Roles of the HGF/Met signaling in head and neck squamous cell carcinoma: Focus on tumor immunity (Review)
- Authors:
- Dongjuan Liu
- Ming Zhong
- Desong Zhan
- Ying Zhang
- Sai Liu
-
Affiliations: School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning 110002, P.R. China - Published online on: October 9, 2020 https://doi.org/10.3892/or.2020.7799
- Pages: 2337-2344
This article is mentioned in:
Abstract
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hedberg ML, Goh G, Chiosea SI, Bauman JE, Freilino ML, Zeng Y, Wang L, Diergaarde BB, Gooding WE, Lui VW, et al: Genetic landscape of metastatic and recurrent head and neck squamous cell carcinoma. J Clin Invest. 126:16062016. View Article : Google Scholar : PubMed/NCBI | |
Stewart B and Wild CP: World Cancer Report. World Cancer Report. 45:12–351. 2014. | |
Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, Stein KD, Alteri R and Jemal A: Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin. 66:271–289. 2016. View Article : Google Scholar : PubMed/NCBI | |
Guigay J, Tahara M, Licitra L, Keilholz U, Friesland S, Witzler P and Mesía R: The evolving role of taxanes in combination with cetuximab for the treatment of recurrent and/or metastatic squamous cell carcinoma of the head and neck: Evidence, advantages, and future directions. Front Oncol. 9:6682019. View Article : Google Scholar : PubMed/NCBI | |
Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB, Jones CU, Sur R, Raben D, Jassem J, et al: Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med. 354:567–578. 2006. View Article : Google Scholar : PubMed/NCBI | |
Vermorken JB, Mesia R, Rivera F, Remenar E, Kawecki A, Rottey S, Erfan J, Zabolotnyy D, Kienzer HR, Cupissol D, et al: Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med. 359:1116–1127. 2008. View Article : Google Scholar : PubMed/NCBI | |
Stabile LP, He G, Lui VW, Thomas S, Henry C, Gubish CT, Joyce S, Quesnelle KM, Siegfried JM and Grandis JR: c-Src activation mediates erlotinib resistance in head and neck cancer by stimulating c-Met. Clin Cancer Res. 19:380–392. 2013. View Article : Google Scholar : PubMed/NCBI | |
Brand TM, Iida M and Wheeler DL: Molecular mechanisms of resistance to the EGFR monoclonal antibody cetuximab. Cancer Biol Ther. 11:777–792. 2011. View Article : Google Scholar : PubMed/NCBI | |
Leonard B, Brand TM, O'Keefe RA, Lee ED, Zeng Y, Kemmer JD, Li H, Grandis JR and Bhola NE: BET inhibition overcomes receptor tyrosine kinase-mediated cetuximab resistance in HNSCC. Cancer Res. 78:4331–4343. 2018. View Article : Google Scholar : PubMed/NCBI | |
Madoz-Gurpide J, Zazo S, Chamizo C, Casado V, Caramés C, Gavín E, Cristóbal I, García-Foncillas J and Rojo F: Activation of MET pathway predicts poor outcome to cetuximab in patients with recurrent or metastatic head and neck cancer. J Transl Med. 13:2822015. View Article : Google Scholar : PubMed/NCBI | |
Cho YA, Kim EK, Heo SJ, Cho BC, Kim HR, Chung JM and Yoon SO: Alteration status and prognostic value of MET in head and neck squamous cell carcinoma. J Cancer. 7:2197–2206. 2016. View Article : Google Scholar : PubMed/NCBI | |
Morello S, Olivero M, Aimetti M, Bernardi M, Berrone S, Di Renzo MF and Giordano S: MET receptor is overexpressed but not mutated in oral squamous cell carcinomas. J Cell Physiol. 189:285–290. 2001. View Article : Google Scholar : PubMed/NCBI | |
