
Roles of protein tyrosine phosphatases in hepatocellular carcinoma progression (Review)
- Authors:
- Yi-Li Chen
- Ching-Chuan Hsieh
- Pei-Ming Chu
- Jing-Yi Chen
- Yu-Chun Huang
- Cheng-Yi Chen
-
Affiliations: Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C., Division of General Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan, R.O.C., Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C., Department of Medical Laboratory Science, College of Medicine, I‑Shou University, Kaohsiung 82445, Taiwan, R.O.C., Aging and Diseases Prevention Research Center, Fooyin University, Kaohsiung 83102, Taiwan, R.O.C. - Published online on: January 19, 2023 https://doi.org/10.3892/or.2023.8485
- Article Number: 48
-
Copyright : © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
This article is mentioned in:
Abstract
![]() |
![]() |
Ringelhan M, Pfister D, O'Connor T, Pikarsky E and Heikenwalder M: The immunology of hepatocellular carcinoma. Nat Immunol. 19:222–232. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang JD and Roberts LR: Hepatocellular carcinoma: A global view. Nat Rev Gastroenterol Hepatol. 7:448–458. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bosch FX, Ribes J, Diaz M and Cleries R: Primary liver cancer: Worldwide incidence and trends. Gastroenterology. 127 (5 Suppl 1):S5–S16. 2004. View Article : Google Scholar : PubMed/NCBI | |
Morgan TR, Mandayam S and Jamal MM: Alcohol and hepatocellular carcinoma. Gastroenterology. 127 (5 Suppl 1):S87–S96. 2004. View Article : Google Scholar : PubMed/NCBI | |
Caldwell SH, Crespo DM, Kang HS and Al-Osaimi AM: Obesity and hepatocellular carcinoma. Gastroenterology. 127 (5 Suppl 1):S97–S103. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ming L, Thorgeirsson SS, Gail MH, Lu P, Harris CC, Wang N, Shao Y, Wu Z, Liu G, Wang X and Sun Z: Dominant role of hepatitis B virus and cofactor role of aflatoxin in hepatocarcinogenesis in Qidong, China. Hepatology. 36:1214–1220. 2002. View Article : Google Scholar : PubMed/NCBI | |
Yu MC and Yuan JM: Environmental factors and risk for hepatocellular carcinoma. Gastroenterology. 127 (5 Suppl 1):S72–S78. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ohata K, Hamasaki K, Toriyama K, Matsumoto K, Saeki A, Yanagi K, Abiru S, Nakagawa Y, Shigeno M, Miyazoe S, et al: Hepatic steatosis is a risk factor for hepatocellular carcinoma in patients with chronic hepatitis C virus infection. Cancer. 97:3036–3043. 2003. View Article : Google Scholar : PubMed/NCBI | |
Spangenberg HC, Thimme R and Blum HE: Targeted therapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 6:423–432. 2009. View Article : Google Scholar : PubMed/NCBI | |
El-Serag HB and Rudolph KL: Hepatocellular carcinoma: Epidemiology and molecular carcinogenesis. Gastroenterology. 132:2557–2576. 2007. View Article : Google Scholar : PubMed/NCBI | |
Suriawinata A and Xu R: An update on the molecular genetics of hepatocellular carcinoma. Semin Liver Dis. 24:77–88. 2004. View Article : Google Scholar : PubMed/NCBI | |
Satyanarayana A, Manns MP and Rudolph KL: Telomeres and telomerase: A dual role in hepatocarcinogenesis. Hepatology. 40:276–283. 2004. View Article : Google Scholar : PubMed/NCBI | |
Brechot C: Pathogenesis of hepatitis B virus-related hepatocellular carcinoma: Old and new paradigms. Gastroenterology. 127 (5 Suppl 1):S56–S61. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ahn JH, Kim SJ, Park WS, Cho SY, Ha JD, Kim SS, Kang SK, Jeong DG, Jung SK, Lee SH, et al: Synthesis and biological evaluation of rhodanine derivatives as PRL-3 inhibitors. Bioorg Med Chem Lett. 16:2996–2999. 2006. View Article : Google Scholar : PubMed/NCBI | |
Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, et al: Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 359:378–390. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhu YJ, Zheng B, Wang HY and Chen L: New knowledge of the mechanisms of sorafenib resistance in liver cancer. Acta Pharmacol Sin. 38:614–622. 2017. View Article : Google Scholar : PubMed/NCBI | |
Villanueva A: Hepatocellular Carcinoma. N Engl J Med. 380:1450–1462. 2019. View Article : Google Scholar : PubMed/NCBI | |
Granito A and Bolondi L: Non-transplant therapies for patients with hepatocellular carcinoma and Child-Pugh-Turcotte class B cirrhosis. Lancet Oncol. 18:e101–e112. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tovoli F, Negrini G and Bolondi L: Comparative analysis of current guidelines for the treatment of hepatocellular carcinoma. Hepat Oncol. 3:119–136. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tovoli F, Lorenzo S, Barbera MA, Garajova I, Frega G, Palloni A, Pantaleo MA, Biasco G and Brandi G: Postsorafenib systemic treatments for hepatocellular carcinoma: Questions and opportunities after the regorafenib trial. Future Oncol. 13:1893–1905. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pasquier E, Kavallaris M and Andre N: Metronomic chemotherapy: New rationale for new directions. Nat Rev Clin Oncol. 7:455–465. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kareva I, Waxman DJ and Lakka Klement G: Metronomic chemotherapy: An attractive alternative to maximum tolerated dose therapy that can activate anti-tumor immunity and minimize therapeutic resistance. Cancer Lett. 358:100–106. 2015. View Article : Google Scholar : PubMed/NCBI | |
De Lorenzo S, Tovoli F, Barbera MA, Garuti F, Palloni A, Frega G, Garajovà I, Rizzo A, Trevisani F and Brandi G: Metronomic capecitabine vs. best supportive care in Child-Pugh B hepatocellular carcinoma: A proof of concept. Sci Rep. 8:99972018. View Article : Google Scholar : PubMed/NCBI | |
Personeni N and Rimassa L: Hepatocellular carcinoma: A global disease in need of individualized treatment strategies. J Oncol Pract. 13:368–369. 2017. View Article : Google Scholar : PubMed/NCBI | |
Akateh C, Black SM, Conteh L, Miller ED, Noonan A, Elliott E, Pawlik TM, Tsung A and Cloyd JM: Neoadjuvant and adjuvant treatment strategies for hepatocellular carcinoma. World J Gastroenterol. 25:3704–3721. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rizzo A, Mollica V, Ricci AD, Maggio I, Massucci M, Rojas Limpe FL, Fabio FD and Ardizzoni A: Third- and later-line treatment in advanced or metastatic gastric cancer: A systematic review and meta-analysis. Future Oncol. 16:4409–4418. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bruix J, Takayama T, Mazzaferro V, Chau GY, Yang J, Kudo M, Cai J, Poon RT, Han KH, Tak WY, et al: Adjuvant sorafenib for hepatocellular carcinoma after resection or ablation (STORM): A phase 3, randomised, double-blind, placebo-controlled trial. Lancet Oncol. 16:1344–1354. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wilhelm SM, Dumas J, Adnane L, Lynch M, Carter CA, Schütz G, Thierauch KH and Zopf D: Regorafenib (BAY 73-4506): A new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int J Cancer. 129:245–255. 2011. View Article : Google Scholar : PubMed/NCBI | |
