|
1
|
Ringelhan M, Pfister D, O'Connor T,
Pikarsky E and Heikenwalder M: The immunology of hepatocellular
carcinoma. Nat Immunol. 19:222–232. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Yang JD and Roberts LR: Hepatocellular
carcinoma: A global view. Nat Rev Gastroenterol Hepatol. 7:448–458.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Bosch FX, Ribes J, Diaz M and Cleries R:
Primary liver cancer: Worldwide incidence and trends.
Gastroenterology. 127 (5 Suppl 1):S5–S16. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Morgan TR, Mandayam S and Jamal MM:
Alcohol and hepatocellular carcinoma. Gastroenterology. 127 (5
Suppl 1):S87–S96. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Caldwell SH, Crespo DM, Kang HS and
Al-Osaimi AM: Obesity and hepatocellular carcinoma.
Gastroenterology. 127 (5 Suppl 1):S97–S103. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Ming L, Thorgeirsson SS, Gail MH, Lu P,
Harris CC, Wang N, Shao Y, Wu Z, Liu G, Wang X and Sun Z: Dominant
role of hepatitis B virus and cofactor role of aflatoxin in
hepatocarcinogenesis in Qidong, China. Hepatology. 36:1214–1220.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Yu MC and Yuan JM: Environmental factors
and risk for hepatocellular carcinoma. Gastroenterology. 127 (5
Suppl 1):S72–S78. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Ohata K, Hamasaki K, Toriyama K, Matsumoto
K, Saeki A, Yanagi K, Abiru S, Nakagawa Y, Shigeno M, Miyazoe S, et
al: Hepatic steatosis is a risk factor for hepatocellular carcinoma
in patients with chronic hepatitis C virus infection. Cancer.
97:3036–3043. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Spangenberg HC, Thimme R and Blum HE:
Targeted therapy for hepatocellular carcinoma. Nat Rev
Gastroenterol Hepatol. 6:423–432. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
El-Serag HB and Rudolph KL: Hepatocellular
carcinoma: Epidemiology and molecular carcinogenesis.
Gastroenterology. 132:2557–2576. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Suriawinata A and Xu R: An update on the
molecular genetics of hepatocellular carcinoma. Semin Liver Dis.
24:77–88. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Satyanarayana A, Manns MP and Rudolph KL:
Telomeres and telomerase: A dual role in hepatocarcinogenesis.
Hepatology. 40:276–283. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Brechot C: Pathogenesis of hepatitis B
virus-related hepatocellular carcinoma: Old and new paradigms.
Gastroenterology. 127 (5 Suppl 1):S56–S61. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Ahn JH, Kim SJ, Park WS, Cho SY, Ha JD,
Kim SS, Kang SK, Jeong DG, Jung SK, Lee SH, et al: Synthesis and
biological evaluation of rhodanine derivatives as PRL-3 inhibitors.
Bioorg Med Chem Lett. 16:2996–2999. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Llovet JM, Ricci S, Mazzaferro V, Hilgard
P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A,
et al: Sorafenib in advanced hepatocellular carcinoma. N Engl J
Med. 359:378–390. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Zhu YJ, Zheng B, Wang HY and Chen L: New
knowledge of the mechanisms of sorafenib resistance in liver
cancer. Acta Pharmacol Sin. 38:614–622. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Villanueva A: Hepatocellular Carcinoma. N
Engl J Med. 380:1450–1462. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Granito A and Bolondi L: Non-transplant
therapies for patients with hepatocellular carcinoma and
Child-Pugh-Turcotte class B cirrhosis. Lancet Oncol. 18:e101–e112.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Tovoli F, Negrini G and Bolondi L:
Comparative analysis of current guidelines for the treatment of
hepatocellular carcinoma. Hepat Oncol. 3:119–136. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Tovoli F, Lorenzo S, Barbera MA, Garajova
I, Frega G, Palloni A, Pantaleo MA, Biasco G and Brandi G:
Postsorafenib systemic treatments for hepatocellular carcinoma:
Questions and opportunities after the regorafenib trial. Future
Oncol. 13:1893–1905. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Pasquier E, Kavallaris M and Andre N:
Metronomic chemotherapy: New rationale for new directions. Nat Rev
Clin Oncol. 7:455–465. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Kareva I, Waxman DJ and Lakka Klement G:
Metronomic chemotherapy: An attractive alternative to maximum
tolerated dose therapy that can activate anti-tumor immunity and
minimize therapeutic resistance. Cancer Lett. 358:100–106. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
De Lorenzo S, Tovoli F, Barbera MA, Garuti
F, Palloni A, Frega G, Garajovà I, Rizzo A, Trevisani F and Brandi
G: Metronomic capecitabine vs. best supportive care in Child-Pugh B
hepatocellular carcinoma: A proof of concept. Sci Rep. 8:99972018.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Personeni N and Rimassa L: Hepatocellular
carcinoma: A global disease in need of individualized treatment
strategies. J Oncol Pract. 13:368–369. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Akateh C, Black SM, Conteh L, Miller ED,
Noonan A, Elliott E, Pawlik TM, Tsung A and Cloyd JM: Neoadjuvant
and adjuvant treatment strategies for hepatocellular carcinoma.