Sablin MP, Dubot C, Klijanienko J, Vacher S, Ouafi L, Chemlali W, Caly M, Sastre-Garau X, Lappartient E, Mariani O, et al: Identification of new candidate therapeutic target genes in head and neck squamous cell carcinomas. Oncotarget. 7:47418–47430. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liska D, Chen CT, Bachleitner-Hofmann T, Christensen JG and Weiser MR: HGF rescues colorectal cancer cells from EGFR inhibition via MET activation. Clin Cancer Res. 17:472–482. 2011. View Article : Google Scholar : PubMed/NCBI | |
Scagliotti G, Moro-Sibilot D, Kollmeier J, Favaretto A, Cho EK, Grosch H, Kimmich M, Girard N, Tsai CM, Hsia TC, et al: A randomized-controlled phase 2 Study of the MET antibody emibetuzumab in combination with erlotinib as first-line treatment for EGFR-mutation positive NSCLC patients. J Thorac Oncol. 15:80–90. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sim WJ, Iyengar PV, Lama D, Lui SKL, Ng HC, Haviv-Shapira L, Domany E, Kappei D, Tan TZ, Saei A, et al: c-Met activation leads to the establishment of a TGFβ-receptor regulatory network in bladder cancer progression. Nat Commun. 10:43492019. View Article : Google Scholar : PubMed/NCBI | |
Giordano S, Di Renzo MF, Narsimhan RP, Cooper CS, Rosa C and Comoglio PM: Biosynthesis of the protein encoded by the c-met proto-oncogene. Oncogene. 4:1383–1388. 1989.PubMed/NCBI | |
Ferracini R, Longati P, Naldini L, Vigna E and Comoglio PM: Identification of the major autophosphorylation site of the Met/hepatocyte growth factor receptor tyrosine kinase. J Biol Chem. 266:19558–19564. 1991.PubMed/NCBI | |
Zhen Z, Giordano S, Longati P, Medico E, Campiglio M and Comoglio PM: Structural and functional domains critical for constitutive activation of the HGF-receptor (Met). Oncogene. 9:1691–1697. 1994.PubMed/NCBI | |
Ponzetto C, Bardelli A, Maina F, Longati P, Panayotou G, Dhand R, Waterfield MD and Comoglio PM: A novel recognition motif for phosphatidylinositol 3-kinase binding mediates its association with the hepatocyte growth factor/scatter factor receptor. Mol Cell Biol. 13:4600–4608. 1993. View Article : Google Scholar : PubMed/NCBI | |
Weidner KM, Di Cesare S, Sachs M, Brinkmann V, Behrens J and Birchmeier W: Interaction between Gab1 and the c-Met receptor tyrosine kinase is responsible for epithelial morphogenesis. Nature. 384:173–176. 1996. View Article : Google Scholar : PubMed/NCBI | |
Zhu H, Naujokas MA, Fixman ED, Torossian K and Park M: Tyrosine 1356 in the carboxyl-terminal tail of the HGF/SF receptor is essential for the transduction of signals for cell motility and morphogenesis. J Biol Chem. 269:29943–29948. 1994.PubMed/NCBI | |
Hardy-Werbin M, Del Rey-Vergara R, Galindo-Campos MA, Moliner L and Arriola E: MET inhibitors in small cell lung cancer: From the bench to the bedside. Cancers (Basel). 11:14042019. View Article : Google Scholar | |
Czyz M: HGF/c-MET signaling in melanocytes and melanoma. Int J Mol Sci. 19:38442018. View Article : Google Scholar | |
Huang X, Gan G, Wang X, Xu T and Xie W: The HGF-MET axis coordinates liver cancer metabolism and autophagy for chemotherapeutic resistance. Autophagy. 15:1258–1279. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Xia M, Jin K, Wang S, Wei H, Fan C, Wu Y, Li X, Li X, Li G, et al: Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Mol Cancer. 17:452018. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Feng Q, Chen WD and Wang YD: HGF/c-MET: A promising therapeutic target in the digestive system cancers. Int J Mol Sci. 19:32952018. View Article : Google Scholar | |