Abou-Elkacem L, Arns S, Brix G, Gremse F, Zopf D, Kiessling F and Lederle W: Regorafenib inhibits growth, angiogenesis, and metastasis in a highly aggressive, orthotopic colon cancer model. Mol Cancer Ther. 12:1322–1331. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rimassa L, Pressiani T, Personeni N and Santoro A: Regorafenib for the treatment of unresectable hepatocellular carcinoma. Expert Rev Anticancer Ther. 17:567–576. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cerrito L, Ponziani FR, Garcovich M, Tortora A, Annicchiarico BE, Pompili M, Siciliano M and Gasbarrini A: Regorafenib: A promising treatment for hepatocellular carcinoma. Expert Opin Pharmacother. 19:1941–1948. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Lin Y, Zhang J, Zhang Y, Li Y, Liu Z, Li Q, Luo M, Liang R and Ye J: Molecular targeted and immune checkpoint therapy for advanced hepatocellular carcinoma. J Exp Clin Cancer Res. 38:4472019. View Article : Google Scholar : PubMed/NCBI | |
Ingles Garces AH, Au L, Mason R, Thomas J and Larkin J: Building on the anti-PD1/PD-L1 backbone: Combination immunotherapy for cancer. Expert Opin Investig Drugs. 28:695–708. 2019. View Article : Google Scholar : PubMed/NCBI | |
Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK and Iyer AK: PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: Mechanism, combinations, and clinical outcome. Front Pharmacol. 8:5612017. View Article : Google Scholar : PubMed/NCBI | |
Cheng AL, Hsu C, Chan SL, Choo SP and Kudo M: Challenges of combination therapy with immune checkpoint inhibitors for hepatocellular carcinoma. J Hepatol. 72:307–319. 2020. View Article : Google Scholar : PubMed/NCBI | |
Pinter M, Jain RK and Duda DG: The current landscape of immune checkpoint blockade in hepatocellular carcinoma: A review. JAMA Oncol. 7:113–123. 2021. View Article : Google Scholar : PubMed/NCBI | |
Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M, Kim TY, Kudo M, Breder V, Merle P, Kaseb AO, et al: Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med. 382:1894–1905. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kelley RK: Atezolizumab plus Bevacizumab-A landmark in liver cancer. N Engl J Med. 382:1953–1955. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rizzo A, Ricci AD and Brandi G: Atezolizumab in advanced hepatocellular carcinoma: Good things come to those who wait. Immunotherapy. 13:637–644. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sangro B, Sarobe P, Hervas-Stubbs S and Melero I: Advances in immunotherapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 18:525–543. 2021. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Zhang Y, Ge L, Lin Y and Kwok HF: The roles of protein tyrosine phosphatases in hepatocellular carcinoma. Cancers (Basel). 10:822018. View Article : Google Scholar : PubMed/NCBI | |
Hendriks WJ, Elson A, Harroch S, Pulido R, Stoker A and den Hertog J: Protein tyrosine phosphatases in health and disease. FEBS J. 280:708–730. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pulido R and Hooft van Huijsduijnen R: Protein tyrosine phosphatases: Dual-specificity phosphatases in health and disease. FEBS J. 275:848–866. 2008. View Article : Google Scholar : PubMed/NCBI | |
Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J and Mustelin T: Protein tyrosine phosphatases in the human genome. Cell. 117:699–711. 2004. View Article : Google Scholar : PubMed/NCBI | |
Buj-Bello A, Laugel V, Messaddeq N, Zahreddine H, Laporte J, Pellissier JF and Mandel JL: The lipid phosphatase myotubularin is essential for skeletal muscle maintenance but not for myogenesis in mice. Proc Natl Acad Sci USA. 99:15060–15065. 2002. View Article : Google Scholar : PubMed/NCBI | |