World J Gastroenterol. 25:3704–3721. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Rizzo A, Mollica V, Ricci AD, Maggio I,
Massucci M, Rojas Limpe FL, Fabio FD and Ardizzoni A: Third- and
later-line treatment in advanced or metastatic gastric cancer: A
systematic review and meta-analysis. Future Oncol. 16:4409–4418.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Bruix J, Takayama T, Mazzaferro V, Chau
GY, Yang J, Kudo M, Cai J, Poon RT, Han KH, Tak WY, et al: Adjuvant
sorafenib for hepatocellular carcinoma after resection or ablation
(STORM): A phase 3, randomised, double-blind, placebo-controlled
trial. Lancet Oncol. 16:1344–1354. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Wilhelm SM, Dumas J, Adnane L, Lynch M,
Carter CA, Schütz G, Thierauch KH and Zopf D: Regorafenib (BAY
73-4506): A new oral multikinase inhibitor of angiogenic, stromal
and oncogenic receptor tyrosine kinases with potent preclinical
antitumor activity. Int J Cancer. 129:245–255. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Abou-Elkacem L, Arns S, Brix G, Gremse F,
Zopf D, Kiessling F and Lederle W: Regorafenib inhibits growth,
angiogenesis, and metastasis in a highly aggressive, orthotopic
colon cancer model. Mol Cancer Ther. 12:1322–1331. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Rimassa L, Pressiani T, Personeni N and
Santoro A: Regorafenib for the treatment of unresectable
hepatocellular carcinoma. Expert Rev Anticancer Ther. 17:567–576.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Cerrito L, Ponziani FR, Garcovich M,
Tortora A, Annicchiarico BE, Pompili M, Siciliano M and Gasbarrini
A: Regorafenib: A promising treatment for hepatocellular carcinoma.
Expert Opin Pharmacother. 19:1941–1948. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Liu Z, Lin Y, Zhang J, Zhang Y, Li Y, Liu
Z, Li Q, Luo M, Liang R and Ye J: Molecular targeted and immune
checkpoint therapy for advanced hepatocellular carcinoma. J Exp
Clin Cancer Res. 38:4472019. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Ingles Garces AH, Au L, Mason R, Thomas J
and Larkin J: Building on the anti-PD1/PD-L1 backbone: Combination
immunotherapy for cancer. Expert Opin Investig Drugs. 28:695–708.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Alsaab HO, Sau S, Alzhrani R, Tatiparti K,
Bhise K, Kashaw SK and Iyer AK: PD-1 and PD-L1 checkpoint signaling
inhibition for cancer immunotherapy: Mechanism, combinations, and
clinical outcome. Front Pharmacol. 8:5612017. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Cheng AL, Hsu C, Chan SL, Choo SP and Kudo
M: Challenges of combination therapy with immune checkpoint
inhibitors for hepatocellular carcinoma. J Hepatol. 72:307–319.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Pinter M, Jain RK and Duda DG: The current
landscape of immune checkpoint blockade in hepatocellular
carcinoma: A review. JAMA Oncol. 7:113–123. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Finn RS, Qin S, Ikeda M, Galle PR, Ducreux
M, Kim TY, Kudo M, Breder V, Merle P, Kaseb AO, et al: Atezolizumab
plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J
Med. 382:1894–1905. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Kelley RK: Atezolizumab plus Bevacizumab-A
landmark in liver cancer. N Engl J Med. 382:1953–1955. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Rizzo A, Ricci AD and Brandi G:
Atezolizumab in advanced hepatocellular carcinoma: Good things come
to those who wait. Immunotherapy. 13:637–644. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Sangro B, Sarobe P, Hervas-Stubbs S and
Melero I: Advances in immunotherapy for hepatocellular carcinoma.
