MicroRNAs target the Wnt/β‑catenin signaling pathway to regulate epithelial‑mesenchymal transition in cancer (Review)
- Authors:
- Yuhe Lei
- Lei Chen
- Ge Zhang
- Aiyun Shan
- Chunfeng Ye
- Bin Liang
- Jiayu Sun
- Xin Liao
- Changfeng Zhu
- Yueyue Chen
- Jing Wang
- Enxin Zhang
- Lijuan Deng
-
Affiliations: Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, P.R. China, Department of Big Data Research of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China, Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China, Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China, Department of Oncology, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, P.R. China - Published online on: July 23, 2020 https://doi.org/10.3892/or.2020.7703
- Pages: 1299-1313
-
Copyright: © Lei et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Pasquier J, Abu-Kaoud N, Al Thani H and Rafii A: Epithelial to mesenchymal transition in a clinical perspective. J Oncol. 2015:7921822015. View Article : Google Scholar : PubMed/NCBI | |
Yilmaz M and Christofori G: EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 28:15–33. 2009. View Article : Google Scholar : PubMed/NCBI | |
Okumura N, Kagami T, Fujii K, Nakahara M and Koizumi N: Involvement of nectin-afadin in the adherens junctions of the corneal endothelium. Cornea. 37:633–640. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tsukita S, Furuse M and Itoh M: Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol. 2:285–293. 2001. View Article : Google Scholar : PubMed/NCBI | |
Takai Y, Miyoshi J, Ikeda W and Ogita H: Nectins and nectin-like molecules: Roles in contact inhibition of cell movement and proliferation. Nat Rev Mol Cell Biol. 9:603–615. 2008. View Article : Google Scholar : PubMed/NCBI | |
Inagaki M, Irie K, Ishizaki H, Tanaka-Okamoto M, Miyoshi J and Takai Y: Role of cell adhesion molecule nectin-3 in spermatid development. Genes Cells. 11:1125–1132. 2006. View Article : Google Scholar : PubMed/NCBI | |
Okabe N, Shimizu K, Ozaki-Kuroda K, Nakanishi H, Morimoto K, Takeuchi M, Katsumaru H, Murakami F and Takai Y: Contacts between the commissural axons and the floor plate cells are mediated by nectins. Dev Biol. 273:244–256. 2004. View Article : Google Scholar : PubMed/NCBI | |
Heuberger J and Birchmeier W: Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling. Cold Spring Harb Perspect Biol. 2:a0029152010. View Article : Google Scholar : PubMed/NCBI | |
Coopman P and Djiane A: Adherens Junction and E-Cadherin complex regulation by epithelial polarity. Cell Mol Life Sci. 73:3535–3553. 2016. View Article : Google Scholar : PubMed/NCBI | |
Guo F, Parker Kerrigan BC, Yang D, Hu L, Shmulevich I, Sood AK, Xue F and Zhang W: Post-transcriptional regulatory network of epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions. J Hematol Oncol. 7:192014. View Article : Google Scholar : PubMed/NCBI | |
Thiery JP, Acloque H, Huang RY and Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dong C, Wu Y, Wang Y, Wang C, Kang T, Rychahou PG, Chi YI, Evers BM and Zhou BP: Interaction with Suv39H1 is critical for Snail-mediated E-cadherin repression in breast cancer. Oncogene. 32:1351–1362. 2013. View Article : Google Scholar : PubMed/NCBI | |
Guo Q and Qin W: DKK3 blocked translocation of β-catenin/EMT induced by hypoxia and improved gemcitabine therapeutic effect in pancreatic cancer Bxpc-3 cell. J Cell Mol Med. 19:2832–2841. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhao JH, Luo Y, Jiang YG, He DL and Wu CT: Knockdown of β-Catenin through shRNA cause a reversal of EMT and metastatic phenotypes induced by HIF-1α. Cancer Invest. 29:377–382. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cai J, Guan H, Fang L, Yang Y, Zhu X, Yuan J, Wu J and Li M: MicroRNA-374a activates Wnt/β-catenin signaling to promote breast cancer metastasis. J Clin Invest. 123:566–579. 2013.PubMed/NCBI | |
Krol J, Loedige I and Filipowicz W: The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 11:597–610. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wu C, Zhuang Y, Jiang S, Liu S, Zhou J, Wu J, Teng Y, Xia B, Wang R and Zou X: Interaction between Wnt/beta-catenin pathway and microRNAs regulates epithelial-mesenchymal transition in gastric cancer (Review). Int J Oncol. 48:2236–2246. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zaravinos A: The Regulatory Role of MicroRNAs in EMT and Cancer. J Oncol. 2015:8658162015. View Article : Google Scholar : PubMed/NCBI | |
Kim DH, Xing T, Yang Z, Dudek R, Lu Q and Chen YH: Epithelial Mesenchymal Transition in Embryonic Development, Tissue Repair and Cancer: A Comprehensive Overview. J Clin Med. 7:12017. View Article : Google Scholar | |
Zhang RR, Gui YH and Wang X: Role of the canonical Wnt signaling pathway in heart valve development. Zhongguo Dang Dai Er Ke Za Zhi. 17:757–762. 2015.(In Chinese). PubMed/NCBI | |
Ahsan K, Singh N, Rocha M, Huang C and Prince VE: Prickle1 is required for EMT and migration of zebrafish cranial neural crest. Dev Biol. 448:16–35. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kalluri R and Weinberg RA: The basics of epithelial-mesenchymal transition. J Clin Invest. 119:1420–1428. 2009. View Article : Google Scholar : PubMed/NCBI | |
Paolillo M, Serra M and Schinelli S: Integrins in glioblastoma: Still an attractive target? Pharmacol Res. 113:55–61. 2016. View Article : Google Scholar : PubMed/NCBI | |
Santoro R, Zanotto M, Carbone C, Piro G, Tortora G and Melisi D: MEKK3 sustains EMT and stemness in pancreatic cancer by regulating YAP and TAZ transcriptional activity. Anticancer Res. 38:1937–1946. 2018.PubMed/NCBI | |
Hu B, Tian X and Li Y, Yang T, Han Z, An J, Kong L and Li Y: Epithelial-mesenchymal transition may be involved in the immune evasion of circulating gastric tumor cells via downregulation of ULBP1. Cancer Med. 9:2686–2697. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kang H, Kim H, Lee S, Youn H and Youn B: Role of Metabolic Reprogramming in Epithelial-Mesenchymal Transition (EMT). Int J Mol Sci. 20:20422019. View Article : Google Scholar | |