Comoglio PM, Trusolino L and Boccaccio C: Known and novel roles of the MET oncogene in cancer: A coherent approach to targeted therapy. Nat Rev Cancer. 18:341–358. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hartmann S, Bhola NE and Grandis JR: HGF/Met signaling in head and neck cancer: Impact on the tumor microenvironment. Clin Cancer Res. 22:4005–4013. 2016. View Article : Google Scholar : PubMed/NCBI | |
Szturz P, Raymond E, Abitbol C, Albert S, de Gramont A and Faivre S: Understanding c-MET signalling in squamous cell carcinoma of the head and neck. Crit Rev Oncol Hematol. 111:39–51. 2017. View Article : Google Scholar : PubMed/NCBI | |
Nandagopal L, Sonpavde GP and Agarwal N: Investigational MET inhibitors to treat Renal cell carcinoma. Expert Opin Investig Drugs. 28:851–860. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cheng F and Guo D: MET in glioma: Signaling pathways and targeted therapies. J Exp Clin Cancer Res. 38:2702019. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Network, . Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 51:576–582. 2015. | |
Gao P, Li C, Chang Z, Wang X and Xuan M: Carcinoma associated fibroblasts derived from oral squamous cell carcinoma promote lymphangiogenesis via c-Met/PI3K/AKT in vitro. Oncol Lett. 15:331–337. 2018.PubMed/NCBI | |
Knowles LM, Stabile LP, Egloff AM, Rothstein ME, Thomas SM, Gubish CT, Lerner EC, Seethala RR, Suzuki S, Quesnelle KM, et al: HGF and c-Met participate in paracrine tumorigenic pathways in head and neck squamous cell cancer. Clin Cancer Res. 15:3740–3750. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Wu C, Guo Y, Cao X, Zheng W and Fan GK: The primary growth of laryngeal squamous cell carcinoma cells in vitro is effectively supported by paired cancer-associated fibroblasts alone. Tumour Bio. 39:10104283177055122017. | |
Awad MM, Oxnard GR, Jackman DM, Savukoski DO, Hall D, Shivdasani P, Heng JC, Dahlberg SE, Jänne PA, Verma S, et al: MET exon 14 mutations in non-small-cell lung cancer are associated with advanced age and stage-dependent MET genomic amplification and c-Met overexpression. J Clin Oncol. 34:721–730. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rotow JK, Gui P, Wu W, Raymond VM, Lanman RB, Kaye FJ, Peled N, Fece de la Cruz F, Nadres B, Corcoran RB, et al: Co-occurring alterations in the RAS-MAPK pathway limit response to MET inhibitor treatment in MET exon 14 skipping mutation-positive lung cancer. Clin Cancer Res. 26:439–449. 2019. View Article : Google Scholar : PubMed/NCBI | |
Vsiansky V, Gumulec J, Raudenska M and Masarik M: Prognostic role of c-Met in head and neck squamous cell cancer tissues: A meta-analysis. Sci Rep. 8:103702018. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Wen L, Wen M, Liu T, Zhao L, Wu B, Yun Y, Liu W, Wang H, Wang Y and Wen N: FoxM1 promotes epithelial-mesenchymal transition, invasion, and migration of tongue squamous cell carcinoma cells through a c-Met/AKT-dependent positive feedback loop. Anticancer Drugs. 29:216–226. 2018. View Article : Google Scholar : PubMed/NCBI | |