Nat Rev Gastroenterol Hepatol. 18:525–543. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Huang Y, Zhang Y, Ge L, Lin Y and Kwok HF:
The roles of protein tyrosine phosphatases in hepatocellular
carcinoma. Cancers (Basel). 10:822018. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Hendriks WJ, Elson A, Harroch S, Pulido R,
Stoker A and den Hertog J: Protein tyrosine phosphatases in health
and disease. FEBS J. 280:708–730. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Pulido R and Hooft van Huijsduijnen R:
Protein tyrosine phosphatases: Dual-specificity phosphatases in
health and disease. FEBS J. 275:848–866. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Alonso A, Sasin J, Bottini N, Friedberg I,
Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J and Mustelin
T: Protein tyrosine phosphatases in the human genome. Cell.
117:699–711. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Buj-Bello A, Laugel V, Messaddeq N,
Zahreddine H, Laporte J, Pellissier JF and Mandel JL: The lipid
phosphatase myotubularin is essential for skeletal muscle
maintenance but not for myogenesis in mice. Proc Natl Acad Sci USA.
99:15060–15065. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Chiarugi P, Cirri P, Marra F, Raugei G,
Fiaschi T, Camici G, Manao G, Romanelli RG and Ramponi G: The Src
and signal transducers and activators of transcription pathways as
specific targets for low molecular weight phosphotyrosine-protein
phosphatase in platelet-derived growth factor signaling. J Biol
Chem. 273:6776–6785. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Hunter T and Sefton BM: Transforming gene
product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl
Acad Sci USA. 77:1311–1315. 1980. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Cohen P: Protein kinases-the major drug
targets of the twenty-first century? Nat Rev Drug Discov.
1:309–315. 2002. View
Article : Google Scholar : PubMed/NCBI
|
|
49
|
Tanner JJ, Parsons ZD, Cummings AH, Zhou H
and Gates KS: Redox regulation of protein tyrosine phosphatases:
Structural and chemical aspects. Antioxid Redox Signal. 15:77–97.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zhang ZY: Protein tyrosine phosphatases:
Structure and function, substrate specificity, and inhibitor
development. Annu Rev Pharmacol Toxicol. 42:209–234. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
He RJ, Yu ZH, Zhang RY and Zhang ZY:
Protein tyrosine phosphatases as potential therapeutic targets.
Acta Pharmacol Sin. 35:1227–1246. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Wang ZC, Gao Q, Shi JY, Guo WJ, Yang LX,
Liu XY, Liu LZ, Ma LJ, Duan M, Zhao YJ, et al: Protein tyrosine
phosphatase receptor S acts as a metastatic suppressor in
hepatocellular carcinoma by control of epithermal growth factor
receptor-induced epithelial-mesenchymal transition. Hepatology.
62:1201–1214. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Meeusen B and Janssens V: Tumor
suppressive protein phosphatases in human cancer: Emerging targets
for therapeutic intervention and tumor stratification. Int J
Biochem Cell Biol. 96:98–134. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Tai WT, Cheng AL, Shiau CW, Liu CY, Ko CH,
Lin MW, Chen PJ and Chen KF: Dovitinib induces apoptosis and
overcomes sorafenib resistance in hepatocellular carcinoma through
SHP-1-mediated inhibition of STAT3. Mol Cancer Ther. 11:452–463.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Wang CI, Chu PM, Chen YL, Lin YH and Chen
CY: Chemotherapeutic drug-regulated cytokines might influence
therapeutic efficacy in HCC. Int J Mol Sci. 22:136272021.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Sakurai T, Yada N, Hagiwara S, Arizumi T,
Minaga K, Kamata K, Takenaka M, Minami Y, Watanabe T, Nishida N and
Kudo M: Gankyrin induces STAT3 activation in tumor microenvironment
and sorafenib resistance in hepatocellular carcinoma. Cancer Sci.
