|
1
|
Kopp W: How Western diet and lifestyle
drive the pandemic of obesity and civilization diseases. Diabetes
Metab Syndr Obes. 12:2221–2236. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Badley EM and Davis AM: Meeting the
challenge of the ageing of the population: Issues in access to
specialist care for arthritis. Best Pract Res Clin Rheumatol.
26:599–609. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Naylor RM, Baker DJ and van Deursen JM:
Senescent cells: A novel therapeutic target for aging and
age-related diseases. Clin Pharmacol Ther. 93:105–116. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Verstraeten SP, van Oers HA and Mackenbach
JP: Differences in life expectancy between four Western countries
and their Caribbean dependencies, 1980–2014. Eur J Public Health.
30:85–92. 2020.PubMed/NCBI
|
|
5
|
Montero JA, Lorda-Diez CI and Hurlé JM:
Regenerative medicine and connective tissues: Cartilage versus
tendon. J Tissue Eng Regen Med. 6:337–347. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Escobar KA, Cole NH, Mermier CM and
VanDusseldorp TA: Autophagy and aging: Maintaining the proteome
through exercise and caloric restriction. Aging Cell.
18:e128762019. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Mohd Sahardi NF and Makpol S: Ginger
(Zingiber officinale Roscoe) in the prevention of ageing and
degenerative diseases: Review of current evidence. Evid Based
Complement Alternat Med. 2019:50543952019. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Sachdeva V, Roy A and Bharadvaja N:
Current prospective of nutraceuticals: A review. Curr Pharm
Biotechnol. Jan 29–2020.(Epub ahead of print). doi:
10.2174/1389201021666200130113441. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Sj S, Veerabhadrappa B, Subramaniyan S and
Dyavaiah M: Astaxanthin enhances the longevity of Saccharomyces
cerevisiae by decreasing oxidative stress and apoptosis. FEMS
Yeast Res. Jan 1–2019.(Epub ahead of print). doi:
10.1093/femsyr/foy113. PubMed/NCBI
|
|
10
|
El-Baz FK, Hussein RA, Abdel Jaleel GA and
Saleh DO: Astaxanthin-rich Haematococcus pluvialis Algal
hepatic modulation in D-galactose-induced aging in rats: Role of
Nrf2. Adv Pharm Bull. 8:523–528. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Tang X, Ma S, Li Y, Sun Y, Zhang K, Zhou Q
and Yu R: Evaluate the activity of sodium butyrate to prevent
osteoporosis in rats by promoting osteal GSK-3beta/Nrf2 signaling
and mitochondrial function. J Agric Food Chem. 68:6588–6603. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Domazetovic V, Marcucci G, Iantomasi T,
Brandi ML and Vincenzini MT: Oxidative stress in bone remodeling:
Role of antioxidants. Clin Cases Miner Bone Metab. 14:209–216.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Chen X, Wang C, Qiu H, Yuan Y, Chen K, Cao
Z, Xiang Tan R, Tickner J, Xu J and Zou J: Asperpyrone A attenuates
RANKL-induced osteoclast formation through inhibiting NFATc1,
Ca2+ signalling and oxidative stress. J Cell Mol Med.
23:8269–8279. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Prideaux M, Kitase Y, Kimble M, OConnell
TM and Bonewald LF: Taurine, an osteocyte metabolite, protects
against oxidative stress-induced cell death and decreases
inhibitors of the Wnt/β-catenin signaling pathway. Bone.
137:1153742020. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Baek KH, Oh KW, Lee WY, Lee SS, Kim MK,
Kwon HS, Rhee EJ, Han JH, Song KH, Cha BY, et al: Association of
oxidative stress with postmenopausal osteoporosis and the effects
of hydrogen peroxide on osteoclast formation in human bone marrow
cell cultures. Calcif Tissue Int. 87:226–235. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Lingappan K: NF-κB in oxidative stress.