Seiwert TY, Jagadeeswaran R, Faoro L, Faoro L, Janamanchi V, Nallasura V, El Dinali M, Yala S, Kanteti R, Cohen EE, et al: The MET receptor tyrosine kinase is a potential novel therapeutic target for head and neck squamous cell carcinoma. Cancer Res. 69:3021–3031. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chen YS, Wang JT, Chang YF, Liu BY, Wang YP, Sun A and Chiang CP: Expression of hepatocyte growth factor and c-met protein is significantly associated with the progression of oral squamous cell carcinoma in Taiwan. J Oral Pathol Med. 33:209–217. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kim CH, Moon SK, Bae JH, Lee JH, Han JH, Kim K and Choi EC: Expression of hepatocyte growth factor and c-Met in hypopharyngeal squamous cell carcinoma. Acta Otolaryngol. 126:88–94. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chu LP, Franck D, Parachoniak CA, Gregg JP, Moore MG, Farwell DG, Rao S, Heilmann AM, Erlich RL, Ross JS, et al: MET genomic alterations in head and neck squamous cell carcinoma (HNSCC): Rapid response to crizotinib in a patient with HNSCC with a novel MET R1004G mutation. Oncologist. 24:1305–1308. 2019. View Article : Google Scholar : PubMed/NCBI | |
Di Renzo MF, Olivero M, Martone T, Maffe A, Maggiora P, Stefani AD, Valente G, Giordano S, Cortesina G and Comoglio PM: Somatic mutations of the MET oncogene are selected during metastatic spread of human HNSC carcinomas. Oncogene. 19:1547–1555. 2000. View Article : Google Scholar : PubMed/NCBI | |
Simiczyjew A, Pietraszek-Gremplewicz K, Dratkiewicz E, Podgórska M, Matkowski R, Ziętek M and Nowak D: Combination of selected MET and EGFR inhibitors decreases melanoma cells' invasive abilities. Front Pharmacol. 10:11162019. View Article : Google Scholar : PubMed/NCBI | |
Yu Y, Abudula M, Li C, Chen Z, Zhang Y and Chen Y: Icotinib-resistant HCC827 cells produce exosomes with mRNA MET oncogenes and mediate the migration and invasion of NSCLC. Respi Res. 20:2172019. View Article : Google Scholar | |
Lee BS, Kang S, Kim KA, Song YJ, Cheong KH, Cha HY and Kim CH: Met degradation by SAIT301, a Met monoclonal antibody, reduces the invasion and migration of nasopharyngeal cancer cells via inhibition of EGR-1 expression. Cell Death Dis. 5:e11592014. View Article : Google Scholar : PubMed/NCBI | |
Zeng Q, McCauley LK and Wang CY: Hepatocyte growth factor inhibits anoikis by induction of activator protein 1-dependent cyclooxygenase-2. Implication in head and neck squamous cell carcinoma progression. J Biol Chem. 277:50137–50142. 2002. View Article : Google Scholar : PubMed/NCBI | |
Dong G, Chen Z, Li ZY, Yeh NT, Bancroft CC and Van Waes C: Hepatocyte growth factor/scatter factor-induced activation of MEK and PI3K signal pathways contributes to expression of proangiogenic cytokines interleukin-8 and vascular endothelial growth factor in head and neck squamous cell carcinoma. Cancer Res. 61:5911–5918. 2001.PubMed/NCBI | |
Worden B, Yang XP, Lee TL, Bagain L, Yeh NT, Cohen JG, Van Waes C and Chen Z: Hepatocyte growth factor/scatter factor differentially regulates expression of proangiogenic factors through Egr-1 in head and neck squamous cell carcinoma. Cancer Res. 65:7071–7080. 2005. View Article : Google Scholar : PubMed/NCBI | |
Sundelin K, Roberg K, Grenman R and Hakansson L: Effects of cytokines on matrix metalloproteinase expression in oral squamous cell carcinoma in vitro. Acta Otolaryngol. 125:765–773. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kumar D, New J, Vishwakarma V, Joshi R, Enders J, Lin F, Dasari S, Gutierrez WR, Leef G, Ponnurangam S, et al: Cancer-associated fibroblasts drive glycolysis in a targetable signaling loop implicated in head and neck squamous cell carcinoma progression. Cancer Res. 78:3769–3782. 2018. View Article : Google Scholar : PubMed/NCBI | |