Garg M: Epithelial plasticity, autophagy and metastasis: Potential modifiers of the crosstalk to overcome therapeutic resistance. Stem Cell Rev Rep. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Mai W, Chen M, Hu J, Zhuo Z, Lei X, Deng L, Liu J, Yao N, Huang M, et al: Arenobufagin inhibits prostate cancer epithelial-mesenchymal transition and metastasis by down-regulating β-catenin. Pharmacol Res. 123:130–142. 2017. View Article : Google Scholar : PubMed/NCBI | |
Derynck R, Muthusamy BP and Saeteurn KY: Signaling pathway cooperation in TGF-β-induced epithelial-mesenchymal transition. Curr Opin Cell Biol. 31:56–66. 2014. View Article : Google Scholar : PubMed/NCBI | |
Creighton CJ, Li X, Landis M, Dixon JM, Neumeister VM, Sjolund A, Rimm DL, Wong H, Rodriguez A, Herschkowitz JI, et al: Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci USA. 106:13820–13825. 2009. View Article : Google Scholar : PubMed/NCBI | |
Peinado H, Olmeda D and Cano A: Snail, Zeb and bHLH factors in tumour progression: An alliance against the epithelial phenotype? Nat Rev Cancer. 7:415–428. 2007. View Article : Google Scholar : PubMed/NCBI | |
Astudillo P: Wnt5a Signaling in Gastric Cancer. Front Cell Dev Biol. 8:1102020. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Marco P, Capra V and Kibar Z: Update on the Role of the Non-Canonical Wnt/Planar Cell Polarity Pathway in Neural Tube Defects. Cells. 8:11982019. View Article : Google Scholar | |
Cici D, Corrado A, Rotondo C and Cantatore FP: Wnt signaling and biological therapy in rheumatoid arthritis and spondyloarthritis. Int J Mol Sci. 20:55522019. View Article : Google Scholar | |
Huang GR, Wei SJ, Huang YQ, Xing W, Wang LY and Liang LL: Mechanism of combined use of vitamin D and puerarin in anti-hepatic fibrosis by regulating the Wnt/β-catenin signalling pathway. World J Gastroenterol. 24:4178–4185. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gay A and Towler DA: Wnt signaling in cardiovascular disease: Opportunities and challenges. Curr Opin Lipidol. 28:387–396. 2017. View Article : Google Scholar : PubMed/NCBI | |
Villarroel A, Del Valle-Perez B, Fuertes G, Curto J, Ontiveros N, Garcia de Herreros A and Duñach M: Src and Fyn define a new signaling cascade activated by canonical and non-canonical Wnt ligands and required for gene transcription and cell invasion. Cell Mol Life Sci. 77:919–935. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rao TP and Kuhl M: An updated overview on Wnt signaling pathways: A prelude for more. Circ Res. 106:1798–1806. 2010. View Article : Google Scholar : PubMed/NCBI | |
MacDonald BT, Tamai K and He X: Wnt/beta-catenin signaling: Components, mechanisms, and diseases. Dev Cell. 17:9–26. 2009. View Article : Google Scholar : PubMed/NCBI | |
Clevers H and Nusse R: Wnt/beta-catenin signaling and disease. Cell. 149:1192–1205. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kawano Y and Kypta R: Secreted antagonists of the Wnt signalling pathway. J Cell Sci. 116:2627–2634. 2003. View Article : Google Scholar : PubMed/NCBI | |
Bafico A, Liu G, Yaniv A, Gazit A and Aaronson SA: Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow. Nat Cell Biol. 3:683–686. 2001. View Article : Google Scholar : PubMed/NCBI | |
Brott BK and Sokol SY: Regulation of Wnt/LRP signaling by distinct domains of Dickkopf proteins. Mol Cell Biol. 22:6100–6110. 2002. View Article : Google Scholar : PubMed/NCBI | |
Wu W, Glinka A, Delius H and Niehrs C: Mutual antagonism between dickkopf1 and dickkopf2 regulates Wnt/beta-catenin signalling. Curr Biol. 10:1611–1614. 2000. View Article : Google Scholar : PubMed/NCBI | |
Mao B and Niehrs C: Kremen2 modulates Dickkopf2 activity during Wnt/LRP6 signaling. Gene. 302:179–183. 2003. View Article : Google Scholar : PubMed/NCBI | |
Cruciat CM and Niehrs C: Secreted and transmembrane wnt inhibitors and activators. Cold Spring Harb Perspect Biol. 5:a0150812013. View Article : Google Scholar : PubMed/NCBI | |
Piccolo S, Agius E, Leyns L, Bhattacharyya S, Grunz H, Bouwmeester T and De Robertis EM: The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature. 397:707–710. 1999. View Article : Google Scholar : PubMed/NCBI | |
Itasaki N, Jones CM, Mercurio S, Rowe A, Domingos PM, Smith JC and Krumlauf R: Wise, a context-dependent activator and inhibitor of Wnt signalling. Development. 130:4295–4305. 2003. View Article : Google Scholar : PubMed/NCBI | |
Schmalhofer O, Brabletz S and Brabletz T: E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev. 28:151–166. 2009. View Article : Google Scholar : PubMed/NCBI | |
Talbot LJ, Bhattacharya SD and Kuo PC: Epithelial-mesenchymal transition, the tumor microenvironment, and metastatic behavior of epithelial malignancies. Int J Biochem Mol Biol. 3:117–136. 2012.PubMed/NCBI | |
Ghahhari NM and Babashah S: Interplay between microRNAs and WNT/beta-catenin signalling pathway regulates epithelial-mesenchymal transition in cancer. Eur J Cancer. 51:1638–1649. 2015. View Article : Google Scholar : PubMed/NCBI | |
Guo Y, Xiao L, Sun L and Liu F: Wnt/beta-catenin signaling: A promising new target for fibrosis diseases. Physiol Res. 61:337–346. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gebert LFR and MacRae IJ: Regulation of microRNA function in animals. Nat Rev Mol Cell Biol. 20:21–37. 2019. View Article : Google Scholar : PubMed/NCBI | |
Filipowicz W, Bhattacharyya SN and Sonenberg N: Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nat Rev Genet. 9:102–114. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH and Kim VN: MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23:4051–4060. 2004. View Article : Google Scholar : PubMed/NCBI | |
Okada C, Yamashita E, Lee SJ, Shibata S, Katahira J, Nakagawa A, Yoneda Y and Tsukihara T: A high-resolution structure of the pre-microRNA nuclear export machinery. Science. 326:1275–1279. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dalmay T: Mechanism of miRNA-mediated repression of mRNA translation. Essays Biochem. 54:29–38. 2013. View Article : Google Scholar : PubMed/NCBI | |