Curr Opin Toxicol. 7:81–86. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Li S, Yin Y, Yao L, Lin Z, Sun S, Zhang J
and Li X: TNF-α treatment increases DKK1 protein levels in primary
osteoblasts via upregulation of DKK1 mRNA levels and downregulation
of miR-335-5p. Mol Med Rep. May 18–2020.(Epub ahead of print). doi:
10.3892/mmr.2020.11152.
|
|
18
|
Marahleh A, Kitaura H, Ohori F, Kishikawa
A, Ogawa S, Shen WR, Qi J, Noguchi T, Nara Y and Mizoguchi I: TNF-α
directly enhances osteocyte RANKL expression and promotes
osteoclast formation. Front Immunol. 10:29252019. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Nanes MS: Tumor necrosis factor-alpha:
Molecular and cellular mechanisms in skeletal pathology. Gene.
321:1–15. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Osta B, Benedetti G and Miossec P:
Classical and paradoxical effects of TNF-α on bone homeostasis.
Front Immunol. 5:482014. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Ha H, Kwak HB, Lee SW, Jin HM, Kim HM, Kim
HH and Lee ZH: Reactive oxygen species mediate RANK signaling in
osteoclasts. Exp Cell Res. 301:119–127. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Lee NK, Choi YG, Baik JY, Han SY, Jeong
DW, Bae YS, Kim N and Lee SY: A crucial role for reactive oxygen
species in RANKL-induced osteoclast differentiation. Blood.
106:852–859. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Azizieh FY, Shehab D, Jarallah KA, Gupta R
and Raghupathy R: Circulatory levels of RANKL, OPG, and oxidative
stress markers in postmenopausal women with normal or low bone
mineral density. Biomark Insights. 14:11772719198438252019.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Azizieh F, Raghupathy R, Shehab D,
Al-Jarallah K and Gupta R: Cytokine profiles in osteoporosis
suggest a proresorptive bias. Menopause. 24:1057–1064. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Pansini F, Mollica G and Bergamini CM:
Management of the menopausal disturbances and oxidative stress.
Curr Pharm Des. 11:2063–2073. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Gravallese EM, Harada Y, Wang JT, Gorn AH,
Thornhill TS and Goldring SR: Identification of cell types
responsible for bone resorption in rheumatoid arthritis and
juvenile rheumatoid arthritis. Am J Pathol. 152:943–951.
1998.PubMed/NCBI
|
|
27
|
Gravallese EM, Manning C, Tsay A, Naito A,
Pan C, Amento E and Goldring SR: Synovial tissue in rheumatoid
arthritis is a source of osteoclast differentiation factor.
Arthritis Rheum. 43:250–258. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Carter S, Braem K and Lories RJ: The role
of bone morphogenetic proteins in ankylosing spondylitis. Ther Adv
Musculoskelet Dis. 4:293–299. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Hreggvidsdottir HS, Noordenbos T and
Baeten DL: Inflammatory pathways in spondyloarthritis. Mol Immunol.
57:28–37. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Braun J and Sieper J: Ankylosing
spondylitis. Lancet. 369:1379–1390. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
van der Heijde D, Salonen D, Weissman BN,
Landewé R, Maksymowych WP, Kupper H, Ballal S, Gibson E and Wong R;
Canadian (M03-606) study group; ATLAS study group, : Assessment of
radiographic progression in the spines of patients with ankylosing
spondylitis treated with adalimumab for up to 2 years. Arthritis
Res Ther. 11:R1272009. View
Article : Google Scholar : PubMed/NCBI
|
|
32
|
Yuan JP, Peng J, Yin K and Wang JH:
Potential health-promoting effects of astaxanthin: A high-value
carotenoid mostly from microalgae. Mol Nutr Food Res. 55:150–165.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Milani A, Basirnejad M, Shahbazi S and
Bolhassani A: Carotenoids: Biochemistry, pharmacology and
treatment. Br J Pharmacol. 174:1290–1324. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Novoveská L, Ross ME, Stanley MS,
Pradelles R, Wasiolek V and Sassi JF: Microalgal carotenoids: A
review of production, current markets, regulations, and future
direction. Mar Drugs. 17:6402019. View Article : Google Scholar
|
|
35
|
Davies BH: Carotenoid metabolism in
animals: A biochemists view. Pure Appl Chem. 57:679–684. 1985.
View Article : Google Scholar
|
|
36
|
Lorenz RT and Cysewski GR: Commercial
potential for Haematococcus microalgae as a natural source of
astaxanthin. Trends Biotechnol. 18:160–167. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Roche F: Astaxanthin as a Pigmenter in
Salmon Feed, Color Additive Petition 7C02 1 1, United States Food
and Drug Administration. Astaxanthin: Human Food Safety Summary.
