophils. Blood. 99:2997–3004. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Chen PM, Liu KJ, Hsu PJ, Wei CF, Bai CH,
Ho LJ, Sytwu HK and Yen BL: Induction of immunomodulatory monocytes
by human mesenchymal stem cell-derived hepatocyte growth factor
through ERK1/2. J Leukoc Biol. 96:295–303. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Mine S, Tanaka Y, Suematu M, Aso M,
Fujisaki T, Yamada S and Eto S: Hepatocyte growth factor is a
potent trigger of neutrophil adhesion through rapid activation of
lymphocyte function-associated antigen-1. Lab Invest. 78:1395–1404.
1998.PubMed/NCBI
|
|
89
|
Wislez M, Rabbe N, Marchal J, Milleron B,
Crestani B, Mayaud C, Antoine M, Soler P and Cadranel J: Hepatocyte
growth factor production by neutrophils infiltrating
bronchioloalveolar subtype pulmonary adenocarcinoma: Role in tumor
progression and death. Cancer Res. 63:1405–1412. 2003.PubMed/NCBI
|
|
90
|
He M, Peng A, Huang XZ, Shi DC, Wang JC,
Zhao Q, Lin H, Kuang DM, Ke PF and Lao XM: Peritumoral stromal
neutrophils are essential for c-Met-elicited metastasis in human
hepatocellular carcinoma. Oncoimmunology. 5:e12198282016.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Finisguerra V, Di Conza G, Di Matteo M,
Serneels J, Costa S, Thompson AA, Wauters E, Walmsley S, Prenen H,
Granot Z, et al: MET is required for the recruitment of
anti-tumoural neutrophils. Nature. 522:349–353. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Dan H, Liu S, Liu J, Liu D, Yin F, Wei Z,
Wang J, Zhou Y, Jiang L, Ji N, et al: RACK1 promotes cancer
progression by increasing the M2/M1 macrophage ratio via the NF-κB
pathway in oral squamous cell carcinoma. Mol Oncol. 14:795–807.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Coudriet GM, He J, Trucco M, Mars WM and
Piganelli JD: Hepatocyte growth factor modulates interleukin-6
production in bone marrow derived macrophages: Implications for
inflammatory mediated diseases. PLoS One. 5:e153842010. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Flaquer M, Franquesa M, Vidal A, Bolaños
N, Torras J, Lloberas N, Herrero-Fresneda I, Grinyó JM and Cruzado
JM: Hepatocyte growth factor gene therapy enhances infiltration of
macrophages and may induce kidney repair in db/db mice as a model
of diabetes. Diabetologia. 55:2059–2068. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Huang WZ, Hu WH, Wang Y, Chen J, Hu ZQ,
Zhou J, Liu L, Qiu W, Tang FZ, Zhang SC, et al: A mathematical
modelling of initiation of dendritic cells-induced T cell immune
response. Int J Biol Sci. 15:1396–1403. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Garibaldi S, Barisione C, Marengo B, Ameri
P, Brunelli C, Balbi M and Ghigliotti G: Advanced oxidation protein
products-modified albumin induces differentiation of RAW264.7
macrophages into dendritic-like cells which is modulated by cell
surface thiols. Toxins. 9:272017. View Article : Google Scholar
|
|
97
|
Baek JH, Birchmeier C, Zenke M and
Hieronymus T: The HGF receptor/Met tyrosine kinase is a key
regulator of dendritic cell migration in skin immunity. J Immunol.
189:1699–1707. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Kurz SM, Diebold SS, Hieronymus T, Gust
TC, Bartunek P, Sachs M, Birchmeier W and Zenke M: The impact of
c-met/scatter factor receptor on dendritic cell migration. Eur J
Immunol. 32:1832–1838. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Benkhoucha M, Santiago-Raber ML, Schneiter
G, Chofflon M, Funakoshi H, Nakamura T and Lalive PH: Hepatocyte
growth factor inhibits CNS autoimmunity by inducing tolerogenic
dendritic cells and CD25+Foxp3+ regulatory T
cells. Proc Natl Acad Sci USA. 107:6424–6429. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Okunishi K, Dohi M, Nakagome K, Tanaka R,
Mizuno S, Matsumoto K, Miyazaki J, Nakamura T and Yamamoto K: A
novel role of hepatocyte growth factor as an immune regulator
through suppressing dendritic cell function. J Immunol.
175:4745–4753. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Balan M, Mier y Teran E, Waaga-Gasser AM,
Gasser M, Choueiri TK, Freeman G and Pal S: Novel roles of c-Met in
the survival of renal cancer cells through the regulation of HO-1
and PD-L1 expression. J Biol Chem. 290:8110–8120. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Tong G, Cheng B, Li J, Wu X, Nong Q, He L,
Li X, Li L and Wang S: MACC1 regulates PDL1 expression and tumor
immunity through the c-Met/AKT/mTOR pathway in gastric cancer
cells. Cancer Med. 8:7044–7054. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Demuth C, Andersen MN, Jakobsen KR, Madsen
AT and Sorensen BS: Increased PD-L1 expression in
erlotinib-resistant NSCLC cells with MET gene amplification is
reversed upon MET-TKI treatment. Oncotarget. 8:68221–68229. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Li H, Li CW, Li X, Ding Q, Guo L, Liu S,
Liu C, Lai CC, Hsu JM, Dong Q, et al: MET inhibitors promote liver
tumor evasion of the immune response by stabilizing PDL1.
Gastroenterology. 156:1849–1861.e13. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Lui VW, Hedberg ML, Li H, Vangara BS,
Pendleton K, Zeng Y, Lu Y, Zhang Q, Du Y, Gilbert BR, et al:
Frequent mutation of the PI3K pathway in head and neck cancer
defines predictive biomarkers. Cancer Discov. 3:761–769. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Catenacci DV, Tebbutt NC, Davidenko I,
Murad AM, Al-Batran SE, Ilson DH, Tjulandin S, Gotovkin E,
Karaszewska B, Bondarenko I, et al: Rilotumumab plus epirubicin,
cisplatin, and capecitabine as first-line therapy in advanced
MET-positive gastric or gastro-oesophageal junction cancer
(RILOMET-1): A randomised, double-blind, placebo-controlled, phase
3 trial. The Lancet. Oncology. 18:1467–1482. 2017.PubMed/NCBI
|