Thomson JM, Newman M, Parker JS, Morin-Kensicki EM, Wright T and Hammond SM: Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev. 20:2202–2207. 2006. View Article : Google Scholar : PubMed/NCBI | |
Moyret-Lalle C, Ruiz E and Puisieux A: Epithelial-mesenchymal transition transcription factors and miRNAs: ‘Plastic surgeons’ of breast cancer. World J Clin Oncol. 5:311–322. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zeng M, Zhu L, Li L and Kang C: miR-378 suppresses the proliferation, migration and invasion of colon cancer cells by inhibiting SDAD1. Cell Mol Biol Lett. 22:122017. View Article : Google Scholar : PubMed/NCBI | |
Tian L, Zhao Z, Xie L and Zhu J: MiR-361-5p inhibits the mobility of gastric cancer cells through suppressing epithelial-mesenchymal transition via the Wnt/β-catenin pathway. Gene. 675:102–109. 2018. View Article : Google Scholar : PubMed/NCBI | |
Guo R, Wu Z, Wang J, Li Q, Shen S, Wang W, Zhou L, Wang W, Cao Z and Guo Y: Development of a Non-Coding-RNA-based EMT/CSC Inhibitory Nanomedicine for In Vivo Treatment and Monitoring of HCC. Adv Sci (Weinh). 6:18018852019. View Article : Google Scholar : PubMed/NCBI | |
Teague EM, Print CG and Hull ML: The role of microRNAs in endometriosis and associated reproductive conditions. Hum Reprod Update. 16:142–165. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wiklund ED, Bramsen JB, Hulf T, Dyrskjøt L, Ramanathan R, Hansen TB, Villadsen SB, Gao S, Ostenfeld MS, Borre M, et al: Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer. Int J Cancer. 128:1327–1334. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tryndyak VP, Beland FA and Pogribny IP: E-cadherin transcriptional down-regulation by epigenetic and microRNA-200 family alterations is related to mesenchymal and drug-resistant phenotypes in human breast cancer cells. Int J Cancer. 126:2575–2583. 2010.PubMed/NCBI | |
Elson-Schwab I, Lorentzen A and Marshall CJ: MicroRNA-200 family members differentially regulate morphological plasticity and mode of melanoma cell invasion. PLoS One. 5:e131762010. View Article : Google Scholar : PubMed/NCBI | |
Hu X, Macdonald DM, Huettner PC, Feng Z, El Naqa IM, Schwarz JK, Mutch DG, Grigsby PW, Powell SN and Wang X: A miR-200 microRNA cluster as prognostic marker in advanced ovarian cancer. Gynecol Oncol. 114:457–464. 2009. View Article : Google Scholar : PubMed/NCBI | |
Shinozaki A, Sakatani T, Ushiku T, Hino R, Isogai M, Ishikawa S, Uozaki H, Takada K and Fukayama M: Downregulation of microRNA-200 in EBV-associated gastric carcinoma. Cancer Res. 70:4719–4727. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kong D, Li Y, Wang Z, Banerjee S, Ahmad A, Kim HR and Sarkar FH: miR-200 regulates PDGF-D-mediated epithelial-mesenchymal transition, adhesion, and invasion of prostate cancer cells. Stem Cells. 27:1712–1721. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y and Goodall GJ: The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 10:593–601. 2008. View Article : Google Scholar : PubMed/NCBI | |
Saydam O, Shen Y, Wurdinger T, Senol O, Boke E, James MF, TannousB A, Stemmer-Rachamimov AO, Yi M, Stephens RM, et al: Downregulated microRNA-200a in meningiomas promotes tumor growth by reducing E-cadherin and activating the Wnt/beta-catenin signaling pathway. Mol Cell Biol. 29:5923–5940. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sanchez-Tillo E, Lazaro A, Torrent R, Cuatrecasas M, Vaquero EC, Castells A, Engel P and Postigo A: ZEB1 represses E-cadherin and induces an EMT by recruiting the SWI/SNF chromatin-remodeling protein BRG1. Oncogene. 29:3490–3500. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cong N, Du P, Zhang A, Shen F, Su J, Pu P, Wang T, Zjang J, Kang C and Zhang Q: Downregulated microRNA-200a promotes EMT and tumor growth through the wnt/β-catenin pathway by targeting the E-cadherin repressors ZEB1/ZEB2 in gastric adenocarcinoma. Oncol Rep. 29:1579–1587. 2013. View Article : Google Scholar : PubMed/NCBI | |
Su J, Zhang A, Shi Z, Ma F, Pu P, Wang T, Zhang J, Kang C and Zhang Q: MicroRNA-200a suppresses the Wnt/β-catenin signaling pathway by interacting with β-catenin. Int J Oncol. 40:1162–1170. 2012.PubMed/NCBI | |
Tian Y, Pan Q, Shang Y, Zhu R, Ye J, Liu Y, Zhong X, Li S, He Y, Chen L, et al: MicroRNA-200 (miR-200) cluster regulation by achaete scute-like 2 (Ascl2): Impact on the epithelial-mesenchymal transition in colon cancer cells. J Biol Chem. 289:36101–36115. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Ruan B, You N, Huang Q, Liu W, Dang Z, Xu W, Zhou T, Ji R, Cao Y, et al: Downregulation of miR-200a induces EMT phenotypes and CSC-like signatures through targeting the beta-catenin pathway in hepatic oval cells. PLoS One. 8:e794092013. View Article : Google Scholar : PubMed/NCBI | |
Park SM, Gaur AB, Lengyel E and Peter ME: The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 22:894–907. 2008. View Article : Google Scholar : PubMed/NCBI | |
Suliman MA, Zhang Z, Na H, Ribeiro AL, Zhang Y, Niang B, Hamid AS, Zhang H, Xu L and Zuo Y: Niclosamide inhibits colon cancer progression through downregulation of the Notch pathway and upregulation of the tumor suppressor miR-200 family. Int J Mol Med. 38:776–784. 2016. View Article : Google Scholar : PubMed/NCBI | |
Feng B, Wang R, Song HZ and Chen LB: MicroRNA-200b reverses chemoresistance of docetaxel-resistant human lung adenocarcinoma cells by targeting E2F3. Cancer. 118:3365–3376. 2012. View Article : Google Scholar : PubMed/NCBI | |
Qu J, Li M, An J, Zhao B, Zhong W, Gu Q, Cao L, Yang H and Hu C: MicroRNA-33b inhibits lung adenocarcinoma cell growth, invasion, and epithelial-mesenchymal transition by suppressing Wnt/β-catenin/ZEB1 signaling. Int J Oncol. 47:2141–2152. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Xu X, Ge G, Zang X, Shao M, Zou S, Zhang Y, Mao Z, Zhang J, Mao F, et al: miR498 inhibits the growth and metastasis of liver cancer by targeting ZEB2. Oncol Rep. 41:1638–1648. 2019.PubMed/NCBI | |