Hoffman-La Roche Ltd. (Basel). 431987.
|
|
38
|
Higuera-Ciapara I, Félix-Valenzuela L and
Goycoolea FM: Astaxanthin: A review of its chemistry and
applications. Crit Rev Food Sci Nutr. 46:185–196. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Kothari D, Lee JH, Chon JW, Seo KH and Kim
SK: Improved astaxanthin production by Xanthophyllomyces
dendrorhous SK984 with oak leaf extract and inorganic phosphate
supplementation. Food Sci Biotechnol. 28:1171–1176. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Capelli B, Talbott S and Ding LX:
Astaxanthin sources: Suitability for human health and nutrition.
Funct Food Health Dis. 9:430–445. 2019. View Article : Google Scholar
|
|
41
|
McCoy M: Astaxanthin market a hard one to
crack. Chem Eng News. 77:15–17. 1999. View Article : Google Scholar
|
|
42
|
Fraser PD, Miura Y and Misawa N: In vitro
characterization of astaxanthin biosynthetic enzymes. J Biol Chem.
272:6128–6135. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Tanaka T, Shnimizu M and Moriwaki H:
Cancer chemoprevention by carotenoids. Molecules. 17:3202–3242.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Kavitha K, Kowshik J, Kishore TKK, Baba AB
and Nagini S: Astaxanthin inhibits NF-κB and Wnt/β-catenin
signaling pathways via inactivation of Erk/MAPK and PI3K/Akt to
induce intrinsic apoptosis in a hamster model of oral cancer.
Biochim Biophys Acta. 1830:4433–4444. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Satoh A, Tsuji S, Okada Y, Murakami N,
Urami M, Nakagawa K, Ishikura M, Katagiri M, Koga Y and Shirasawa
T: Preliminary clinical evaluation of toxicity and efficacy of a
new astaxanthin-rich Haematococcus pluvialis extract. J Clin
Biochem Nutr. 44:280–284. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Bhuvaneswari S, Yogalakshmi B, Sreeja S
and Anuradha CV: Astaxanthin reduces hepatic endoplasmic reticulum
stress and nuclear factor-κB-mediated inflammation in high fructose
and high fat diet-fed mice. Cell Stress Chaperones. 19:183–191.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Kidd P: Astaxanthin, cell membrane
nutrient with diverse clinical benefits and anti-aging potential.
Altern Med Rev. 16:355–364. 2011.PubMed/NCBI
|
|
48
|
Johnson EA and An GH: Astaxanthin from
microbial sources. Crit Rev Biotechnol. 11:297–326. 1991.
View Article : Google Scholar
|
|
49
|
Yuan JP, Gong XD and Chen F: Separation
and analysis of carotenoids and chlorophylls in Haematococcus
lacustris by high-performance liquid chromatography photodiode
array detection. J Agric Food Chem. 45:1952–1956. 1997. View Article : Google Scholar
|
|
50
|
Casella P, Iovine A, Mehariya S, Marino T,
Musmarra D and Molino A: Smart method for carotenoids
characterization in Haematococcus pluvialis red phase and
evaluation of astaxanthin thermal stability. Antioxidants.
9:4222020. View Article : Google Scholar
|
|
51
|
Shah MM, Liang Y, Cheng JJ and Daroch M
and Daroch M: Astaxanthin-producing green microalga
Haematococcus pluvialis: From single cell to high value
commercial products. Front Plant Sci. 7:5312016. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
McCarty MF and Lerner A: Nutraceuticals
targeting generation and oxidant activity of peroxynitrite may aid
prevention and control of Parkinsons disease. Int J Mol Sci.
21:36242020. View Article : Google Scholar
|
|
53
|
Alves A, Sousa E, Kijjoa A and Pinto M:
Marine-derived compounds with potential use as cosmeceuticals and
nutricosmetics. Molecules. 25:25362020. View Article : Google Scholar
|
|
54
|
Menin B, Santabarbara S, Lami A, Musazzi
S, Villafiorita Monteleone F and Casazza AP: Non-endogenous
ketocarotenoid accumulation in engineered Synechocystis sp.