Chiarugi P, Cirri P, Marra F, Raugei G, Fiaschi T, Camici G, Manao G, Romanelli RG and Ramponi G: The Src and signal transducers and activators of transcription pathways as specific targets for low molecular weight phosphotyrosine-protein phosphatase in platelet-derived growth factor signaling. J Biol Chem. 273:6776–6785. 1998. View Article : Google Scholar : PubMed/NCBI | |
Hunter T and Sefton BM: Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci USA. 77:1311–1315. 1980. View Article : Google Scholar : PubMed/NCBI | |
Cohen P: Protein kinases-the major drug targets of the twenty-first century? Nat Rev Drug Discov. 1:309–315. 2002. View Article : Google Scholar : PubMed/NCBI | |
Tanner JJ, Parsons ZD, Cummings AH, Zhou H and Gates KS: Redox regulation of protein tyrosine phosphatases: Structural and chemical aspects. Antioxid Redox Signal. 15:77–97. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang ZY: Protein tyrosine phosphatases: Structure and function, substrate specificity, and inhibitor development. Annu Rev Pharmacol Toxicol. 42:209–234. 2002. View Article : Google Scholar : PubMed/NCBI | |
He RJ, Yu ZH, Zhang RY and Zhang ZY: Protein tyrosine phosphatases as potential therapeutic targets. Acta Pharmacol Sin. 35:1227–1246. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang ZC, Gao Q, Shi JY, Guo WJ, Yang LX, Liu XY, Liu LZ, Ma LJ, Duan M, Zhao YJ, et al: Protein tyrosine phosphatase receptor S acts as a metastatic suppressor in hepatocellular carcinoma by control of epithermal growth factor receptor-induced epithelial-mesenchymal transition. Hepatology. 62:1201–1214. 2015. View Article : Google Scholar : PubMed/NCBI | |
Meeusen B and Janssens V: Tumor suppressive protein phosphatases in human cancer: Emerging targets for therapeutic intervention and tumor stratification. Int J Biochem Cell Biol. 96:98–134. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tai WT, Cheng AL, Shiau CW, Liu CY, Ko CH, Lin MW, Chen PJ and Chen KF: Dovitinib induces apoptosis and overcomes sorafenib resistance in hepatocellular carcinoma through SHP-1-mediated inhibition of STAT3. Mol Cancer Ther. 11:452–463. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang CI, Chu PM, Chen YL, Lin YH and Chen CY: Chemotherapeutic drug-regulated cytokines might influence therapeutic efficacy in HCC. Int J Mol Sci. 22:136272021. View Article : Google Scholar : PubMed/NCBI | |
Sakurai T, Yada N, Hagiwara S, Arizumi T, Minaga K, Kamata K, Takenaka M, Minami Y, Watanabe T, Nishida N and Kudo M: Gankyrin induces STAT3 activation in tumor microenvironment and sorafenib resistance in hepatocellular carcinoma. Cancer Sci. 108:1996–2003. 2017. View Article : Google Scholar : PubMed/NCBI | |
Meng Q, Tian J, Qin F, Huang X, Zhu D, Xiang B and Dong D: Protein tyrosine phosphatase receptor type delta (PTPRD) suppresses the expression of PD-L1 in human hepatocellular carcinoma by down-regulating STAT3. Transl Cancer Res. 9:5574–5584. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kim B and Park B: Saffron carotenoids inhibit STAT3 activation and promote apoptotic progression in IL-6-stimulated liver cancer cells. Oncol Rep. 39:1883–1891. 2018.PubMed/NCBI | |