Saintigny P, William WN Jr, Foy JP, Papadimitrakopoulou V, Lang W, Zhang L, Fan YH, Feng L, Kim ES, El-Naggar AK, et al: Met receptor tyrosine kinase and chemoprevention of oral cancer. J Natl Cancer Inst. 110:250–257. 2018. View Article : Google Scholar | |
Kim CH, Lee JS, Kang SO, Bae JH, Hong SP and Kahng H: Serum hepatocyte growth factor as a marker of tumor activity in head and neck squamous cell carcinoma. Oral Oncol. 43:1021–1025. 2007. View Article : Google Scholar : PubMed/NCBI | |
Uchida D, Kawamata H, Omotehara F, Nakashiro Ki, Kimura-Yanagawa T, Hino S, Begum NM, Hoque MO, Yoshida H, Sato M and Fujimori T: Role of HGF/c-met system in invasion and metastasis of oral squamous cell carcinoma cells in vitro and its clinical significance. Int J Cancer. 93:489–496. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hong DY, Lee BJ, Lee JC, Choi JS, Wang SG and Ro JH: Expression of VEGF, HGF, IL-6, IL-8, MMP-9, telomerase in peripheral blood of patients with head and neck squamous cell carcinoma. Clin Exp Otorhinolaryngol. 2:186–192. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sawatsubashi M, Sasatomi E, Mizokami H, Tokunaga O and Shin T: Expression of c-Met in laryngeal carcinoma. Virchows Archiv. 432:331–335. 1998. View Article : Google Scholar : PubMed/NCBI | |
Arnold L, Enders J and Thomas SM: Activated HGF-c-Met axis in head and neck cancer. Cancers (Basel). 9:1692017. View Article : Google Scholar | |
Yucel OT, Sungur A and Kaya S: c-met overexpression in supraglottic laryngeal squamous cell carcinoma and its relation to lymph node metastases. Otolaryngol Head Neck Surg. 130:698–703. 2004. View Article : Google Scholar : PubMed/NCBI | |
Galeazzi E, Olivero M, Gervasio FC, De Stefani A, Valente G, Comoglio PM, Di Renzo MF and Cortesina G: Detection of MET oncogene/hepatocyte growth factor receptor in lymph node metastases from head and neck squamous cell carcinomas. Eur Arch Otorhinolaryngol. 254 (Suppl 1):S138–S143. 1997. View Article : Google Scholar : PubMed/NCBI | |
Montag M, Dyckhoff G, Lohr J, Helmke BM, Herrmann E, Plinkert PK and Herold-Mende C: Angiogenic growth factors in tissue homogenates of HNSCC: Expression pattern, prognostic relevance, and interrelationships. Cancer Sci. 100:1210–1218. 2009. View Article : Google Scholar : PubMed/NCBI | |
Allen C, Duffy S, Teknos T, Islam M, Chen Z, Albert PS, Wolf G and Van Waes C: Nuclear factor-kappaB-related serum factors as longitudinal biomarkers of response and survival in advanced oropharyngeal carcinoma. Clin Cancer Res. 13:3182–3190. 2007. View Article : Google Scholar : PubMed/NCBI | |
Li W, Zheng H, Xu J, Cao S, Xu X and Xiao P: Imaging c-Met expression using 18F-labeled binding peptide in human cancer xenografts. PLoS One. 13:e01990242018. View Article : Google Scholar : PubMed/NCBI | |
Szturz P, Budikova M, Vermorken JB, Horová I, Gál B, Raymond E, de Gramont A and Faivre S: Prognostic value of c-MET in head and neck cancer: A systematic review and meta-analysis of aggregate data. Oral Oncol. 74:68–76. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fiedler M, Weber F, Hautmann MG, Haubner F, Reichert TE, Klingelhöffer C, Schreml S, Meier JK, Hartmann A and Ettl T: Biological predictors of radiosensitivity in head and neck squamous cell carcinoma. Clin Oral Investig. 22:189–200. 2018. View Article : Google Scholar : PubMed/NCBI | |
da Costa AA, Costa FD, Araújo DV, Camandaroba MP, de Jesus VH, Oliveira A, Alves AC, Stecca C, Machado L, de Oliveira AC, et al: The roles of PTEN, cMET, and p16 in resistance to cetuximab in head and neck squamous cell carcinoma. Med Oncol. 36:82018. View Article : Google Scholar : PubMed/NCBI | |