Yue H, Tang B, Zhao Y, Niu Y, Yin P, Yang W, Zhang Z and Yu P: MIR-519d suppresses the gastric cancer epithelial-mesenchymal transition via Twist1 and inhibits Wnt/β-catenin signaling pathway. Am J Transl Res. 9:3654–3664. 2017.PubMed/NCBI | |
Jin Y, Wang J, Han J, Luo D and Sun Z: MiR-122 inhibits epithelial-mesenchymal transition in hepatocellular carcinoma by targeting Snail1 and Snail2 and suppressing WNT/β-cadherin signaling pathway. Exp Cell Res. 360:210–217. 2017. View Article : Google Scholar : PubMed/NCBI | |
Song XF, Wang QH and Huo R: Effects of microRNA-708 on epithelial-mesenchymal transition, cell proliferation and apoptosis in melanoma cells by targeting lef1 through the wnt signaling pathway. Pathol Oncol Res. 25:377–389. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liang J, Li Y, Daniels G, Sfanos K, De Marzo A, Wei J, Li X, Chen W, Wang J, Zhong X, et al: LEF1 Targeting EMT in Prostate Cancer Invasion Is Regulated by miR-34a. Mol Cancer Res. 13:681–688. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Luo Q, Yuan Y, Huang X, Cai W, Li C, Wei T, Zhang L, Yang M, Liu Q, et al: Pygo2 associates with MLL2 histone methyltransferase and GCN5 histone acetyltransferase complexes to augment Wnt target gene expression and breast cancer stem-like cell expansion. Mol Cell Biol. 30:5621–5635. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chi Y, Wang F, Zhang T, Xu H, Zhang Y, Shan Z, Wu S, Fan Q and Sun Y: miR-516a-3p inhibits breast cancer cell growth and EMT by blocking the Pygo2/Wnt signalling pathway. J Cell Mol Med. 23:6295–6307. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zheng HE, Wang G, Song J, Liu Y, Li YM and Du WP: MicroRNA-495 inhibits the progression of non-small-cell lung cancer by targeting TCF4 and inactivating Wnt/beta-catenin pathway. Eur Rev Med Pharmacol Sci. 22:7750–7759. 2018.PubMed/NCBI | |
Xu Z, Yu Z, Tan Q, Wei C, Tang Q, Wang L and Hong Y: MiR-876-5p regulates gastric cancer cell proliferation, apoptosis and migration through targeting WNT5A and MITF. Biosci Rep. 39:BSR201900662019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zhang X, Wang X, Gan L, Yu G, Chen Y, Liu K, Li P, Pan J, Wang J and Qin S: Inhibition of LDH-A by lentivirus-mediated small interfering RNA suppresses intestinal-type gastric cancer tumorigenicity through the downregulation of Oct4. Cancer Lett. 321:45–54. 2012. View Article : Google Scholar : PubMed/NCBI | |
Iida H, Suzuki M, Goitsuka R and Ueno H: Hypoxia induces CD133 expression in human lung cancer cells by up-regulation of OCT3/4 and SOX2. Int J Oncol. 40:71–79. 2012.PubMed/NCBI | |
Ling DJ, Chen ZS, Zhang YD, Liao QD, Feng JX, Zhang XY and Shi TS: MicroRNA-145 inhibits lung cancer cell metastasis. Mol Med Rep. 11:3108–3114. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Yin J, Wang H, Jiang G, Deng M, Zhang G, Bu X, Cai S, Du J and He Z: FOXO3a modulates WNT/beta-catenin signaling and suppresses epithelial-to-mesenchymal transition in prostate cancer cells. Cell Signal. 27:510–518. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Miao S, Han X, Li C, Zhang M, Cui K, Xiong T, Chen Z, Wang C and Xu H: MicroRNA-3619-5p suppresses bladder carcinoma progression by directly targeting β-catenin and CDK2 and activating p21. Cell Death Dis. 9:9602018. View Article : Google Scholar : PubMed/NCBI | |
Liang C, Wang Z, Li YY, Yu BH, Zhang F and Li HY: miR-33a suppresses the nuclear translocation of beta-catenin to enhance gemcitabine sensitivity in human pancreatic cancer cells. Tumour Biol. 36:9395–9403. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang N, Wang Q, Shen D, Sun X, Cao X and Wu D: Downregulation of microRNA-122 promotes proliferation, migration, and invasion of human hepatocellular carcinoma cells by activating epithelial-mesenchymal transition. Onco Targets Ther. 9:2035–2047. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yan H, Dong X, Zhong X, Ye J, Zhou Y, Yang X, Shen J and Zhang J: Inhibitions of epithelial to mesenchymal transition and cancer stem cells-like properties are involved in miR-148a-mediated anti-metastasis of hepatocellular carcinoma. Mol Carcinog. 53:960–969. 2014. View Article : Google Scholar : PubMed/NCBI | |
Peng L, Liu Z, Xiao J, Tu Y, Wan Z, Xiong H, Li Y and Xiao W: MicroRNA-148a suppresses epithelial-mesenchymal transition and invasion of pancreatic cancer cells by targeting Wnt10b and inhibiting the Wnt/beta-catenin signaling pathway. Oncol Rep. 38:301–308. 2017. View Article : Google Scholar : PubMed/NCBI | |
Huang X, Zhu H, Gao Z, Li J, Zhuang J, Dong Y, Shen B, Li M, Zhou H, Guo H, Huang R and Yan J: Wnt7a activates canonical Wnt signaling, promotes bladder cancer cell invasion, and is suppressed by miR-370-3p. J Biol Chem. 293:6693–6706. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Sun Y, Wu Y, Tang D, Ding X, Xu W, Su B and Gao W: Downregulation of miR-3127-5p promotes epithelial-mesenchymal transition via FZD4 regulation of Wnt/β-catenin signaling in non-small-cell lung cancer. Mol Carcinog. 57:842–853. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu Q, Guan Y, Li Z and Wang Y, Liu Y, Cui R and Wang Y: miR-504 suppresses mesenchymal phenotype of glioblastoma by directly targeting the FZD7-mediated Wnt-β-catenin pathway. J Exp Clin Cancer Res. 38:3582019. View Article : Google Scholar : PubMed/NCBI | |