Igbe I, Shen XF, Jiao W, Qiang Z, Deng T, Li S, Liu WL, Liu HW, Zhang GL and Wang F: Dietary quercetin potentiates the antiproliferative effect of interferon-α in hepatocellular carcinoma cells through activation of JAK/STAT pathway signaling by inhibition of SHP2 phosphatase. Oncotarget. 8:113734–113748. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hammer M, Mages J, Dietrich H, Servatius A, Howells N, Cato AC and Lang R: Dual specificity phosphatase 1 (DUSP1) regulates a subset of LPS-induced genes and protects mice from lethal endotoxin shock. J Exp Med. 203:15–20. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wei X, Tang C, Lu X, Liu R, Zhou M, He D, Zheng D, Sun C and Wu Z: MiR-101 targets DUSP1 to regulate the TGF-β secretion in sorafenib inhibits macrophage-induced growth of hepatocarcinoma. Oncotarget. 6:18389–18405. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Tang Y, Yang C, Li K, Huang X and Cao J: Silencing CDC25A inhibits the proliferation of liver cancer cells by downregulating IL6 in vitro and in vivo. Int J Mol Med. 45:743–752. 2020.PubMed/NCBI | |
Hou J, Xu J, Jiang R, Wang Y, Chen C, Deng L, Huang X, Wang X and Sun B: Estrogen-sensitive PTPRO expression represses hepatocellular carcinoma progression by control of STAT3. Hepatology. 57:678–688. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tsukamoto H, Fujieda K, Miyashita A, Fukushima S, Ikeda T, Kubo Y, Senju S, Ihn H, Nishimura Y and Oshiumi H: Combined Blockade of IL6 and PD-1/PD-L1 signaling abrogates mutual regulation of their immunosuppressive effects in the tumor microenvironment. Cancer Res. 78:5011–5022. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Liu Y, Yan Z, Yang H, Sun W, Yao Y, Chen Y and Jiang R: IL-6 promotes PD-L1 expression in monocytes and macrophages by decreasing protein tyrosine phosphatase receptor type O expression in human hepatocellular carcinoma. J Immunother Cancer. 8:e0002852020. View Article : Google Scholar : PubMed/NCBI | |
He G and Karin M: NF-κB and STAT3-key players in liver inflammation and cancer. Cell Res. 21:159–168. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang K and Karin M: Tumor-Elicited inflammation and colorectal cancer. Adv Cancer Res. 128:173–196. 2015. View Article : Google Scholar : PubMed/NCBI | |
Naugler WE, Sakurai T, Kim S, Maeda S, Kim K, Elsharkawy AM and Karin M: Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science. 317:121–124. 2007. View Article : Google Scholar : PubMed/NCBI | |
Park EJ, Lee JH, Yu GY, He G, Ali SR, Holzer RG, Osterreicher CH, Takahashi H and Karin M: Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell. 140:197–208. 2010. View Article : Google Scholar : PubMed/NCBI | |
Grossmann KS, Rosario M, Birchmeier C and Birchmeier W: The tyrosine phosphatase Shp2 in development and cancer. Adv Cancer Res. 106:53–89. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mohi MG and Neel BG: The role of Shp2 (PTPN11) in cancer. Curr Opin Genet Dev. 17:23–30. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bard-Chapeau EA, Li S, Ding J, Zhang SS, Zhu HH, Princen F, Fang DD, Han T, Bailly-Maitre B, Poli V, et al: Ptpn11/Shp2 acts as a tumor suppressor in hepatocellular carcinogenesis. Cancer Cell. 19:629–639. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jiang C, Hu F, Tai Y, Du J, Mao B, Yuan Z, Wang Y and Wei L: The tumor suppressor role of Src homology phosphotyrosine phosphatase 2 in hepatocellular carcinoma. J Cancer Res Clin Oncol. 138:637–646. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chan TA and Heguy A: The protein tyrosine phosphatase receptor D, a broadly inactivated tumor suppressor regulating STAT function. Cell Cycle. 8:3063–3064. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ostman A, Hellberg C and Bohmer FD: Protein-tyrosine phosphatases and cancer. Nat Rev Cancer. 6:307–320. 2006. View Article : Google Scholar : PubMed/NCBI | |