Freudlsperger C, Alexander D, Reinert S and Hoffmann J: Prognostic value of c-Met expression in oral squamous cell carcinoma. Exp Ther Med. 1:69–72. 2010.PubMed/NCBI | |
Brusevold IJ, Soland TM, Khuu C, Christoffersen T and Bryne M: Nuclear and cytoplasmic expression of Met in oral squamous cell carcinoma and in an organotypic oral cancer model. Eur J Oral Sci. 118:342–349. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kwon MJ, Kim DH, Park HR, Shin HS, Kwon JH, Lee DJ, Kim JH, Cho SJ and Nam ES: Frequent hepatocyte growth factor overexpression and low frequency of c-Met gene amplification in human papillomavirus-negative tonsillar squamous cell carcinoma and their prognostic significances. Hum Pathol. 45:1327–1338. 2014. View Article : Google Scholar : PubMed/NCBI | |
Galon J and Bruni D: Tumor immunology and tumor evolution: Intertwined histories. Immunity. 52:55–81. 2020. View Article : Google Scholar : PubMed/NCBI | |
Garner H and de Visser KE: Immune crosstalk in cancer progression and metastatic spread: A complex conversation. Nat Rev Immunol. 20:483–497. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, Li B and Liu XS: TIMER: A web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res. 77:e108–e110. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li B, Severson E, Pignon JC, Zhao H, Li T, Novak J, Jiang P, Shen H, Aster JC, Rodig S, et al: Comprehensive analyses of tumor immunity: Implications for cancer immunotherapy. Genome Biol. 17:1742016. View Article : Google Scholar : PubMed/NCBI | |
Molnarfi N, Benkhoucha M, Funakoshi H, Nakamura T and Lalive PH: Hepatocyte growth factor: A regulator of inflammation and autoimmunity. Autoimmun Rev. 14:293–303. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ilangumaran S, Villalobos-Hernandez A, Bobbala D and Ramanathan S: The hepatocyte growth factor (HGF)-MET receptor tyrosine kinase signaling pathway: Diverse roles in modulating immune cell functions. Cytokine. 82:125–139. 2016. View Article : Google Scholar : PubMed/NCBI | |
Delaney B, Koh WS, Yang KH, Strom SC and Kaminski NE: Hepatocyte growth factor enhances B-cell activity. Life Sci. 53:Pl89–P193. 1993. View Article : Google Scholar : PubMed/NCBI | |
van der Voort R, Taher TE, Keehnen RM, Smit L, Groenink M and Pals ST: Paracrine regulation of germinal center B cell adhesion through the c-met-hepatocyte growth factor/scatter factor pathway. J Exp Med. 185:2121–2131. 1997. View Article : Google Scholar : PubMed/NCBI | |
Weimar IS, de Jong D, Muller EJ, Nakamura T, van Gorp JM, de Gast GC and Gerritsen WR: Hepatocyte growth factor/scatter factor promotes adhesion of lymphoma cells to extracellular matrix molecules via alpha 4 beta 1 and alpha 5 beta 1 integrins. Blood. 89:990–1000. 1997. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Cai Y, Yang Y, Li A, Bi R, Wang L, Shen X, Wang W, Jia Y, Yu B, et al: Activation of MET signaling by HDAC6 offers a rationale for a novel ricolinostat and crizotinib combinatorial therapeutic strategy in diffuse large B-cell lymphoma. J Pathol. 246:141–153. 2018. View Article : Google Scholar : PubMed/NCBI | |