PCC 6803. Physiol Plant. 166:403–412. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Fakhri S, Abbaszadeh F, Dargahi L and
Jorjani M: Astaxanthin: A mechanistic review on its biological
activities and health benefits. Pharmacol Res. 136:1–20. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Tachaprutinun A, Udomsup T, Luadthong C
and Wanichwecharungruang S: Preventing the thermal degradation of
astaxanthin through nanoencapsulation. Int J Pharm. 374:119–124.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Küçüködük A, Helvacioglu F, Haberal N,
Dagdeviren A, Bacanli D, Yilmaz G and Akkoyun I: Antiproliferative
and anti-apoptotic effect of astaxanthin in an oxygen-induced
retinopathy mouse model. Can J Ophthalmol. 54:65–74. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Yuan JP and Chen F: Isomerization of
trans-astaxanthin to cis-isomers in organic solvents. J Agric Food
Chem. 47:3656–3660. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Hu Q, Hu S, Fleming E, Lee JY and Luo Y:
Chitosan-caseinate-dextran ternary complex nanoparticles for
potential oral delivery of astaxanthin with significantly improved
bioactivity. Int J Biol Macromol. 151:747–756. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Liu C, Zhang S, McClements DJ, Wang D and
Xu Y: Design of astaxanthin-loaded core-shell nanoparticles
consisting of chitosan oligosaccharides and poly
(lactic-co-glycolic acid): Enhancement of water solubility,
stability, and bioavailability. J Agric Food Chem. 67:5113–5121.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Tamjidi F, Shahedi M, Varshosaz J and
Nasirpour A: Stability of astaxanthin-loaded nanostructured lipid
carriers as affected by pH, ionic strength, heat treatment,
simulated gastric juice and freeze-thawing. J Food Sci Technol.
54:3132–3141. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Machado FR Jr, Trevisol TC, Boschetto DL,
Burkert JF, Ferreira SR, Oliveira JV and Burkert CA: Technological
process for cell disruption, extraction and encapsulation of
astaxanthin from Haematococcus pluvialis. J Biotechnol.
218:108–114. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Bustamante A, Masson L, Velasco J, Del
Valle JM and Robert P: Microencapsulation of H. pluvialis
oleoresins with different fatty acid composition: Kinetic stability
of astaxanthin and alpha-tocopherol. Food Chem. 190:1013–1021.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Chen L, Wang JL, Ni H and Zhu MJ:
Disruption of Phaffia rhodozyma cells and preparation of
microencapsulated astaxanthin with high water solubility. Food Sci
Biotechnol. 28:111–120. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Salatti-Dorado JA, García-Gómez D,
Rodriguez-Ruiz V, Gueguen V, Pavon-Djavid G and Rubio S:
Multifunctional green supramolecular solvents for cost-effective
production of highly stable astaxanthin-rich formulations from
Haematococcus pluvialis. Food Chem. 279:294–302. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Lin SF, Chen YC, Chen RN, Chen LC, Ho HO,
Tsung YH, Sheu MT and Liu DZ: Improving the stability of
astaxanthin by microencapsulation in calcium alginate beads. PLoS
One. 11:e01536852016. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Niizawa I, Espinaco BY, Zorrilla SE and
Sihufe GA: Natural astaxanthin encapsulation: Use of response
surface methodology for the design of alginate beads. Int J Biol
Macromol. 121:601–608. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Hama S, Uenishi S, Yamada A, Ohgita T,
Tsuchiya H, Yamashita E and Kogure K: Scavenging of hydroxyl
radicals in aqueous solution by astaxanthin encapsulated in
liposomes. Biol Pharm Bull. 35:2238–2242. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Chiu CH, Chang CC, Lin ST, Chyau CC and
Peng RY: Improved hepatoprotective effect of liposome-encapsulated
astaxanthin in lipopolysaccharide-induced acute hepatotoxicity. Int
J Mol Sci. 17:E11282016. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Wu YC, Huang HH, Wu YJ, Manousakas I, Yang
CC and Kuo SM: Therapeutic and protective effects of liposomal
encapsulation of astaxanthin in mice with alcoholic liver fibrosis.