108:1996–2003. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Meng Q, Tian J, Qin F, Huang X, Zhu D,
Xiang B and Dong D: Protein tyrosine phosphatase receptor type
delta (PTPRD) suppresses the expression of PD-L1 in human
hepatocellular carcinoma by down-regulating STAT3. Transl Cancer
Res. 9:5574–5584. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Kim B and Park B: Saffron carotenoids
inhibit STAT3 activation and promote apoptotic progression in
IL-6-stimulated liver cancer cells. Oncol Rep. 39:1883–1891.
2018.PubMed/NCBI
|
|
59
|
Igbe I, Shen XF, Jiao W, Qiang Z, Deng T,
Li S, Liu WL, Liu HW, Zhang GL and Wang F: Dietary quercetin
potentiates the antiproliferative effect of interferon-α in
hepatocellular carcinoma cells through activation of JAK/STAT
pathway signaling by inhibition of SHP2 phosphatase. Oncotarget.
8:113734–113748. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Hammer M, Mages J, Dietrich H, Servatius
A, Howells N, Cato AC and Lang R: Dual specificity phosphatase 1
(DUSP1) regulates a subset of LPS-induced genes and protects mice
from lethal endotoxin shock. J Exp Med. 203:15–20. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Wei X, Tang C, Lu X, Liu R, Zhou M, He D,
Zheng D, Sun C and Wu Z: MiR-101 targets DUSP1 to regulate the
TGF-β secretion in sorafenib inhibits macrophage-induced growth of
hepatocarcinoma. Oncotarget. 6:18389–18405. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Chen S, Tang Y, Yang C, Li K, Huang X and
Cao J: Silencing CDC25A inhibits the proliferation of liver cancer
cells by downregulating IL6 in vitro and in vivo. Int J Mol Med.
45:743–752. 2020.PubMed/NCBI
|
|
63
|
Hou J, Xu J, Jiang R, Wang Y, Chen C, Deng
L, Huang X, Wang X and Sun B: Estrogen-sensitive PTPRO expression
represses hepatocellular carcinoma progression by control of STAT3.
Hepatology. 57:678–688. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Tsukamoto H, Fujieda K, Miyashita A,
Fukushima S, Ikeda T, Kubo Y, Senju S, Ihn H, Nishimura Y and
Oshiumi H: Combined Blockade of IL6 and PD-1/PD-L1 signaling
abrogates mutual regulation of their immunosuppressive effects in
the tumor microenvironment. Cancer Res. 78:5011–5022. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Zhang W, Liu Y, Yan Z, Yang H, Sun W, Yao
Y, Chen Y and Jiang R: IL-6 promotes PD-L1 expression in monocytes
and macrophages by decreasing protein tyrosine phosphatase receptor
type O expression in human hepatocellular carcinoma. J Immunother
Cancer. 8:e0002852020. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
He G and Karin M: NF-κB and STAT3-key
players in liver inflammation and cancer. Cell Res. 21:159–168.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Wang K and Karin M: Tumor-Elicited
inflammation and colorectal cancer. Adv Cancer Res. 128:173–196.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Naugler WE, Sakurai T, Kim S, Maeda S, Kim
K, Elsharkawy AM and Karin M: Gender disparity in liver cancer due
to sex differences in MyD88-dependent IL-6 production. Science.
317:121–124. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Park EJ, Lee JH, Yu GY, He G, Ali SR,
Holzer RG, Osterreicher CH, Takahashi H and Karin M: Dietary and
genetic obesity promote liver inflammation and tumorigenesis by
enhancing IL-6 and TNF expression. Cell. 140:197–208. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Grossmann KS, Rosario M, Birchmeier C and
Birchmeier W: The tyrosine phosphatase Shp2 in development and
cancer. Adv Cancer Res. 106:53–89. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Mohi MG and Neel BG: The role of Shp2
(PTPN11) in cancer. Curr Opin Genet Dev. 17:23–30. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Bard-Chapeau EA, Li S, Ding J, Zhang SS,
Zhu HH, Princen F, Fang DD, Han T, Bailly-Maitre B, Poli V, et al:
Ptpn11/Shp2 acts as a tumor suppressor in hepatocellular
carcinogenesis. Cancer Cell. 19:629–639. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Jiang C, Hu F, Tai Y, Du J, Mao B, Yuan Z,
Wang Y and Wei L: The tumor suppressor role of Src homology
phosphotyrosine phosphatase 2 in hepatocellular carcinoma. J Cancer
Res Clin Oncol. 138:637–646. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Chan TA and Heguy A: The protein tyrosine
phosphatase receptor D, a broadly inactivated tumor suppressor
regulating STAT function. Cell Cycle. 8:3063–3064. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Ostman A, Hellberg C and Bohmer FD:
Protein-tyrosine phosphatases and cancer. Nat Rev Cancer.