Nagata T, Murata K, Murata R, Sun SL, Saito Y, Yamaga S, Tanaka N, Tamai K, Moriya K, Kasai N, et al: Hepatocyte growth factor regulated tyrosine kinase substrate in the peripheral development and function of B-cells. Biochem Biophys Res Commun. 443:351–356. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tjin EP, Bende RJ, Derksen PW, van Huijstee AP, Kataoka H, Spaargaren M and Pals ST: Follicular dendritic cells catalyze hepatocyte growth factor (HGF) activation in the germinal center microenvironment by secreting the serine protease HGF activator. J Immunol. 175:2807–2813. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hladikova K, Koucky V, Boucek J, Laco J, Grega M, Hodek M, Zábrodský M, Vošmik M, Rozkošová K, Vošmiková H, et al: Tumor-infiltrating B cells affect the progression of oropharyngeal squamous cell carcinoma via cell-to-cell interactions with CD8+ T cells. J Immunother Cancer. 7:2612019. View Article : Google Scholar : PubMed/NCBI | |
Tamura S, Sugawara T, Tokoro Y, Taniguchi H, Fukao K, Nakauchi H and Takahama Y: Expression and function of c-Met, a receptor for hepatocyte growth factor, during T-cell development. Scand J Immunol. 47:296–301. 1998. View Article : Google Scholar : PubMed/NCBI | |
Grenier A, Chollet-Martin S, Crestani B, Delarche C, El Benna J, Boutten A, Andrieu V, Durand G, Gougerot-Pocidalo MA, Aubier M and Dehoux M: Presence of a mobilizable intracellular pool of hepatocyte growth factor in human polymorphonuclear neutrophils. Blood. 99:2997–3004. 2002. View Article : Google Scholar : PubMed/NCBI | |
Chen PM, Liu KJ, Hsu PJ, Wei CF, Bai CH, Ho LJ, Sytwu HK and Yen BL: Induction of immunomodulatory monocytes by human mesenchymal stem cell-derived hepatocyte growth factor through ERK1/2. J Leukoc Biol. 96:295–303. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mine S, Tanaka Y, Suematu M, Aso M, Fujisaki T, Yamada S and Eto S: Hepatocyte growth factor is a potent trigger of neutrophil adhesion through rapid activation of lymphocyte function-associated antigen-1. Lab Invest. 78:1395–1404. 1998.PubMed/NCBI | |
Wislez M, Rabbe N, Marchal J, Milleron B, Crestani B, Mayaud C, Antoine M, Soler P and Cadranel J: Hepatocyte growth factor production by neutrophils infiltrating bronchioloalveolar subtype pulmonary adenocarcinoma: Role in tumor progression and death. Cancer Res. 63:1405–1412. 2003.PubMed/NCBI | |
He M, Peng A, Huang XZ, Shi DC, Wang JC, Zhao Q, Lin H, Kuang DM, Ke PF and Lao XM: Peritumoral stromal neutrophils are essential for c-Met-elicited metastasis in human hepatocellular carcinoma. Oncoimmunology. 5:e12198282016. View Article : Google Scholar : PubMed/NCBI | |
Finisguerra V, Di Conza G, Di Matteo M, Serneels J, Costa S, Thompson AA, Wauters E, Walmsley S, Prenen H, Granot Z, et al: MET is required for the recruitment of anti-tumoural neutrophils. Nature. 522:349–353. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dan H, Liu S, Liu J, Liu D, Yin F, Wei Z, Wang J, Zhou Y, Jiang L, Ji N, et al: RACK1 promotes cancer progression by increasing the M2/M1 macrophage ratio via the NF-κB pathway in oral squamous cell carcinoma. Mol Oncol. 14:795–807. 2020. View Article : Google Scholar : PubMed/NCBI | |
Coudriet GM, He J, Trucco M, Mars WM and Piganelli JD: Hepatocyte growth factor modulates interleukin-6 production in bone marrow derived macrophages: Implications for inflammatory mediated diseases. PLoS One. 5:e153842010. View Article : Google Scholar : PubMed/NCBI | |
Flaquer M, Franquesa M, Vidal A, Bolaños N, Torras J, Lloberas N, Herrero-Fresneda I, Grinyó JM and Cruzado JM: Hepatocyte growth factor gene therapy enhances infiltration of macrophages and may induce kidney repair in db/db mice as a model of diabetes. Diabetologia. 55:2059–2068. 2012. View Article : Google Scholar : PubMed/NCBI | |