Jin R, Liu W, Menezes S, Yue F, Zheng M, Kovacevic Z and Richardson DR: The metastasis suppressor NDRG1 modulates the phosphorylation and nuclear translocation of β-catenin through mechanisms involving FRAT1 and PAK4. J Cell Sci. 127:3116–3130. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zheng K, Zhou X, Yu J, Li Q, Wang H, Li M, Shao Z, Zhang F, Luo Y, Shen Z, et al: Epigenetic silencing of miR-490-3p promotes development of an aggressive colorectal cancer phenotype through activation of the Wnt/β-catenin signaling pathway. Cancer Lett. 376:178–187. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cui Y, Yang Y, Ren L, Yang J, Wang B, Xing T, Chen H and Chen M: miR-15a-3p Suppresses Prostate Cancer Cell Proliferation and Invasion by Targeting SLC39A7 Via Downregulating Wnt/β-Catenin Signaling Pathway. Cancer Biother Radiopharm. 34:472–479. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nimmanon T, Ziliotto S, Morris S, Flanagan L and Taylor KM: Phosphorylation of zinc channel ZIP7 drives MAPK, PI3K and mTOR growth and proliferation signalling. Metallomics. 9:471–481. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, Lu Y, Nie Y and Fan D: MicroRNAs as critical regulators involved in regulating epithelial- mesenchymal transition. Curr Cancer Drug Targets. 13:935–944. 2013. View Article : Google Scholar : PubMed/NCBI | |
Huang H, Wang C, Liu F, Li HZ, Peng G, Gao X, Dong KQ, Wang HR, Kong DP, Qu M, et al: Reciprocal network between cancer stem-like cells and macrophages facilitates the progression and androgen deprivation therapy resistance of prostate cancer. Clin Cancer Res. 24:4612–4626. 2018. View Article : Google Scholar : PubMed/NCBI | |
Arai K, Eguchi T, Rahman MM, Sakamoto R, Masuda N, Nakatsura T, Calderwood SK, Kozaki K and Itoh M: A Novel high-throughput 3D screening system for EMT inhibitors: A pilot screening discovered the EMT inhibitory activity of CDK2 Inhibitor SU9516. PLoS One. 11:e01623942016. View Article : Google Scholar : PubMed/NCBI | |
Wang X and Chen Z: Knockdown of CUL4B Suppresses the Proliferation and Invasion in Non-Small Cell Lung Cancer Cells. Oncol Res. 24:271–277. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang JQ, Chen S, Gu JN, Zhu Y, Zhan Q, Cheng DF, Chen H, Deng XX, Shen BY and Peng CH: MicroRNA-300 promotes apoptosis and inhibits proliferation, migration, invasion and epithelial-mesenchymal transition via the Wnt/β-catenin signaling pathway by targeting CUL4B in pancreatic cancer cells. J Cell Biochem. 119:1027–1040. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yu R, Cai L, Chi Y, Ding X and Wu X: miR377 targets CUL4A and regulates metastatic capability in ovarian cancer. Int J Mol Med. 41:3147–3156. 2018.PubMed/NCBI | |
Paraiso KH, Das Thakur M, Fang B, Koomen JM, Fedorenko IV, John JK, Tsao H, Flaherty KT, Sondak VK, Messina JL, et al: Ligand-independent EPHA2 signaling drives the adoption of a targeted therapy-mediated metastatic melanoma phenotype. Cancer Discov. 5:264–273. 2015. View Article : Google Scholar : PubMed/NCBI | |
Huang J, He Y, McLeod HL, Xie Y, Xiao D, Hu H, Chen P, Shen L, Zeng S, Yin X, et al: miR-302b inhibits tumorigenesis by targeting EphA2 via Wnt/β-catenin/EMT signaling cascade in gastric cancer. BMC Cancer. 17:8862017. View Article : Google Scholar : PubMed/NCBI | |
Song B, Lin HX, Dong LL, Ma JJ and Jiang ZG: MicroRNA-338 inhibits proliferation, migration, and invasion of gastric cancer cells by the Wnt/β-catenin signaling pathway. Eur Rev Med Pharmacol Sci. 22:1290–1296. 2018.PubMed/NCBI | |
Zhou F, Gou S, Xiong J, Wu H, Wang C and Liu T: Oncogenicity of LHX2 in pancreatic ductal adenocarcinoma. Mol Biol Rep. 41:8163–8167. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liang TS, Zheng YJ, Wang J, Zhao JY, Yang DK and Liu ZS: MicroRNA-506 inhibits tumor growth and metastasis in nasopharyngeal carcinoma through the inactivation of the Wnt/β-catenin signaling pathway by down-regulating LHX2. J Exp Clin Cancer Res. 38:972019. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Rajasekaran M, Xia H, Zhang X, Kong SN, Sekar K, Seshachalam VP, Deivasigamani A, Goh BK, Ooi LL, et al: The microtubule-associated protein PRC1 promotes early recurrence of hepatocellular carcinoma in association with the Wnt/β-catenin signalling pathway. Gut. 65:1522–1534. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tang H, Zhao H, Yu ZY, Feng X, Fu BS, Qiu CH and Zhang JW: MicroRNA-194 inhibits cell invasion and migration in hepatocellular carcinoma through PRC1-mediated inhibition of Wnt/β-catenin signaling pathway. Dig Liver Dis. 51:1314–1322. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen CH, Chuang SM, Yang MF, Liao JW, Yu SL and Chen JJ: A novel function of YWHAZ/beta-catenin axis in promoting epithelial-mesenchymal transition and lung cancer metastasis. Mol Cancer Res. 10:1319–1331. 2012. View Article : Google Scholar : PubMed/NCBI | |
Guo F, Gao Y, Sui G, Jiao D, Sun L, Fu Q and Jin C: miR-375-3p/YWHAZ/β-catenin axis regulates migration, invasion, EMT in gastric cancer cells. Clin Exp Pharmacol Physiol. 46:144–152. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shi L, Huo JW, Chen SS, Xue JX, Gao WY, Li XY, Song YH, Xu HT, Zhu XW and Chen K: MicroRNA-22 targets FMNL2 to inhibit melanoma progression via the regulation of the Wnt/β-catenin signaling pathway and epithelial-mesenchymal transition. Eur Rev Med Pharmacol Sci. 23:5332–5342. 2019.PubMed/NCBI | |
Wang JJ, Li ZF, Li XJ, Han Z, Zhang L and Liu ZJ: Effects of microRNA-136 on melanoma cell proliferation, apoptosis, and epithelial-mesenchymal transition by targetting PMEL through the Wnt signaling pathway. Biosci Rep. 37:BSR201707432017. View Article : Google Scholar : PubMed/NCBI | |
Zhang JX, Mai SJ, Huang XX, Wang FW, Liao YJ, Lin MC, Kung HF, Zeng YX and Xie D: MiR-29c mediates epithelial-to-mesenchymal transition in human colorectal carcinoma metastasis via PTP4A and GNA13 regulation of β-catenin signaling. Ann Oncol. 25:2196–2204. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Yang Y and Zhang X: MiR-770 inhibits tumorigenesis and EMT by targeting JMJD6 and regulating WNT/β-catenin pathway in non-small cell lung cancer. Life Sci. 188:163–171. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yanaka Y, Muramatsu T, Uetake H, Kozaki K and Inazawa J: miR-544a induces epithelial-mesenchymal transition through the activation of WNT signaling pathway in gastric cancer. Carcinogenesis. 36:1363–1371. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hu Z, Wang P, Lin J, Zheng X, Yang F, Zhang G, Chen D, Xie J, Gao Z, Peng L and Xie C: MicroRNA-197 Promotes Metastasis of Hepatocellular Carcinoma by Activating Wnt/β-Catenin Signaling. Cell Physiol Biochem. 51:470–486. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gebert LF, Rebhan MA, Crivelli SE, Denzler R, Stoffel M and Hall J: Miravirsen (SPC3649) can inhibit the biogenesis of miR-122. Nucleic Acids Res. 42:609–621. 2014. View Article : Google Scholar : PubMed/NCBI | |