6:307–320. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
McFarland BC and Benveniste EN: Reactive
astrocytes foster brain metastases via STAT3 signaling. Ann Transl
Med. 7 (Suppl 3):S832019. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Chen J, Jiang CC, Jin L and Zhang XD:
Regulation of PD-L1: A novel role of pro-survival signalling in
cancer. Ann Oncol. 27:409–416. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Yang L, Sun YY, Liu YR, Yin NN, Bu FT, Yu
HX, Du XS, Li J and Huang C: PTP1B promotes macrophage activation
by regulating the NF-κB pathway in alcoholic liver injury. Toxicol
Lett. 319:11–21. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Chong ZZ and Maiese K: The Src homology 2
domain tyrosine phosphatases SHP-1 and SHP-2: Diversified control
of cell growth, inflammation, and injury. Histol Histopathol.
22:1251–1267. 2007.PubMed/NCBI
|
|
80
|
Han T, Xiang DM, Sun W, Liu N, Sun HL, Wen
W, Shen WF, Wang RY, Chen C, Wang X, et al: PTPN11/Shp2
overexpression enhances liver cancer progression and predicts poor
prognosis of patients. J Hepatol. 63:651–660. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
An H, Hou J, Zhou J, Zhao W, Xu H, Zheng
Y, Yu Y, Liu S and Cao X: Phosphatase SHP-1 promotes TLR- and
RIG-I-activated production of type I interferon by inhibiting the
kinase IRAK1. Nat Immunol. 9:542–550. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Tai WT, Shiau CW, Chen PJ, Chu PY, Huang
HP, Liu CY, Huang JW and Chen KF: Discovery of novel Src homology
region 2 domain-containing phosphatase 1 agonists from sorafenib
for the treatment of hepatocellular carcinoma. Hepatology.
59:190–201. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Chen KF, Tai WT, Hsu CY, Huang JW, Liu CY,
Chen PJ, Kim I and Shiau CW: Blockade of STAT3 activation by
sorafenib derivatives through enhancing SHP-1 phosphatase activity.
Eur J Med Chem. 55:220–227. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Fan LC, Shiau CW, Tai WT, Hung MH, Chu PY,
Hsieh FS, Lin H, Yu HC and Chen KF: SHP-1 is a negative regulator
of epithelial-mesenchymal transition in hepatocellular carcinoma.
Oncogene. 34:5252–5263. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Wen LZ, Ding K, Wang ZR, Ding CH, Lei SJ,
Liu JP, Yin C, Hu PF, Ding J, Chen WS, et al: SHP-1 acts as a tumor
suppressor in hepatocarcinogenesis and HCC progression. Cancer Res.
78:4680–4691. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Su JC, Tseng PH, Hsu CY, Tai WT, Huang JW,
Ko CH, Lin MW, Liu CY, Chen KF and Shiau CW: RFX1-dependent
activation of SHP-1 induces autophagy by a novel obatoclax
derivative in hepatocellular carcinoma cells. Oncotarget.
5:4909–4919. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Qian H, Deng X, Huang ZW, Wei J, Ding CH,
Feng RX, Zeng X, Chen YX, Ding J, Qiu L, et al: An HNF1α-regulated
feedback circuit modulates hepatic fibrogenesis via the crosstalk
between hepatocytes and hepatic stellate cells. Cell Res.