Int J Mol Sci. 20:E40572019. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Anarjan N, Tan CP, Nehdi IA and Ling TC:
Colloidal astaxanthin: Preparation, characterisation and
bioavailability evaluation. Food Chem. 135:1303–1309. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Yang Y, Kim B and Lee JY: Astaxanthin
structure, metabolism, and health benefits. J Hum Nutr Food Sci.
1:10032013.
|
|
73
|
Kamezaki C, Nakashima A, Yamada A, Uenishi
S, Ishibashi H, Shibuya N, Hama S, Hosoi S, Yamashita E and Kogure
K: Synergistic antioxidative effect of astaxanthin and tocotrienol
by co-encapsulated in liposomes. J Clin Biochem Nutr. 59:100–106.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Ishikawa M, Hirai S, Yoshida T, Shibuya N,
Hama S, Takahashi Y, Fukuta T, Tanaka T, Hosoi S and Kogure K:
Carotenoid stereochemistry affects antioxidative activity of
liposomes co-encapsulating astaxanthin and tocotrienol. Chem Pharm
Bull (Tokyo). 66:714–720. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Kittikaiwan P, Powthongsook S, Pavasant P
and Shotipruk A: Encapsulation of Haematococcus pluvialis
using chitosan for astaxanthin stability enhancement. Carbohydr
Polym. 70:378–385. 2007. View Article : Google Scholar
|
|
76
|
Wang Q, Zhao Y, Guan L, Zhang Y, Dang Q,
Dong P, Li J and Liang X: Preparation of astaxanthin-loaded
DNA/chitosan nanoparticles for improved cellular uptake and
antioxidation capability. Food Chem. 227:9–15. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Liu C, Liu Z, Sun X, Zhang S, Wang S, Feng
F, Wang D and Xu Y: Fabrication and characterization of
β-lactoglobulin-based nanocomplexes composed of chitosan
oligosaccharides as vehicles for delivery of astaxanthin. J Agric
Food Chem. 66:6717–6726. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Chereddy KK, Vandermeulen G and Préat V:
PLGA based drug delivery systems: Promising carriers for wound
healing activity. Wound Repair Regen. 24:223–236. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Zhang J and Peng CA: Enhanced
proliferation and differentiation of mesenchymal stem cells by
astaxanthin-encapsulated polymeric micelles. PLoS One.
14:e02167552019. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Dias V, Junn E and Mouradian MM: The role
of oxidative stress in Parkinsons disease. J Parkinsons Dis.
3:461–491. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Kim SH and Kim H: Inhibitory effect of
astaxanthin on oxidative stress-induced mitochondrial dysfunction-A
mini-review. Nutrients. 10:E11372018. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Starkov AA: The role of mitochondria in
reactive oxygen species metabolism and signaling. Ann NY Acad Sci.
1147:37–52. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Siemen D and Ziemer M: What is the nature
of the mitochondrial permeability transition pore and what is it
not? IUBMB Life. 65:255–262. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Valenti MT, Garbin U, Pasini A, Zanatta M,
Stranieri C, Manfro S, Zucal C and Dalle Carbonare L: Role of
ox-PAPCs in the differentiation of mesenchymal stem cells (MSCs)
and Runx2 and PPARγ2 expression in MSCs-like of osteoporotic
patients. PLoS One. 6:e203632011. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Sobenin IA, Sazonova MA, Postnov AY,
Bobryshev YV and Orekhov AN: Mitochondrial mutations are associated
with atherosclerotic lesions in the human aorta. Clin Dev Immunol.
2012:8324642012. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Kluge MA, Fetterman JL and Vita JA:
Mitochondria and endothelial function. Circ Res. 112:1171–1188.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Apostolova N and Victor VM: Molecular
strategies for targeting antioxidants to mitochondria: Therapeutic
implications. Antioxid Redox Signal. 22:686–729. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Wolf AM, Asoh S, Hiranuma H, Ohsawa I, Iio
K, Satou A, Ishikura M and Ohta S: Astaxanthin protects
mitochondrial redox state and functional integrity against
oxidative stress. J Nutr Biochem. 21:381–389. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Park JS, Mathison BD, Hayek MG, Zhang J,
Reinhart GA and Chew BP: Astaxanthin modulates age-associated
mitochondrial dysfunction in healthy dogs. J Anim Sci. 91:268–275.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Song X, Wang B, Lin S, Jing L, Mao C, Xu
P, Lv C, Liu W and Zuo J: Astaxanthin inhibits apoptosis in
alveolar epithelial cells type II in vivo and in vitro through the
ROS-dependent mitochondrial signalling pathway. J Cell Mol Med.