McFarland BC and Benveniste EN: Reactive astrocytes foster brain metastases via STAT3 signaling. Ann Transl Med. 7 (Suppl 3):S832019. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Jiang CC, Jin L and Zhang XD: Regulation of PD-L1: A novel role of pro-survival signalling in cancer. Ann Oncol. 27:409–416. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Sun YY, Liu YR, Yin NN, Bu FT, Yu HX, Du XS, Li J and Huang C: PTP1B promotes macrophage activation by regulating the NF-κB pathway in alcoholic liver injury. Toxicol Lett. 319:11–21. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chong ZZ and Maiese K: The Src homology 2 domain tyrosine phosphatases SHP-1 and SHP-2: Diversified control of cell growth, inflammation, and injury. Histol Histopathol. 22:1251–1267. 2007.PubMed/NCBI | |
Han T, Xiang DM, Sun W, Liu N, Sun HL, Wen W, Shen WF, Wang RY, Chen C, Wang X, et al: PTPN11/Shp2 overexpression enhances liver cancer progression and predicts poor prognosis of patients. J Hepatol. 63:651–660. 2015. View Article : Google Scholar : PubMed/NCBI | |
An H, Hou J, Zhou J, Zhao W, Xu H, Zheng Y, Yu Y, Liu S and Cao X: Phosphatase SHP-1 promotes TLR- and RIG-I-activated production of type I interferon by inhibiting the kinase IRAK1. Nat Immunol. 9:542–550. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tai WT, Shiau CW, Chen PJ, Chu PY, Huang HP, Liu CY, Huang JW and Chen KF: Discovery of novel Src homology region 2 domain-containing phosphatase 1 agonists from sorafenib for the treatment of hepatocellular carcinoma. Hepatology. 59:190–201. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen KF, Tai WT, Hsu CY, Huang JW, Liu CY, Chen PJ, Kim I and Shiau CW: Blockade of STAT3 activation by sorafenib derivatives through enhancing SHP-1 phosphatase activity. Eur J Med Chem. 55:220–227. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fan LC, Shiau CW, Tai WT, Hung MH, Chu PY, Hsieh FS, Lin H, Yu HC and Chen KF: SHP-1 is a negative regulator of epithelial-mesenchymal transition in hepatocellular carcinoma. Oncogene. 34:5252–5263. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wen LZ, Ding K, Wang ZR, Ding CH, Lei SJ, Liu JP, Yin C, Hu PF, Ding J, Chen WS, et al: SHP-1 acts as a tumor suppressor in hepatocarcinogenesis and HCC progression. Cancer Res. 78:4680–4691. 2018. View Article : Google Scholar : PubMed/NCBI | |
Su JC, Tseng PH, Hsu CY, Tai WT, Huang JW, Ko CH, Lin MW, Liu CY, Chen KF and Shiau CW: RFX1-dependent activation of SHP-1 induces autophagy by a novel obatoclax derivative in hepatocellular carcinoma cells. Oncotarget. 5:4909–4919. 2014. View Article : Google Scholar : PubMed/NCBI | |
Qian H, Deng X, Huang ZW, Wei J, Ding CH, Feng RX, Zeng X, Chen YX, Ding J, Qiu L, et al: An HNF1α-regulated feedback circuit modulates hepatic fibrogenesis via the crosstalk between hepatocytes and hepatic stellate cells. Cell Res. 25:930–945. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Li Z, Liu L, Wang Q, Li S, Chen D, Hu Z, Yu T, Ding J, Li J, et al: Long noncoding RNA TSLNC8 is a tumor suppressor that inactivates the interleukin-6/STAT3 signaling pathway. Hepatology. 67:171–187. 2018. View Article : Google Scholar : PubMed/NCBI | |