Petrova YI, Schecterson L and Gumbiner BM: Roles for E-cadherin cell surface regulation in cancer. Mol Biol Cell. 27:3233–3244. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xu XZ, Li XA, Luo Y, Liu JF, Wu HW and Huang G: MiR-9 promotes synovial sarcoma cell migration and invasion by directly targeting CDH1. Int J Biochem Cell Biol. 112:61–71. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ma F, Li W, Liu C, Li W, Yu H, Lei B, Ren Y, Li Z, Pang D and Qian C: MiR-23a promotes TGF-β1-induced EMT and tumor metastasis in breast cancer cells by directly targeting CDH1 and activating Wnt/β-catenin signaling. Oncotarget. 8:69538–69550. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, He L, Li T, Lu Y, Miao Y, Liang S, Guo H, Bai M, Xie H, Luo G, et al: SRF expedites metastasis and modulates the epithelial to mesenchymal transition by regulating miR-199a-5p expression in human gastric cancer. Cell Death Differ. 21:1900–1913. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Liu S, Shi R and Zhao G: miR-27 promotes human gastric cancer cell metastasis by inducing epithelial-to-mesenchymal transition. Cancer Genet. 204:486–491. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mao XW, Xiao JQ, Li ZY, Zheng YC and Zhang N: Effects of microRNA-135a on the epithelial-mesenchymal transition, migration and invasion of bladder cancer cells by targeting GSK3β through the Wnt/β-catenin signaling pathway. Exp Mol Med. 50:e4292018. View Article : Google Scholar : PubMed/NCBI | |
Yang F, Xiong H, Duan L, Li Q, Li X and Zhou Y: MiR-1246 Promotes Metastasis and Invasion of A549 cells by Targeting GSK-3betaMediated Wnt/β-Catenin Pathway. Cancer Res Treat. 51:1420–1429. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hoeflich KP, Luo J, Rubie EA, Tsao MS, Jin O and Woodgett JR: Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature. 406:86–90. 2000. View Article : Google Scholar : PubMed/NCBI | |
Liu WY, Yang Z, Sun Q, Yang X, Hu Y, Xie H, Gao HJ, Guo LM, Yi JY, Liu M and Tang H: miR-377-3p drives malignancy characteristics via upregulating GSK-3β expression and activating NF-κB pathway in hCRC cells. J Cell Biochem. 119:2124–2134. 2018. View Article : Google Scholar : PubMed/NCBI | |
Nie J, Jiang HC, Zhou YC, Jiang B, He WJ, Wang YF and Dong J: MiR-125b regulates the proliferation and metastasis of triple negative breast cancer cells via the Wnt/β-catenin pathway and EMT. Biosci Biotechnol Biochem. 83:1062–1071. 2019. View Article : Google Scholar : PubMed/NCBI | |
Barrantes Idel B, Montero-Pedrazuela A, Guadano-Ferraz A, Obregon MJ, Martinez de Mena R, Gailus-Durner V, Fuchs H, Franz TJ, Kalaydjiev S, Klempt M, et al: Generation and characterization of dickkopf3 mutant mice. Mol Cell Biol. 26:2317–2326. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hoang BH, Kubo T, Healey JH, Yang R, Nathan SS, Kolb EA, Mazza B, Meyers PA and Gorlick R: Dickkopf 3 inhibits invasion and motility of Saos-2 osteosarcoma cells by modulating the Wnt-beta-catenin pathway. Cancer Res. 64:2734–2739. 2004. View Article : Google Scholar : PubMed/NCBI | |
Xi M, Cheng L, Hua W, Zhou YL, Gao QL, Yang JX and Qi SY: MicroRNA-95-3p promoted the development of prostatic cancer via regulating DKK3 and activating Wnt/β-catenin pathway. Eur Rev Med Pharmacol Sci. 23:1002–1011. 2019.PubMed/NCBI | |
Weng J, Zhang H, Wang C, Liang J, Chen G, Li W, Tang H and Hou J: miR-373-3p Targets DKK1 to promote EMT-induced metastasis via the Wnt/β-catenin pathway in tongue squamous cell carcinoma. Biomed Res Int. 2017:60109262017. View Article : Google Scholar : PubMed/NCBI | |
Elzi DJ, Song M, Hakala K, Weintraub ST and Shiio Y: Wnt antagonist SFRP1 functions as a secreted mediator of senescence. Mol Cell Biol. 32:4388–4399. 2012. View Article : Google Scholar : PubMed/NCBI | |
Qiao B, He BX, Cai JH, Tao Q and King-Yin Lam A: MicroRNA-27a-3p modulates the Wnt/β-catenin signaling pathway to promote epithelial-mesenchymal transition in oral squamous carcinoma stem cells by targeting SFRP1. Sci Rep. 7:446882017. View Article : Google Scholar : PubMed/NCBI | |
Zebisch M, Xu Y, Krastev C, MacDonald BT, Chen M, Gilbert RJ, He X and Jones EY: Structural and molecular basis of ZNRF3/RNF43 transmembrane ubiquitin ligase inhibition by the Wnt agonist R-spondin. Nat Commun. 4:27872013. View Article : Google Scholar : PubMed/NCBI | |
Qiao G, Dai C, He Y, Shi J and Xu C: Effects of miR106b3p on cell proliferation and epithelialmesenchymal transition, and targeting of ZNRF3 in esophageal squamous cell carcinoma. Int J Mol Med. 43:1817–1829. 2019.PubMed/NCBI | |
Deng X, Wu B, Xiao K, Kang J, Xie J, Zhang X and Fan Y: MiR-146b-5p promotes metastasis and induces epithelial-mesenchymal transition in thyroid cancer by targeting ZNRF3. Cell Physiol Biochem. 35:71–82. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Chen X, Kato Y, Evans PM, Yuan S, Yang J, Rychahou PG, Yang VW, He X, Evers BM and Liu C: Novel cross talk of Kruppel-like factor 4 and beta-catenin regulates normal intestinal homeostasis and tumor repression. Mol Cell Biol. 26:2055–2064. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chen E, Li Q, Wang H, Yang F, Min L and Yang J: MiR-92a promotes tumorigenesis of colorectal cancer, a transcriptomic and functional based study. Biomed Pharmacother. 106:1370–1377. 2018. View Article : Google Scholar : PubMed/NCBI | |