Huang WZ, Hu WH, Wang Y, Chen J, Hu ZQ, Zhou J, Liu L, Qiu W, Tang FZ, Zhang SC, et al: A mathematical modelling of initiation of dendritic cells-induced T cell immune response. Int J Biol Sci. 15:1396–1403. 2019. View Article : Google Scholar : PubMed/NCBI | |
Garibaldi S, Barisione C, Marengo B, Ameri P, Brunelli C, Balbi M and Ghigliotti G: Advanced oxidation protein products-modified albumin induces differentiation of RAW264.7 macrophages into dendritic-like cells which is modulated by cell surface thiols. Toxins. 9:272017. View Article : Google Scholar | |
Baek JH, Birchmeier C, Zenke M and Hieronymus T: The HGF receptor/Met tyrosine kinase is a key regulator of dendritic cell migration in skin immunity. J Immunol. 189:1699–1707. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kurz SM, Diebold SS, Hieronymus T, Gust TC, Bartunek P, Sachs M, Birchmeier W and Zenke M: The impact of c-met/scatter factor receptor on dendritic cell migration. Eur J Immunol. 32:1832–1838. 2002. View Article : Google Scholar : PubMed/NCBI | |
Benkhoucha M, Santiago-Raber ML, Schneiter G, Chofflon M, Funakoshi H, Nakamura T and Lalive PH: Hepatocyte growth factor inhibits CNS autoimmunity by inducing tolerogenic dendritic cells and CD25+Foxp3+ regulatory T cells. Proc Natl Acad Sci USA. 107:6424–6429. 2010. View Article : Google Scholar : PubMed/NCBI | |
Okunishi K, Dohi M, Nakagome K, Tanaka R, Mizuno S, Matsumoto K, Miyazaki J, Nakamura T and Yamamoto K: A novel role of hepatocyte growth factor as an immune regulator through suppressing dendritic cell function. J Immunol. 175:4745–4753. 2005. View Article : Google Scholar : PubMed/NCBI | |
Balan M, Mier y Teran E, Waaga-Gasser AM, Gasser M, Choueiri TK, Freeman G and Pal S: Novel roles of c-Met in the survival of renal cancer cells through the regulation of HO-1 and PD-L1 expression. J Biol Chem. 290:8110–8120. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tong G, Cheng B, Li J, Wu X, Nong Q, He L, Li X, Li L and Wang S: MACC1 regulates PDL1 expression and tumor immunity through the c-Met/AKT/mTOR pathway in gastric cancer cells. Cancer Med. 8:7044–7054. 2019. View Article : Google Scholar : PubMed/NCBI | |
Demuth C, Andersen MN, Jakobsen KR, Madsen AT and Sorensen BS: Increased PD-L1 expression in erlotinib-resistant NSCLC cells with MET gene amplification is reversed upon MET-TKI treatment. Oncotarget. 8:68221–68229. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li H, Li CW, Li X, Ding Q, Guo L, Liu S, Liu C, Lai CC, Hsu JM, Dong Q, et al: MET inhibitors promote liver tumor evasion of the immune response by stabilizing PDL1. Gastroenterology. 156:1849–1861.e13. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lui VW, Hedberg ML, Li H, Vangara BS, Pendleton K, Zeng Y, Lu Y, Zhang Q, Du Y, Gilbert BR, et al: Frequent mutation of the PI3K pathway in head and neck cancer defines predictive biomarkers. Cancer Discov. 3:761–769. 2013. View Article : Google Scholar : PubMed/NCBI | |
Catenacci DV, Tebbutt NC, Davidenko I, Murad AM, Al-Batran SE, Ilson DH, Tjulandin S, Gotovkin E, Karaszewska B, Bondarenko I, et al: Rilotumumab plus epirubicin, cisplatin, and capecitabine as first-line therapy in advanced MET-positive gastric or gastro-oesophageal junction cancer (RILOMET-1): A randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet. Oncology. 18:1467–1482. 2017.PubMed/NCBI |