18:2198–2212. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Fan CD, Sun JY, Fu XT, Hou YJ, Li Y, Yang
MF, Fu XY and Sun BL: Astaxanthin attenuates homocysteine-induced
cardiotoxicity in vitro and in vivo by inhibiting mitochondrial
dysfunction and oxidative damage. Front Physiol. 8:10412017.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Reid MB, Shoji T, Moody MR and Entman ML:
Reactive oxygen in skeletal muscle. II. Extracellular release of
free radicals. J Appl Physiol (1985). 73:1805–1809. 1992.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Aoi W, Naito Y, Sakuma K, Kuchide M,
Tokuda H, Maoka T, Toyokuni S, Oka S, Yasuhara M and Yoshikawa T:
Astaxanthin limits exercise-induced skeletal and cardiac muscle
damage in mice. Antioxid Redox Signal. 5:139–144. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
McGarry JD and Brown NF: The mitochondrial
carnitine palmitoyltransferase system. From concept to molecular
analysis. Eur J Biochem. 244:1–14. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Ikeuchi M, Koyama T, Takahashi J and
Yazawa K: Effects of astaxanthin supplementation on
exercise-induced fatigue in mice. Biol Pharm Bull. 29:2106–2110.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Belviranli M, Okudan N and Lamprecht M:
Well-Known Antioxidants and Newcomers in Sport Nutrition: Coenzyme
Q10. Quercetin, Resveratrol, Pterostilbene, Pycnogenol and
Astaxanthin. Antioxidants in Sport Nutrition. CRC Press/Taylor and
Francis; Boca Raton, FL: 2015
|
|
97
|
Yaghooti H, Mohammadtaghvaei N and
Mahboobnia K: Effects of palmitate and astaxanthin on cell
viability and proinflammatory characteristics of mesenchymal stem
cells. Int Immunopharmacol. 68:164–170. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Domazetovic V, Marcucci G, Pierucci F,
Bruno G, Di Cesare Mannelli L, Ghelardini C, Brandi ML, Iantomasi
T, Meacci E and Vincenzini MT: Blueberry juice protects osteocytes
and bone precursor cells against oxidative stress partly through
SIRT1. FEBS Open Bio. 9:1082–1096. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Balci Yuce H, Lektemur Alpan A, Gevrek F
and Toker H: Investigation of the effect of astaxanthin on alveolar
bone loss in experimental periodontitis. J Periodontal Res.
53:131–138. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Hwang YH, Kim KJ, Kim SJ, Mun SK, Hong SG,
Son YJ and Yee ST: Suppression effect of astaxanthin on osteoclast
formation in vitro and bone loss in vivo. Int J Mol Sci.
19:E9122018. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
El-Baz FK, Saleh DO, Abdel Jaleel GA,
Hussein RA and Hassan A: Heamatococcus pluvialis ameliorates
bone loss in experimentally-induced osteoporosis in rats via the
regulation of OPG/RANKL pathway. Biomed Pharmacother.
116:1090172019. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Valenti MT, Dalle Carbonare L and Mottes
M: Osteogenic Differentiation in Healthy and Pathological
Conditions. Int J Mol Sci. 18:412016. View Article : Google Scholar
|
|
103
|
Kimble L, Mathison B and Chew BP:
Astaxanthin mediates inflammatory biomarkers associated with
arthritis in human chondrosarcoma cells induced with interleukin-1
beta. FASEB J. 27 (Suppl 1):6382013.
|
|
104
|
Chen WP, Xiong Y, Shi YX, Hu PF, Bao JP
and Wu LD: Astaxanthin reduces matrix metalloproteinase expression
in human chondrocytes. Int Immunopharmacol. 19:174–177. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Huang LJ and Chen WP: Astaxanthin
ameliorates cartilage damage in experimental osteoarthritis. Mod
Rheumatol. 25:768–771. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Booth FW, Roberts CK and Laye MJ: Lack of
exercise is a major cause of chronic diseases. Compr Physiol.
2:1143–1211. 2012.PubMed/NCBI
|