25:930–945. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Zhang J, Li Z, Liu L, Wang Q, Li S, Chen
D, Hu Z, Yu T, Ding J, Li J, et al: Long noncoding RNA TSLNC8 is a
tumor suppressor that inactivates the interleukin-6/STAT3 signaling
pathway. Hepatology. 67:171–187. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Duran A, Hernandez ED, Reina-Campos M,
Castilla EA, Subramaniam S, Raghunandan S, Roberts LR, Kisseleva T,
Karin M, Diaz-Meco MT and Moscat J: p62/SQSTM1 by binding to
vitamin D receptor inhibits hepatic stellate cell activity,
fibrosis, and liver cancer. Cancer Cell. 30:595–609. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Yuan JH, Yang F, Wang F, Ma JZ, Guo YJ,
Tao QF, Liu F, Pan W, Wang TT, Zhou CC, et al: A long noncoding RNA
activated by TGF-β promotes the invasion-metastasis cascade in
hepatocellular carcinoma. Cancer Cell. 25:666–681. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Li N, Zhou ZS, Shen Y, Xu J, Miao HH,
Xiong Y, Xu F, Li BL, Luo J and Song BL: Inhibition of the sterol
regulatory element-binding protein pathway suppresses
hepatocellular carcinoma by repressing inflammation in mice.
Hepatology. 65:1936–1947. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Zhang L, Yang Z, Ma A, Qu Y, Xia S, Xu D,
Ge C, Qiu B, Xia Q, Li J and Liu Y: Growth arrest and DNA damage
45G down-regulation contributes to Janus kinase/signal transducer
and activator of transcription 3 activation and cellular senescence
evasion in hepatocellular carcinoma. Hepatology. 59:178–189. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Gough DJ, Corlett A, Schlessinger K,
Wegrzyn J, Larner AC and Levy DE: Mitochondrial STAT3 supports
Ras-dependent oncogenic transformation. Science. 324:1713–1716.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Wang YQ, Zhang F, Tian R, Ji W, Zhou Y,
Sun XM, Liu Y, Wang ZY and Niu RF: Tyrosine 23 phosphorylation of
annexin A2 promotes proliferation, invasion, and Stat3
phosphorylation in the nucleus of human breast cancer SK-BR-3
Cells. Cancer Biol Med. 9:248–253. 2012.PubMed/NCBI
|
|
95
|
Yamada S, Shiono S, Joo A and Yoshimura A:
Control mechanism of JAK/STAT signal transduction pathway. FEBS
Lett. 534:190–196. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Zhang Z, Shen K, Lu W and Cole PA: The
role of C-terminal tyrosine phosphorylation in the regulation of
SHP-1 explored via expressed protein ligation. J Biol Chem.
278:4668–4674. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Xiang D, Cheng Z, Liu H, Wang X, Han T,
Sun W, Li X, Yang W, Chen C, Xia M, et al: Shp2 promotes liver
cancer stem cell expansion by augmenting beta-catenin signaling and
predicts chemotherapeutic response of patients. Hepatology.
65:1566–1580. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Chen YN, LaMarche MJ, Chan HM, Fekkes P,
Garcia-Fortanet J, Acker MG, Antonakos B, Chen CH, Chen Z, Cooke
VG, et al: Allosteric inhibition of SHP2 phosphatase inhibits
cancers driven by receptor tyrosine kinases. Nature. 535:148–152.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Leung CON, Tong M, Chung KPS, Zhou L, Che
N, Tang KH, Ding J, Lau EYT, Ng IOL, Ma S and Lee TKW: Overriding
adaptive resistance to sorafenib through combination therapy with
Src homology 2 domain-containing phosphatase 2 blockade in
hepatocellular carcinoma. Hepatology. 72:155–168. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Kang HJ, Chung DH, Sung CO, Yoo SH, Yu E,
Kim N, Lee SH, Song JY, Kim CJ and Choi J: SHP2 is induced by the
HBx-NF-κB pathway and contributes to fibrosis during human early
hepatocellular carcinoma development. Oncotarget. 8:27263–27276.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Lo J, Lau EY, Ching RH, Cheng BY, Ma MK,
Ng IO and Lee TK: Nuclear factor kappa B-mediated CD47
up-regulation promotes sorafenib resistance and its blockade
synergizes the effect of sorafenib in hepatocellular carcinoma in
mice. Hepatology. 62:534–545. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Mohi MG, Williams IR, Dearolf CR, Chan G,
Kutok JL, Cohen S, Morgan K, Boulton C, Shigematsu H, Keilhack H,
et al: Prognostic, therapeutic, and mechanistic implications of a
mouse model of leukemia evoked by Shp2 (PTPN11) mutations. Cancer
Cell. 7:179–191. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Zhang SQ, Yang W, Kontaridis MI, Bivona
TG, Wen G, Araki T, Luo J, Thompson JA, Schraven BL, Philips MR and
Neel BG: Shp2 regulates SRC family kinase activity and Ras/Erk
activation by controlling Csk recruitment. Mol Cell. 13:341–355.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Yang X, Tang C, Luo H, Wang H and Zhou X:
Shp2 confers cisplatin resistance in small cell lung cancer via an
AKT-mediated increase in CA916798. Oncotarget. 8:23664–23674. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Ran H, Tsutsumi R, Araki T and Neel BG:
Sticking it to cancer with molecular glue for SHP2. Cancer Cell.