Duran A, Hernandez ED, Reina-Campos M, Castilla EA, Subramaniam S, Raghunandan S, Roberts LR, Kisseleva T, Karin M, Diaz-Meco MT and Moscat J: p62/SQSTM1 by binding to vitamin D receptor inhibits hepatic stellate cell activity, fibrosis, and liver cancer. Cancer Cell. 30:595–609. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yuan JH, Yang F, Wang F, Ma JZ, Guo YJ, Tao QF, Liu F, Pan W, Wang TT, Zhou CC, et al: A long noncoding RNA activated by TGF-β promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell. 25:666–681. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li N, Zhou ZS, Shen Y, Xu J, Miao HH, Xiong Y, Xu F, Li BL, Luo J and Song BL: Inhibition of the sterol regulatory element-binding protein pathway suppresses hepatocellular carcinoma by repressing inflammation in mice. Hepatology. 65:1936–1947. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Yang Z, Ma A, Qu Y, Xia S, Xu D, Ge C, Qiu B, Xia Q, Li J and Liu Y: Growth arrest and DNA damage 45G down-regulation contributes to Janus kinase/signal transducer and activator of transcription 3 activation and cellular senescence evasion in hepatocellular carcinoma. Hepatology. 59:178–189. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gough DJ, Corlett A, Schlessinger K, Wegrzyn J, Larner AC and Levy DE: Mitochondrial STAT3 supports Ras-dependent oncogenic transformation. Science. 324:1713–1716. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang YQ, Zhang F, Tian R, Ji W, Zhou Y, Sun XM, Liu Y, Wang ZY and Niu RF: Tyrosine 23 phosphorylation of annexin A2 promotes proliferation, invasion, and Stat3 phosphorylation in the nucleus of human breast cancer SK-BR-3 Cells. Cancer Biol Med. 9:248–253. 2012.PubMed/NCBI | |
Yamada S, Shiono S, Joo A and Yoshimura A: Control mechanism of JAK/STAT signal transduction pathway. FEBS Lett. 534:190–196. 2003. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Shen K, Lu W and Cole PA: The role of C-terminal tyrosine phosphorylation in the regulation of SHP-1 explored via expressed protein ligation. J Biol Chem. 278:4668–4674. 2003. View Article : Google Scholar : PubMed/NCBI | |
Xiang D, Cheng Z, Liu H, Wang X, Han T, Sun W, Li X, Yang W, Chen C, Xia M, et al: Shp2 promotes liver cancer stem cell expansion by augmenting beta-catenin signaling and predicts chemotherapeutic response of patients. Hepatology. 65:1566–1580. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen YN, LaMarche MJ, Chan HM, Fekkes P, Garcia-Fortanet J, Acker MG, Antonakos B, Chen CH, Chen Z, Cooke VG, et al: Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature. 535:148–152. 2016. View Article : Google Scholar : PubMed/NCBI | |
Leung CON, Tong M, Chung KPS, Zhou L, Che N, Tang KH, Ding J, Lau EYT, Ng IOL, Ma S and Lee TKW: Overriding adaptive resistance to sorafenib through combination therapy with Src homology 2 domain-containing phosphatase 2 blockade in hepatocellular carcinoma. Hepatology. 72:155–168. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kang HJ, Chung DH, Sung CO, Yoo SH, Yu E, Kim N, Lee SH, Song JY, Kim CJ and Choi J: SHP2 is induced by the HBx-NF-κB pathway and contributes to fibrosis during human early hepatocellular carcinoma development. Oncotarget. 8:27263–27276. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lo J, Lau EY, Ching RH, Cheng BY, Ma MK, Ng IO and Lee TK: Nuclear factor kappa B-mediated CD47 up-regulation promotes sorafenib resistance and its blockade synergizes the effect of sorafenib in hepatocellular carcinoma in mice. Hepatology. 62:534–545. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mohi MG, Williams IR, Dearolf CR, Chan G, Kutok JL, Cohen S, Morgan K, Boulton C, Shigematsu H, Keilhack H, et al: Prognostic, therapeutic, and mechanistic implications of a mouse model of leukemia evoked by Shp2 (PTPN11) mutations. Cancer Cell. 7:179–191. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zhang SQ, Yang W, Kontaridis MI, Bivona TG, Wen G, Araki T, Luo J, Thompson JA, Schraven BL, Philips MR and Neel BG: Shp2 regulates SRC family kinase activity and Ras/Erk activation by controlling Csk recruitment. Mol Cell. 13:341–355. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Tang C, Luo H, Wang H and Zhou X: Shp2 confers cisplatin resistance in small cell lung cancer via an AKT-mediated increase in CA916798. Oncotarget. 8:23664–23674. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ran H, Tsutsumi R, Araki T and Neel BG: Sticking it to cancer with molecular glue for SHP2. Cancer Cell. 30:194–196. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wu C, Sun M, Liu L and Zhou GW: The function of the protein tyrosine phosphatase SHP-1 in cancer. Gene. 306:1–12. 2003. View Article : Google Scholar : PubMed/NCBI | |
Barr AJ, Ugochukwu E, Lee WH, King ON, Filippakopoulos P, Alfano I, Savitsky P, Burgess-Brown NA, Müller S and Knapp S: Large-scale structural analysis of the classical human protein tyrosine phosphatome. Cell. 136:352–363. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tai WT, Hung MH, Chu PY, Chen YL, Chen LJ, Tsai MH, Chen MH, Shiau CW, Boo YP and Chen KF: SH2 domain-containing phosphatase 1 regulates pyruvate kinase M2 in hepatocellular carcinoma. Oncotarget. 7:22193–22205. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pfirsch-Maisonnas S, Aloulou M, Xu T, Claver J, Kanamaru Y, Tiwari M, Launay P, Monteiro RC and Blank U: Inhibitory ITAM signaling traps activating receptors with the phosphatase SHP-1 to form polarized ‘inhibisome’ clusters. Sci Signal. 4:ra242011. View Article : Google Scholar : PubMed/NCBI | |
Alsadeq A, Hobeika E, Medgyesi D, Klasener K and Reth M: The role of the Syk/Shp-1 kinase-phosphatase equilibrium in B cell development and signaling. J Immunol. 193:268–276. 2014. View Article : Google Scholar : PubMed/NCBI | |
Viant C, Fenis A, Chicanne G, Payrastre B, Ugolini S and Vivier E: SHP-1-mediated inhibitory signals promote responsiveness and anti-tumour functions of natural killer cells. Nat Commun. 5:51082014. View Article : Google Scholar : PubMed/NCBI | |
Motiwala T, Kutay H, Ghoshal K, Bai S, Seimiya H, Tsuruo T, Suster S, Morrison C and Jacob ST: Protein tyrosine phosphatase receptor-type O (PTPRO) exhibits characteristics of a candidate tumor suppressor in human lung cancer. Proc Natl Acad Sci USA. 101:13844–13849. 2004. View Article : Google Scholar : PubMed/NCBI | |
Motiwala T, Ghoshal K, Das A, Majumder S, Weichenhan D, Wu YZ, Holman K, James SJ, Jacob ST and Plass C: Suppression of the protein tyrosine phosphatase receptor type O gene (PTPRO) by methylation in hepatocellular carcinomas. Oncogene. 22:6319–6331. 2003. View Article : Google Scholar : PubMed/NCBI | |
Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS, Baba M, Baehrecke EH, Bahr BA, Ballabio A, et al: Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy. 4:151–175. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Hou J, Wang X, Jiang R, Yin Y, Ji J, Deng L, Huang X, Wang K and Sun B: PTPRO-mediated autophagy prevents hepatosteatosis and tumorigenesis. Oncotarget. 6:9420–9433. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mareninova OA, Hermann K, French SW, O'Konski MS, Pandol SJ, Webster P, Erickson AH, Katunuma N, Gorelick FS, Gukovsky I and Gukovskaya AS: Impaired autophagic flux mediates acinar cell vacuole formation and trypsinogen activation in rodent models of acute pancreatitis. J Clin Invest. 119:3340–3355. 2009.PubMed/NCBI | |
Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, Agholme L, Agnello M, Agostinis P, Aguirre-Ghiso JA, et al: Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 8:445–544. 2012. View Article : Google Scholar : PubMed/NCBI |