Parenti S, Montorsi L, Fantini S, Mammoli F, Gemelli C, Atene CG, Losi L, Frassineti C, Calabretta B, Tagliafico E, et al: KLF4 Mediates the Effect of 5-ASA on the β-Catenin Pathway in Colon Cancer Cells. Cancer Prev Res (Phila). 11:503–510. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fan D, Lin X, Zhang F, Zhong W, Hu J, Chen Y, Cai Z, Zou Y, He X, Chen X, et al: MicroRNA 26b promotes colorectal cancer metastasis by downregulating phosphatase and tensin homolog and wingless-type MMTV integration site family member 5A. Cancer Sci. 109:354–362. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tan M, Wu J and Cai Y: Suppression of Wnt signaling by the miR-29 family is mediated by demethylation of WIF-1 in non-small-cell lung cancer. Biochem Biophys Res Commun. 438:673–679. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tokarz P and Blasiak J: The role of microRNA in metastatic colorectal cancer and its significance in cancer prognosis and treatment. Acta Biochim Pol. 59:467–474. 2012. View Article : Google Scholar : PubMed/NCBI | |
Garzon R, Marcucci G and Croce CM: Targeting microRNAs in cancer: Rationale, strategies and challenges. Nat Rev Drug Discov. 9:775–789. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bader AG: miR-34-a microRNA replacement therapy is headed to the clinic. Front Genet. 3:1202012. View Article : Google Scholar : PubMed/NCBI | |
Slaby O, Laga R and Sedlacek O: Therapeutic targeting of non-coding RNAs in cancer. Biochem J. 474:4219–4251. 2017. View Article : Google Scholar : PubMed/NCBI | |
Trang P, Wiggins JF, Daige CL, Cho C, Omotola M, Brown D, Weidhaas JB, Bader AG and Slack FJ: Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol Ther. 19:1116–1122. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, Patrawala L, Yan H, Jeter C, Honorio S, et al: The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 17:211–215. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Liao Y and Tang L: MicroRNA-34 family: A potential tumor suppressor and therapeutic candidate in cancer. J Exp Clin Cancer Res. 38:532019. View Article : Google Scholar : PubMed/NCBI | |
Gallant-Behm CL, Piper J, Dickinson BA, Dalby CM, Pestano LA and Jackson AL: A synthetic microRNA-92a inhibitor (MRG-110) accelerates angiogenesis and wound healing in diabetic and nondiabetic wounds. Wound Repair Regen. 26:311–323. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rupaimoole R and Slack FJ: MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 16:203–222. 2017. View Article : Google Scholar : PubMed/NCBI | |
Qi Y and Li J: Triptolide inhibits the growth and migration of colon carcinoma cells by down-regulation of miR-191. Exp Mol Pathol. 107:23–31. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang G, Huang YX, Zhang R, Hou LD, Liu H, Chen XY, Zhu JS and Zhang J: Toosendanin suppresses oncogenic phenotypes of human gastric carcinoma SGC7901 cells partly via miR200amediated downregulation of β-catenin pathway. Int J Oncol. 51:1563–1573. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ahmad A, Sarkar SH, Bitar B, Ali S, Aboukameel A, Sethi S, Li Y, Bao B, Kong D, Banerjee S, et al: Garcinol regulates EMT and Wnt signaling pathways in vitro and in vivo, leading to anticancer activity against breast cancer cells. Mol Cancer Ther. 11:2193–2201. 2012. View Article : Google Scholar : PubMed/NCBI | |
Du Q, Zhang X, Zhang X, Wei M, Xu H and Wang S: Propofol inhibits proliferation and epithelial-mesenchymal transition of MCF-7 cells by suppressing miR-21 expression. Artif Cells Nanomed Biotechnol. 47:1265–1271. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhao M, Xu P, Liu Z, Zhen Y, Chen Y, Liu Y, Fu Q, Deng X, Liang Z, Li Y, et al: Dual roles of miR-374a by modulated c-Jun respectively targets CCND1-inducing PI3K/AKT signal and PTEN-suppressing Wnt/β-catenin signaling in non-small-cell lung cancer. Cell Death Dis. 9:782018. View Article : Google Scholar : PubMed/NCBI | |
Sathyanarayanan A, Chandrasekaran KS and Karunagaran D: microRNA-145 downregulates SIP1-expression but differentially regulates proliferation, migration, invasion and Wnt signaling in SW480 and SW620 cells. J Cell Biochem. 119:2022–2035. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li D, Tian B and Jin X: miR-630 Inhibits Epithelial-to-Mesenchymal Transition (EMT) by Regulating the Wnt/β-Catenin Pathway in Gastric Cancer Cells. Oncol Res. 27:9–17. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chien AJ, Moore EC, Lonsdorf AS, Kulikauskas RM, Rothberg BG, Berger AJ, Major MB, Hwang ST, Rimm DL and Moon RT: Activated Wnt/beta-catenin signaling in melanoma is associated with decreased proliferation in patient tumors and a murine melanoma model. Proc Natl Acad Sci USA. 106:1193–1198. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ha TY: MicroRNAs in human diseases: From cancer to cardiovascular disease. Immune Netw. 11:135–154. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang HY, Liu YN, Wu SG, Hsu CL, Chang TH, Tsai MF, Lin YT and Shih JY: MiR-200c-3p suppression is associated with development of acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in EGFR mutant non-small cell lung cancer via a mediating epithelial-to-mesenchymal transition (EMT) process. Cancer Biomark. 28:351–363. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cochrane DR, Spoelstra NS, Howe EN, Nordeen SK and Richer JK: MicroRNA-200c mitigates invasiveness and restores sensitivity to microtubule-targeting chemotherapeutic agents. Mol Cancer Ther. 8:1055–1066. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gao S, Yu Y, Liu L, Meng J and Li G: Circular RNA hsa_circ_0007059 restrains proliferation and epithelial-mesenchymal transition in lung cancer cells via inhibiting microRNA-378. Life Sci. 233:1166922019. View Article : Google Scholar : PubMed/NCBI | |
Yang XZ, Cheng TT, He QJ, Lei ZY, Chi J, Tang Z, Liao QX, Zhang H, Zeng LS and Cui SZ: LINC01133 as ceRNA inhibits gastric cancer progression by sponging miR-106a-3p to regulate APC expression and the Wnt/beta-catenin pathway. Mol Cancer. 17:1262018. View Article : Google Scholar : PubMed/NCBI | |
Ding D, Li C, Zhao T, Li D, Yang L and Zhang B: LncRNA H19/miR-29b-3p/PGRN axis promoted epithelial-mesenchymal transition of colorectal cancer cells by acting on wnt signaling. Mol Cells. 41:423–435. 2018.PubMed/NCBI | |