30:194–196. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Wu C, Sun M, Liu L and Zhou GW: The
function of the protein tyrosine phosphatase SHP-1 in cancer. Gene.
306:1–12. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Barr AJ, Ugochukwu E, Lee WH, King ON,
Filippakopoulos P, Alfano I, Savitsky P, Burgess-Brown NA, Müller S
and Knapp S: Large-scale structural analysis of the classical human
protein tyrosine phosphatome. Cell. 136:352–363. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Tai WT, Hung MH, Chu PY, Chen YL, Chen LJ,
Tsai MH, Chen MH, Shiau CW, Boo YP and Chen KF: SH2
domain-containing phosphatase 1 regulates pyruvate kinase M2 in
hepatocellular carcinoma. Oncotarget. 7:22193–22205. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Pfirsch-Maisonnas S, Aloulou M, Xu T,
Claver J, Kanamaru Y, Tiwari M, Launay P, Monteiro RC and Blank U:
Inhibitory ITAM signaling traps activating receptors with the
phosphatase SHP-1 to form polarized ‘inhibisome’ clusters. Sci
Signal. 4:ra242011. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Alsadeq A, Hobeika E, Medgyesi D, Klasener
K and Reth M: The role of the Syk/Shp-1 kinase-phosphatase
equilibrium in B cell development and signaling. J Immunol.
193:268–276. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Viant C, Fenis A, Chicanne G, Payrastre B,
Ugolini S and Vivier E: SHP-1-mediated inhibitory signals promote
responsiveness and anti-tumour functions of natural killer cells.
Nat Commun. 5:51082014. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Motiwala T, Kutay H, Ghoshal K, Bai S,
Seimiya H, Tsuruo T, Suster S, Morrison C and Jacob ST: Protein
tyrosine phosphatase receptor-type O (PTPRO) exhibits
characteristics of a candidate tumor suppressor in human lung
cancer. Proc Natl Acad Sci USA. 101:13844–13849. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Motiwala T, Ghoshal K, Das A, Majumder S,
Weichenhan D, Wu YZ, Holman K, James SJ, Jacob ST and Plass C:
Suppression of the protein tyrosine phosphatase receptor type O
gene (PTPRO) by methylation in hepatocellular carcinomas. Oncogene.
22:6319–6331. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Klionsky DJ, Abeliovich H, Agostinis P,
Agrawal DK, Aliev G, Askew DS, Baba M, Baehrecke EH, Bahr BA,
Ballabio A, et al: Guidelines for the use and interpretation of
assays for monitoring autophagy in higher eukaryotes. Autophagy.
4:151–175. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Zhang W, Hou J, Wang X, Jiang R, Yin Y, Ji
J, Deng L, Huang X, Wang K and Sun B: PTPRO-mediated autophagy
prevents hepatosteatosis and tumorigenesis. Oncotarget.
6:9420–9433. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Mareninova OA, Hermann K, French SW,
O'Konski MS, Pandol SJ, Webster P, Erickson AH, Katunuma N,
Gorelick FS, Gukovsky I and Gukovskaya AS: Impaired autophagic flux
mediates acinar cell vacuole formation and trypsinogen activation
in rodent models of acute pancreatitis. J Clin Invest.
119:3340–3355. 2009.PubMed/NCBI
|
|
117
|
Klionsky DJ, Abdalla FC, Abeliovich H,
Abraham RT, Acevedo-Arozena A, Adeli K, Agholme L, Agnello M,
Agostinis P, Aguirre-Ghiso JA, et al: Guidelines for the use and
interpretation of assays for monitoring autophagy. Autophagy.
8:445–544. 2012. View Article : Google Scholar : PubMed/NCBI
|