Zhang Y, Dun Y, Zhou S and Huang XH: LncRNA HOXD-AS1 promotes epithelial ovarian cancer cells proliferation and invasion by targeting miR-133a-3p and activating Wnt/β-catenin signaling pathway. Biomed Pharmacother. 96:1216–1221. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Guo D, Zhao Y, Ren M, Lu G, Wang Y, Zhang J, Mi C, He S and Lu X: Long non-coding RNA SNHG5 promotes human hepatocellular carcinoma progression by regulating miR-26a-5p/GSK3β signal pathway. Cell Death Dis. 9:8882018. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Gao J, Yu Y, Zhao Z and Pan Y: Long non-coding RNA UCA1 targets miR-185-5p and regulates cell mobility by affecting epithelial-mesenchymal transition in melanoma via Wnt/β-catenin signaling pathway. Gene. 676:298–305. 2018. View Article : Google Scholar : PubMed/NCBI | |
Taube JH, Malouf GG, Lu E, Sphyris N, Vijay V, Ramachandran PP, Ueno KR, Gaur S, Nicoloso MS, Rossi S, et al: Epigenetic silencing of microRNA-203 is required for EMT and cancer stem cell properties. Sci Rep. 3:26872013. View Article : Google Scholar : PubMed/NCBI | |
Strillacci A, Valerii MC, Sansone P, Caggiano C, Sgromo A, Vittori L, Fiorentino M, Poggioli G, Rizzello F, Campieri M and Spisni E: Loss of miR-101 expression promotes Wnt/β-catenin signalling pathway activation and malignancy in colon cancer cells. J Pathol. 229:379–389. 2013. View Article : Google Scholar : PubMed/NCBI | |
Huang Z, Li Q, Luo K, Zhang Q, Geng J, Zhou X, Xu Y, Qian M, Zhang JA, Ji L and Wu J: miR-340-FHL2 axis inhibits cell growth and metastasis in ovarian cancer. Cell Death Dis. 10:3722019. View Article : Google Scholar : PubMed/NCBI | |
Liu P, Chen B, Gu Y and Liu Q: PNMA1, regulated by miR-33a-5p, promotes proliferation and EMT in hepatocellular carcinoma by activating the Wnt/β-catenin pathway. Biomed Pharmacother. 108:492–499. 2018. View Article : Google Scholar : PubMed/NCBI | |
Han S, Cao C, Tang T, Lu C, Xu J, Wang S, Xue L, Zhang X and Li M: ROBO3 promotes growth and metastasis of pancreatic carcinoma. Cancer Lett. 366:61–70. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Lv Z, He G, Wang J, Zhang X, Lu G, Ren X, Wang F, Zhu X, Ding Y, et al: The SOX17/miR-371-5p/SOX2 axis inhibits EMT, stem cell properties and metastasis in colorectal cancer. Oncotarget. 6:9099–9112. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xu W, Ji J, Xu Y, Liu Y, Shi L, Liu Y, Lu X, Zhao Y, Luo F, Wang B, et al: MicroRNA-191, by promoting the EMT and increasing CSC-like properties, is involved in neoplastic and metastatic properties of transformed human bronchial epithelial cells. Mol Carcinog. 54 (Suppl 1):E148–161. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Sun D, Gao J, Shi Z, Chi P, Meng Y, Zou C and Wang Y: MicroRNA-373 promotes the development of endometrial cancer by targeting LATS2 and activating the Wnt/β-Catenin pathway. J Cell Biochem. 2018. | |
Yang Z, Wang XL, Bai R, Liu WY, Li X, Liu M and Tang H: miR-23a promotes IKKα expression but suppresses ST7L expression to contribute to the malignancy of epithelial ovarian cancer cells. Br J Cancer. 115:731–740. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Wang X, Su Z, Fei H, Liu X and Pan Q: MiR-25 promotes hepatocellular carcinoma cell growth, migration and invasion by inhibiting RhoGDI1. Oncotarget. 6:36231–36244. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hao J, Jin X, Shi Y and Zhang H: miR-93-5p enhance lacrimal gland adenoid cystic carcinoma cell tumorigenesis by targeting BRMS1L. Cancer Cell Int. 18:722018. View Article : Google Scholar : PubMed/NCBI | |
Tang J, Li L, Huang W, Sui C, Yang Y, Lin X, Hou G, Chen X, Fu J, Yuan S, et al: MiR-429 increases the metastatic capability of HCC via regulating classic Wnt pathway rather than epithelial-mesenchymal transition. Cancer Lett. 364:33–43. 2015. View Article : Google Scholar : PubMed/NCBI | |
Song Q, Xu Y, Yang C, Chen Z, Jia C, Chen J, Zhang Y, Lai P, Fan X, Zhou X, et al: miR-483-5p promotes invasion and metastasis of lung adenocarcinoma by targeting RhoGDI1 and ALCAM. Cancer Res. 74:3031–3042. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Yan B, Zhang P, Liu S, Li Q, Yang J, Yang F and Chen E: MiR-496 promotes migration and epithelial-mesenchymal transition by targeting RASSF6 in colorectal cancer. J Cell Physiol. 235:1469–1479. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Tian YC, Mao G, Zhang YG and Han L: MiR-675 is frequently overexpressed in gastric cancer and enhances cell proliferation and invasion via targeting a potent anti-tumor gene PITX1. Cell Signal. 62:1093522019. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Peng Y, Huang Y, Yang M, Yan R, Zhao Y, Cheng Y, Liu X, Deng S, Feng X, et al: SMG-1 inhibition by miR-192/-215 causes epithelial-mesenchymal transition in gastric carcinogenesis via activation of Wnt signaling. Cancer Med. 7:146–156. 2018. View Article : Google Scholar : PubMed/NCBI | |
Pei YF, Yin XM and Liu XQ: TOP2A induces malignant character of pancreatic cancer through activating β-catenin signaling pathway. Biochim Biophys Acta Mol Basis Dis. 1864:197–207. 2018. View Article : Google Scholar : PubMed/NCBI | |
Guo YH, Wang LQ, Li B, Xu H, Yang JH, Zheng LS, Yu P, Zhou AD, Zhang Y, Xie SJ, et al: Wnt/β-catenin pathway transactivates microRNA-150 that promotes EMT of colorectal cancer cells by suppressing CREB signaling. Oncotarget. 7:42513–42526. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liang H, Wang C, Gao K, Li J and Jia R: MuicroRNA-421 promotes the progression of nonsmall cell lung cancer by targeting HOPX and regulating the Wnt/β-catenin signaling pathway. Mol Med Rep. 20:151–161. 2019.PubMed/NCBI | |
Listing H, Mardin WA, Wohlfromm S, Mees ST and Haier J: MiR-23a/-24-induced gene silencing results in mesothelial cell integration of pancreatic cancer. Br J Cancer. 112:131–139. 2015. View Article : Google Scholar : PubMed/NCBI |